板带轧机AGC控制技术
精轧AGC功能说明

精轧AGC系统功能说明一、AGC系统概况由于带钢全长轧制中会遇到各种干扰,为了消除这些干扰的影响,减少带钢厚度公差,需设置精轧机组自动厚度控制系统,简称AGC系统,AGC系统是提高带钢全长厚度精度的主要手段。
AGC功能投入框图:二、AGC系统的功能GM-AG,即轧制力AGC即利用弹跳方程间接测量钢板厚度作为实测厚度进行反馈控制,这是AGC系统中基本的控制功能,根据GM-AG(中采用头部锁定值还是过程计算机设定值作为厚度基准可分为相对AGC( LK-AGC或绝对AGC(AB-AGC,一般以绝对AGC为主。
KFF-AGC即硬度前馈AGC即将上游机架的实测轧制力所获得的硬度变化信息用于后面各机架进行前馈控制。
MN-AGC即监控AGC由于弹跳方程的精度不高,因此需利用未机架后测厚仪信号对厚度的系统偏差进行纠正。
三、AGC算法GM-AGCL制力AGC其基本原理就是弹跳方程,其本质就是轧机产生单位弹跳量所需要的轧制力。
式中,h为轧机实际出口厚度;S。
为辊缝预设值;P为实际轧制力;M为轧机刚度;轧机刚度M在轧机牌坊制作安装完成以后就已经确定,是一个常值,无法修改,但是在实际的控制过程中,人们却希望轧机的刚度可变,比如为了消除轧辊偏心的影响,人们希望轧机的刚度尽可能的小,但为了消除来料厚度及材料温度变化的影响,又希望轧机刚度尽可能的大,因此产生了变刚度的控制方式。
假设预设辊缝值为S o,轧机的刚度系数为M来料厚度为H。
,此时轧制压力为P】,则实际轧出厚度h i应为:当来料厚度或温度因某种原因有变化时,在轧制过程中必然会引起轧制压力和轧出厚度的变化,如果压力由P i变为P2,则轧出厚度h2为:当轧制压力由P】变为P2时,则其轧出厚度的厚度偏差△ h正好等于压力差所引起的弹跳量为:为了消除此厚度偏差,可以通过调节液压缸的位置来补偿轧制力变化所引起的轧机弹跳变化量,此时液压缸所产生的轧辊位置修正量△ x,应与此弹跳变化量呈正比,方向相反,为:式中C为变刚度系数KFF-AGCi机架出口厚度变化量可用下式计算:h| = A Hi H汁 A Ki--K汁 A Si、SA“(X i)C QX 为'P :H i,或 C式中,为i i机架入口厚度变动(从静态角度可认为H i h i-1)「K为1 i机架厚度变动"Si为i机架辊缝调节量主要扰动为温度变动,我们曾对不同成品规格当FTO有20O C变动时各机架轧制温度以及其变形阻力(硬度)的变动作了计算,由计算结果可知,不能用::K K匚相等的法则来表示各机架、水间的关系,而应采用Ki=:匚、K i其中一:为0.95〜1.05 因此可利用上游机架的实测轧制力P*来求出K!设叶R*—? (p为设定值)—CQC Q然后即可求出K i= v'K i各机架前馈控制量(使6^ =0 ),为;卩一、S = J K iC其中B ki=如上一机架有残余出口偏差h i-1,则亦可用于水i田:K i、S j =C Chi的动作时间可以每一机架咬钢后「时刻投入,X为检测机架机架所实测到的突发量发生时间(相对于咬钢时间),由于精轧组秒流量相当,因此i 机架仍可用怡来判断突发量的到达,「为提前量决定于压下系统的响应速度。
轧机厚度自动控制AGC系统说明

轧机厚度自动控制AGC系统使 用 说 明 书中色科技股份有限公司装备所自动化室二零零九年八月二十五日目 录第一篇 软件使用说明书第一章 操作软件功能简介第二章 操作界面区简介第三章 操作使用说明第二篇 硬件使用说明书第一章 接口板、计算机板跨接配置图 第三篇 维护与检修第一章 系统维护简介及维护注意事项第二章 工程师站使用说明第三章 检测程序的使用第四章 常见故障判定方法第四篇 泵站触摸屏操作说明第五篇 常见故障的判定方法附录:第一章 目录第二章 系统内部接线表第三章 系统外部接线表第四章 系统接线原理图第五章 系统接口电路单元图第一篇软 件 说 明 书第一章 操作软件功能简介.设定系统轧制参数;.选择系统工作方式;.系统调零;.显示时实参数的棒棒图、馅饼图、动态曲线;.显示系统的工作方式、状态和报警。
以下就各功能进行分述:1、在轧机靠零前操作手需根据轧制工艺,设定每道次的入口厚度、出口厚度和轧制力等参数。
也可以在轧制表里事先输入,换道次时按下道次按钮,再按发送即可。
2、操作手根据不同的轧制出口厚度,设定机架控制器和厚度控制器的工作方式,与轧制参数配合以得到较理想的厚差控制效果。
3、在泄油状态下,操作手通过在规定状态下对调零键的操作,最终实现系统的调零或叫靠零,以便厚调系统正常工作。
4、在轧制过程中,以棒棒图、馅饼图和动态曲线显示厚调系统的轧制速度、轧制压力、开卷张力、卷取张力、操作侧油缸位置、传动侧油缸位置、压力差和厚差等实时值。
(注意:轧机压靠前操作侧油缸位置、传动侧油缸位置显示为油缸实际移动位置。
轧机压靠后操作侧油缸位置、传动侧油缸位置显示的是辊缝值。
)5、显示系统的工作方式、系统状态和系统报警。
6、系统有两种与传动和测厚仪协调工作模式A.常用数据由厚控AGC发送到传动及测厚仪。
如人口厚度、出口厚度、轧制速度及张力等等。
传动以此为基准值,如调整需通过把手或其他方式加到此基准值上,然后返送回AGC。
宽厚板轧机液压AGC系统控制原理其控制模式论文

宽厚板轧机液压AGC系统的控制原理及其控制模式分析由于现代社会的发展的需要,各行各业对于钢板的尺寸与精度都有了更为严格的要求。
伴随社会对于钢材尺寸的要求,宽厚板轧机液压agc系统被广泛地应用于现代化的板带轧机生产之中。
旨在通过对宽厚板轧机液压agc系统的控制原理及控制模式的分析,介绍宽厚板轧机液压agc系统的设备特点及其功能。
宽厚板轧机液压agc系统设备布置功能描述随着现代社会对于各种钢板材料尺寸及精度要求的越来越严格,尤其对于船舶造船业、高档汽车业的发展以及石油、天然气等对输出管道的刚性要求,迫使社会及客户对于钢板的尺寸精度要求越来越苛刻。
这就需要类似液压agc系统具有的低惯量、高响应、高精度及便于计算机控制及操作的宽厚板轧机液压系统,应用于现代化的板带轧机生产线中,自动对板材的厚度进行控制。
1宽厚板轧机液压agc系统的控制原理宽厚板液压agc系统的控制原理主要是通过对轧制力及辊缝进行调节,来有效地改善钢材及板带材等的厚度差。
因为,目前的生产过程中,板带在轧制过程中,有非常多的因素会影响到板带的厚度及其均匀性。
例如:轧件本身的因素(坯料的厚度不均匀、坯料硬度的波动含水印)、轧制因素(轧辊偏心、咬钢时轧件对于轧辊发生冲击)、温度的因素(温度易对轧辊尺寸及轧制力产生影响)。
另外,宽厚板轧机液压agc系统的控制模型有四类:(一)压力agc系统,主要基于轧机弹跳方程原理,在此基础原理上建立控制模型;(二)监控agc系统,主要通过出口测厚仪所测量到的板厚偏差来形成主反馈量并控制生产线上的板带出口厚度;(三)预控agc系统,主要利用轧机入口测厚仪所检测到的板材料的厚度偏差做出前馈控制,然后消除板材坯料等对出口板厚的影响;(四)流量agc系统,通过轧制流量不变的原理将流入轧机的带材和在此过程中流出轧机的带材体积恒定在一定值不变的原理进行检测及控制出口板带的厚度。
宽厚板液压agc系统的控制原理主要是通过液压缸驱动对系统中的辊缝进行动态的微调整,使其同时具备两个基本的内闭环,即轧制力闭环及位置闭环。
AGC控制原理

WUST
2.弹塑性曲线 弹塑性曲线
2.弹塑性曲线 弹塑性曲线
弹跳方程是分折厚度自动控制系统的一个有效工具,通过它不但 可以弄清各种因素对厚度的影响,而且还可定量地分析各种厚度控制 方案。一种直观简易的分析方法是将变形区中的轧制力作为纵坐标, 而把厚度作为横坐标,作成P-h图,在此图上,可以综合地研究变形 区中轧件(塑性方程式)和轧辊(弹性方程式)间相互作用又相互联系的力 和变形关系,如图1所示。
AGC
徐 光
武汉科技大学材料与冶金学院 材料成型与控制系 2容
1.冷轧产生厚差的原因 冷轧产生厚差的原因 2.弹塑性曲线 弹塑性曲线 3. AGC 4. HC轧机受力分析 轧机受力分析 5.传动力矩 传动力矩 6. 轧制压力(变形抗力) 轧制压力(变形抗力)
WUST
1.冷轧产生厚差的原因 冷轧产生厚差的原因
1.冷轧产生厚差的原因 冷轧产生厚差的原因
冷带厚度精度分为:带钢头部厚度命中率和带钢全长厚度偏差。 带钢头部厚度命中率取决于厚度设定模型的精度;带钢全长厚度差由 AGC根据头部厚度(相对AGC采用头部锁定)或根据设定的厚度(绝 对AGC)使全长各点厚度与锁定值或设定值之差小于允许范围。 影响头部命中率的因素为: (1) 设定模型精度不高(主要是温轧制力模型的精度); 影响带钢全长厚度偏差的因素可分为: (1) 由带钢本身工艺参数波动造成,包括来料厚度不均以及化学成 分偏析等; (2) 由轧机参数波动造成,包括支持辊偏心、轧辊热膨胀、轧辊磨 损以及油膜轴承油膜厚度的变化等。
图9 张力调厚
WUST
3. AGC(Automatic Gauge Control) ( )
3.1 辊缝传递函数
δS 和 δh 关系(图10)。 由图知,当压下移动 δS 时,轧件厚度变化并不是δS ,而仅仅是 δh , 它们间的关系可推导如下。
厚度控制-AGC

AGC控制系统的原理数学模型及应用综述摘要:本文介绍了AGC在上生产过程中的控制原理,AGC的分类及数学模型,AGC控制系统在生产中的应用和AGC控制技术的发展过程及趋势。
关键词:AGC;控制原理;数学模型;监控1 概述AGC是Automatic Gauge Control System的简称,即所谓的轧机自动厚度控制系统。
是轧机自动化系统中不可缺少的一部分,它控制金属带材厚度精度,使金属带材厚差在限定的标准内,提高金属带材的成品率。
AGC系统的作用有两个:一是辊缝的计算,二是根据产品尺寸结合机架的形变量来调整实际的辊缝值,使之轧制的产品尺寸符合既定要求[1]。
1.1 我国厚度控制技术的发展概况目前我国已经应用的厚度控制系统,可大致分为3种基本类型[2]。
(1) 用测厚仪信号反馈控制轧机压下或轧机入口侧带钢张力的AGC(Automatic Gauge Control)系统。
上个世纪70年代,厚度控制系统大多是这类系统,而且是模拟线路。
按轧机出口侧测厚仪测出的带钢实际偏差信号反馈控制,大偏差或被轧带钢厚度大于0.4mm时,按偏差信号大小去移动压下位置,改变辊缝间距,以减小厚度偏差,即所谓粗调;在小偏差或被轧带钢厚度小于0.4mm时,则调节轧机入口侧带钢张力,进一步减小厚度偏差,即所谓精调。
我国早期的AGC系统调节压下装置的执行机构是电动的,因电动压下响应慢和非线性的缺点,逐渐被液压压下机构代替睁[3]。
(2) 采用前馈控制和测厚仪信号反馈控制轧机压下或轧机入口侧带钢张力的AGC系统。
将上述AGC系统数字化,并增加前馈控制回路就构成这类AGC系统。
前馈控制是当轧机入口侧有厚度偏差的带钢进入轧辊时,立即调节被控机架压下位置,将入口带钢厚度偏差消除的一种控制策略。
方法是将轧机入口侧测厚仪至轧辊中心的距离分成若干整数段,把经过入口侧测厚仪的每段带钢厚度顺序存入移位寄存器中,寄存器按FIFO方式工作,当寄存器输出的带钢段进入轧辊时,系统按该段厚度偏差值调整压下,以消除进入轧机的带钢厚度偏差。
采用先进AGC系统的可逆四辊冷轧机控制系统

采用先进AGC系统的可逆四辊冷轧机控制系统可逆四辊冷轧机是一种用于金属材料制作的设备,通常用于轧制薄板和薄带,例如不锈钢、铝、铜等材料。
为了提高生产效率和产品质量,现代的可逆四辊冷轧机通常采用先进的AGC系统进行控制。
AGC是自动板形控制的缩写,它能够实现对轧机的自动调整,以确保产品的准确尺寸和质量。
本文将介绍采用先进AGC系统的可逆四辊冷轧机控制系统的特点、优势和应用。
一、AGC系统的特点1. 自动控制:AGC系统能够根据生产需求和材料特性,自动调整轧辊的位置,使得轧制产品的厚度和平整度达到设计要求。
2. 高精度:AGC系统具有高精度的控制能力,能够实现对轧机的微小调整,保证产品的尺寸和表面质量达到客户要求。
3. 高效能:AGC系统能够快速响应生产需求的变化,提高轧机的生产效率和性能。
4. 可编程性:AGC系统具有灵活的编程能力,能够根据不同的产品要求进行调整,实现生产的多样化和个性化。
3. 减少生产成本:AGC系统能够降低材料损耗和能耗,减少人工干预,降低生产成本。
4. 提高工作环境:AGC系统能够减少人工干预,提高生产的自动化程度,改善工作环境。
5. 提高设备可靠性:AGC系统能够实现对轧机的精确控制,减少设备的运行故障,提高设备的可靠性和稳定性。
AGC系统广泛应用于不同类型的可逆四辊冷轧机,例如不锈钢轧机、铝合金轧机、铜合金轧机等。
它适用于不同类型的金属材料,具有不同的厚度和宽度要求的产品。
AGC系统还可以应用于不同的生产工艺和工艺参数,例如冷轧、热轧、精轧等。
AGC系统还可以与其他自动控制系统结合使用,例如负荷控制系统、温度控制系统等,实现对轧机的全面控制和优化。
通过对轧机控制系统的不断改进和优化,可以提高生产效率、节约能源、降低成本,满足不同客户的产品需求。
采用先进AGC系统的可逆四辊冷轧机控制系统具有自动控制、高精度、高效能和可编程性等特点,能够优化产品质量、提高生产效率、降低生产成本、改善工作环境和提高设备可靠性。
北京科技大学科技成果——轧机液压AGC控制系统

北京科技大学科技成果——轧机液压AGC控制系统项目简介液压AGC具有响应速度快、控制精度高的优点,正在取代电动AGC成为当今新建轧机和欲改造轧机的首选技术。
北京科技大学高效轧制国家工程研究中心长期致力于液压AGC在大型工业轧机应用的研究,并在多条带钢连轧机组中取得成功应用,为轧钢技术国产化作出较大贡献。
AGC控制系统由L2过程控制系统和L1基础自动化控制体统组成。
L2级系统主要通过模型自学习完成对液压控制系统参数的缓慢变化造成的厚度偏差进行补偿;L1级系统则完成对实时参数变化造成的厚度偏差进行补偿,同时完成液压APC和液压AFC控制功能。
L2级完成的主要功能包括:轧制负荷分配及优化、辊缝位置基准计算和设定、轧制力预报、温度预报、模型自学习等。
涉及的计算模型包括:轧制力模型、变形抗力模型、残余应变模型、轧制弹跳模型(辊系弹性变形分析、轧机牌坊弹性变形)、板坯温度模型(辐射和对流、高压水、与轧辊接触产生的热传导、塑性功转变为热量引起的温升、摩擦热)、轧辊磨损模型、轧辊热膨胀模型、力矩模型、宽展模型、前滑模型、轧件尺寸计算模型、板形和板凸度模型、板厚控制与板形控制之间的关系、平面形状预测和控制模型等。
由L1级完成的液压AGC主要控制功能包括:液压缸位置控制(HAPC)、电动压下螺丝控制(EAPC)、自动厚度控制(HAGC,根据不同应用场合可以选择:压力AGC、硬度前馈AGC、测厚仪监控AGC、穿带自适应、快速监控AGC、流量AGC和张力AGC等的一种或几种)、补偿AGC(包括轧件宽度补偿、油膜轴承油膜厚度补偿、轧辊热膨胀与磨损补偿、尾部失张补偿、偏心滤波及补偿、伺服阀偏移补偿、穿带冲击补偿、卷取冲击补偿等)、轧辊平行控制(ALC)、自动纠偏、、轧机调零、轧机刚度测量、手动倾斜、事故锁定和卸荷等。
AGC工作方式包括相对AGC控制和绝对AGC控制两种。
该液压AGC系统和板形控制系统一起被评为“九五”国家重点科技攻关计划(重大技术装配)优秀科技成果,并已成功应用于多条轧线,取得了极高的控制精度。
AGC控制技术及其在铝板带轧制中的应用进展

AGC控制技术及其在铝板带轧制中的应用进展刘 辉(霍尼韦尔(中国)有限公司,四川绵阳 621000)摘要:最近几年来,我国的铝材需求量不断上涨,当前我国已经跃居全球铝行业大国。
我国和西方发达国家相比较,国内的铝产品质量还是比不上西方发达国家,国内对于高质量、高品质的铝产品还是需要进口,并且经常受到发达国家的技术封锁,这种情况的出现就限制了我国铝生产技术的发展。
基于此本文主要是通过分析了轧机板厚自动控制(AGC)技术的发展,并详细探讨了厚度控制与铝板带轧制中的实际应用,对于今后我国铝板所带来的轧制厚度控制提出建议,予以有关单位参考与借鉴。
关键词:AGC控制技术;铝板带轧制;实际应用;进展中图分类号:X924.4 文献标识码:A 文章编号:2096-4609(2019)26-0227-002一、前言在一定程度上铝是作为第一大有色金属材料,其具有耐腐蚀、质量较轻以及加工性能好、比强度较高与可再生利用等优点,被广泛的应用在交通运输、航空航天以及机械、电力、包装与军事装备等多个行业,铝材也是我国经济发展以及国防建设的主要物资。
铝板带材大约占据整个铝材加工的百分之六十左右,其实际应用是极为广泛的。
现代轧机板厚自动控制技术,下面简称AGC技术是具有控制精度高以及响应速度快的特点,现已经成为轧制高精度铝板带材必不可少的装备技术之一,其不仅是能够满足高质量与高性能的铝板产品需求,还能够提升其成才的几率,从而降低原材料的实际消耗,并且还可以提升板带轧机自动化水平等多方面的作用。
二、铝板带轧制综合分析国内的铝板带轧制是一种具有多变量、滞后、非线性、时变的复杂工业工程。
铝板带加工工艺的主要要求包含了下面几点:第一综合性能,其对于重要用途的铝板,其还要求具有极为良好的韧性与工艺性能以及冲压性等诸多要求之外,还需要具有极强的综合性能;第二是铝板带表面的质量,铝板带表面是不能出现拉裂、气泡以及结疤和刮伤等损伤;第三是铝板带尺寸的精度,其也包含了铝板带的长度、宽度以及厚度等方面的精确度;第四是铝板带的板型精度,铝板带必须要平坦,不出现瓢曲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板带轧机AGC控制技术
2.液压AGC厚度控制系统
液压AGC(自动厚度控制)系统是提高宽带热连轧板厚精度,控制板形,提高带材合格率的重要技术,AGC系统的动态品质、静态品质的好坏直接影响系统的稳定性,响应的快速性和控制精度。
板带轧机液压AGC系统主要功能是实现压下位置自动控制(液压APC)及板厚自动控制(液压AGC)。
正是由于液压AGC系统响应的快速性,控制的精确性,使得越来越多的宽带生产线采用。
莱钢1500mm宽带热连轧生产线实践证明液压AGC系统通过提高整套轧机控制水平,使得产品质量大幅度提高。
液压AGC控制响应时间40ms,响应频率1 5Hz,使板带纵向厚差控制在范围内,促使莱钢板带产品质量达到世界水平。
2.1 AGC的组成
2.1.1工艺原理
液压压下装置一般由位移传感器,液压缸和电液伺服阀等所组成,如图1所示。
系统通过电液伺服阀对液压缸的流量和压力的调节来控制液压缸上、下移动的行程来调节轧辊辊缝值。
液压AGC系统通过测厚仪、位移传感器和压力传感器等对相应参数的连续测量,连续调整压下缸位移、轧制压力等,从而控制板带材的厚差。
一个完整的液压伺服控制厚度自动控制系统的主要设备由计算机、检测元件为主的控制装置和以一套液压缸(每侧一个)为主的执行机构组成。
检测元件主要有:测厚仪、测压仪(每侧一个)以及安装在液压缸上的四个位置传感器(每个液压缸两个)和两个压力传感器(每个液压缸一个)。
2.1.2液压AGC阀台
图2 液压AGC阀台示意
液压AGC阀台原理示意如图2所示。
(1)阀站下方P口连通液压站的系统供油油路,用于为液压AGC系统提供液压动力,T口连通液压站油箱,用于回油。
(2)阀站右方的P口,T口,X口用于检修或排查故障时检测阀站内系统供油压力P 以及伺服阀控制油路X是否正常。
(3)阀站上方A口连通液压AGC液压缸无杆腔,B口连通液压AGC液压缸的有杆腔。
(4)过滤器对阀站内的P油路和X油路中的杂质进行过滤,如果过滤器DPS1堵塞,将发出故障信号,应及时更换。
(5)阀站的P口手动阀主要用于检修时把该阀站的系统供油油路断开。
(6)油压传感器SP1和SP2安装于阀站外油管路上,用于检测液压AGC液压缸无杆腔和有杆腔油压。
2.1.3电磁阀工作原理
Y=T,X选择P或者T,来阻断或者开通P,A,B油路。
2.1.4溢流阀工作原理
工作方式1:A,B油路大于某值将自动流回到T;
工作方式2:控制溢流阀线圈得电,自动将A,B油路回流到T。
2.1.5伺服阀工作原理
通过输出模拟量±10mA电流来控制伺服阀阀芯位置,使得伺服阀工作在三个不同的工作状态:
状态1:P→B, A→T
状态2:P→A,B→T
状态3:或者截止(理论状态)
3 .1液压AGC系统的功能
3.1.1 功能设计
一个完整的液压AGC系统应完成若干个功能,其中最主要的是以下几方面:
(1)压下缸位置闭环1 随轧制条件变化及时准确地控制压下位移。
X P1,X P2,:分别是操作侧和传动侧活塞相对缸体的位移,取其平均值Xpd作为实测位移值Xps为给定信号,是测厚仪监控环的反馈量。
(2)轧制压力闭环2 通过控制轧制压力来达到控制厚度的目的。
P d是轧制压力的实测值,Ps为初始设定值。
为修正值。
(3)测厚仪监控闭环3 消除轧辊磨损、热膨胀及设定值误差等的影响。
C为轧机纵向刚度系数,Q为轧件的塑性刚度系数,h d为实测轧件厚度,h s为设定轧制厚度。
3.1.2 液压AGC数学模型
液压AGC位置控制系统是一种典型具有弹性负载的位置伺服控制系统,其方框图如图3所示。
位移传感器
PI调节器
压力传感器
液压缸
伺服阀
伺服放大器
放大与校正
轧辊动作
指令信号
图3液压AGC伺服控制系统方框图
方框图分如下几个主要部分:电液伺服阀、阀控液压缸、位移传感器、伺服放大器。
各部分的数学模型如下:
(1)阀控液压缸。
液压缸可用如下传递函数来近似:
(1)式中:Xp一柱塞行程,m;
Q L一伺服阀输出流量,m3/s;
A 一液压缸工作面积,m2;
一负载弹簧刚度与阻尼系数之比,rad/s;
一液压弹簧与负载弹簧串联耦合时的刚度与阻尼系数之比,
rad/s;
一液压弹簧与负载弹簧并联工作与负载质量构成的系统固有频
率,rad/s:
一液压阻尼比,取=0.2;
(2)电液伺服阀。
电液伺服阀具有高度非线性特点,其输出流量Q L的线性化方程为:
(2)式中Q sv0一伺服阀的空载流量,Q sv0=
I c一输入电流信号
K sv一伺服阀的静态流量放大系数
K c一伺服阀的压力流量系数
△P L一负载压力变化
伺服阀传递函数可按二阶振荡环节来取:
(3)但通常当液压执行机构的固有频率低于50Hz时,伺服阀的动态特性可
用一阶环节表示
(4)式中,为伺服阀固有频率,可以从伺服阀制造厂提供的频率响应曲线获
(3)位移传感器和压力传感器。
位移传感器可视为惯性环节,差动变压器式位移传感器的传递函数为:
(5)压力传感器可视为比例环节
P d/P L=K f(6)
式中K f一压力反馈系数。
(4)伺服放大器。
伺服放大器(包括功率放大器)由集成电子元件组成,响应速度很快,也可不计其时间常数,按比例环节处理。
(7)(5)液压系统的传递函数。
将上面各个环节组合起来,可得到液压位置控制闭环结构图,参见图4。
液压系统可简化为二阶环节,本文在仿真中把液压执行机构传递函数取为
3.1.4 液压AGC的特点
(1)惯性小,响应快:由于AGC液压缸等运动部件比电机惯性小,它的加速度可提高到500 mm/s。
以上,压下速度可达到4 mm/s,系统频率可达1 5Hz,响应时间45ms,同时每一缸采用双向伺服阀控制,提高供油速度确保系统能满足25.1m/s的高速轧制。
(2)精度高:由于F1-F7全部采用液压AGC,所以成品厚度偏差可以达到±10m(3 mm以上成品厚差可控在±20/m),而冷轧液压AGC成品厚差精度将会成倍提高。
(3)安全可靠:液压AGC工作时缸行程范围为-5--+25mm,它的可调范围大,同时设有快速卸压装置可以防止轧辊及其轴承的过载和损坏。
(4)消耗功率小:由于惯性小同样所需的功率也小,因此效率高。
(5)操作方便灵活:由于采用32位多微机系统控制操作灵活方便,同时
运行周期快,采样时间仅为5ms。
(6)轧机刚度可控,可根据不同的轧制条件,选择不同的刚度系数,来
获得所要求的带钢轧出厚度。
4 结束语
液压AGC系统就是借助于液压压下系统,通过电液伺服阀控制液压缸的位移量来实现带钢厚度自动控制的系统。
因此,液压AGC系统已成为厚度自动控制系统发展的新方向。
目前,世界上所有新建或改建的带钢热连轧机几乎都采用了液压AGC系统,它可以获得纵向厚度偏差为±30m的高质量的成品带钢。