韦达定理的应用题_证明_公式讲解

合集下载

韦达定理在解析几何中的应用

韦达定理在解析几何中的应用

韦达定理在解析几何中的应用陈历强一,求弦长在有关解析几何的高考题型中不乏弦长问题以及直线与圆锥曲线相交的问题。

求直线与圆锥曲线相交所截得的弦长,可以联立它们的方程,解方程组求出交点坐标,再利用两点间距离公式即可求出,但计算比较麻烦。

能否另擗捷径呢?能!仔细观察弦长公式:∣AB ∣=∣x 1-x 2∣21k +⋅=)1](4)[(221221k x x x x +-+或∣AB ∣=∣y 1-y 2∣211k +⋅ =)11](4)[(221221ky y y y +-+ , 立刻发现里面藏着韦达定理(其中x 1、x 2分别表示弦的两个端点的横坐标,y 1、y 2分别表示弦的两个端点的纵坐标)。

请看下面的例子:例1,已知直线 L 的斜率为2,且过抛物线y 2=2px 的焦点,求直线 L 被抛物线截得的弦长。

解:易知直线的方程为y=2(x-2p ). 联立方程组y 2=2px 和y=2(x-2p ) 消去x 得y 2-py-p 2=0.∵△=5p 2>0,∴直线与抛物线有两个不同的交点。

由韦达定理得y 1+y 2=p,y 1y 2=-p 2.故弦长d=25p 例2,直线y=kx-2交椭圆x 2+4y 2=80交于不同的两点P 、Q ,若PQ 中点的横坐标为2,则∣PQ ∣等于___________.分析:联立方程组y=kx-2和x 2+4y 2=80消去y 得(4k 2+1)x 2-16kx-64=0设P(x 1,y 1),Q(x 2,y 2). 由韦达定理得x 1+x 2=14162+k k = 4得k=21.x 1x 2= -32∣PQ ∣=6 . 练习1:过抛物线 y 2=4x 的焦点作直线交抛物线A(x 1,y 1),B(x 2,y 2)两点,如果x 1+x 2=6, 那么|AB|=( ) (A)10 (B)8 (C)6 (D)4 (文尾有提示.下同) 二,判定曲线交点的个数例3,曲线 y = ax 2(a>0)与曲线 y 2+3= x 2+4y 交点的个数应是___________个. 分析:联立方程组y=ax 2(a>0)与y 2+3=x 2+4y.消去x 得y 2-(1/a+4)y+3=0(a>0) 因为 ⎪⎩⎪⎨⎧>=>+=+>>-+=∆030/14)0(012)4/1(21212y y a y y a a 所以,方程有两个不等正实根。

专题12 韦达定理及其应用(解析版)

专题12 韦达定理及其应用(解析版)

专题12 韦达定理及其应用1.一元二次方程根与系数的关系(韦达定理)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,acx x =21。

也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

2.根与系数的关系的应用,主要有如下方面: (1)验根;(2)已知方程的一根,求另一根; (3)求某些代数式的值; (4)求作一个新方程。

【例题1】(2020•泸州)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 . 【答案】2【分析】根据根与系数的关系求解. 【解析】根据题意得则x 1+x 2=4,x 1x 2=﹣7 所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2【对点练习】(2019湖北仙桃)若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( ) A .12 B .10 C .4 D .﹣4【答案】A【解析】∵方程x 2﹣2x ﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12【例题2】(2020•江西)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【答案】-2【分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解析】∵a=1,b=﹣k,c=﹣2,=−2.∴x1•x2=ca∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.【对点练习】已知方程的一个根是-1/2,求它的另一个根及b的值。

【答案】x1=3 b=-5【解析】设方程的另一根为x1,则由方程的根与系数关系得:解得:【点拨】含字母系数的一元二次方程中,若已知它的一个根,往往由韦达定理可求另一根,并确定字母系数的值。

应用一元三次方程韦达定理解题

应用一元三次方程韦达定理解题

应用一元三次方程韦达定理解题韦达定理是一种解决一元三次方程的方法,可以帮助我们找到方程的根。

在解题中,可以通过韦达定理来求解方程的根,并根据求得的根来解决具体问题。

首先,让我们从韦达定理的原理和公式开始介绍。

一元三次方程的一般形式为:ax^3 + bx^2 + cx + d = 0,其中a、b、c、d为实数且a不等于0。

韦达定理给出了解这个方程的根的三个关键公式:1.根的和公式:若x_1、x_2、x_3为方程的三个根,则有x_1+x_2+x_3=-b/a。

2.根的乘积公式:若x_1、x_2、x_3为方程的三个根,则有x_1x_2+x_1x_3+x_2x_3=c/a。

3.根的立方和公式:若x_1、x_2、x_3为方程的三个根,则有x_1^3+x_2^3+x_3^3=-d/a。

通过上述公式,我们可以求解一元三次方程的根。

具体步骤如下:Step 1:根据方程的系数a、b、c、d,计算根的和:-b/a。

Step 2:计算根的乘积:c/a。

Step 3:计算根的立方和:-d/a。

Step 4:解一元二次方程:y^3 - (根的和)y^2 + (根的乘积)y -(根的立方和) = 0。

Step 5:求解二次方程得到的根,即为原一元三次方程的根。

下面,我们来举例详细说明如何应用韦达定理解题:例题:求一元三次方程x^3+2x^2-7x-6=0的根。

解:根据方程的系数,我们可以确定a=1,b=2,c=-7,d=-6Step 1:根的和 = -b/a = -2/1 = -2Step 2:根的乘积 = c/a = -7/1 = -7Step 3:根的立方和 = -d/a = -(-6)/1 = 6Step 4:解二次方程:y^3 - (-2)y^2 + (-7)y - 6 = 0。

这里我们可以使用因式分解或者继续使用韦达定理来求解,这里我们采用韦达定理。

设y_1、y_2、y_3为二次方程的三个根。

根的和=y_1+y_2+y_3=-(-2)=2根的乘积=y_1y_2+y_1y_3+y_2y_3=-7根的立方和=y_1^3+y_2^3+y_3^3=6根据这些方程,我们可以进一步求解二次方程。

韦达定理经典例题及解题过程

韦达定理经典例题及解题过程

韦达定理经典例题及解题过程摘要:一、韦达定理简介二、韦达定理经典例题1.例题一2.例题二3.例题三三、韦达定理解题过程1.确定韦达定理的应用条件2.分析题目中给出的方程3.应用韦达定理求解方程4.总结解题过程并得出答案正文:一、韦达定理简介韦达定理,又称Vieta 定理,是一元二次方程根与系数关系的定理。

它指出,对于一元二次方程ax+bx+c=0(a≠0),其两个根x1 和x2 的和与积分别等于方程中一次项系数和常数项系数的相反数和倒数。

具体来说,韦达定理有以下两个公式:x1 + x2 = -b/ax1 * x2 = c/a二、韦达定理经典例题1.例题一题目:已知一元二次方程x-3x-4=0,求该方程的两个根。

2.例题二题目:已知一元二次方程2x-5x+3=0,求该方程的两个根。

3.例题三题目:已知一元二次方程x+2x-3=0,求该方程的两个根。

三、韦达定理解题过程假设我们有一个一元二次方程ax+bx+c=0(a≠0),我们想要求出它的两个根x1 和x2。

1.确定韦达定理的应用条件首先,我们需要确保方程有两个实数根,即b-4ac≥0。

如果b-4ac<0,则方程没有实数根。

2.分析题目中给出的方程对于每一个例题,我们首先需要将方程写成标准形式ax+bx+c=0。

然后,我们可以根据韦达定理的公式x1 + x2 = -b/a和x1 * x2 = c/a来求解。

3.应用韦达定理求解方程对于每一个例题,我们分别代入方程的系数,计算出x1 和x2 的值。

4.总结解题过程并得出答案最后,我们将求得的x1 和x2 的值代入原方程,验证它们是否是方程的根。

如果是,我们便成功求解了该方程。

综上所述,韦达定理是一种非常有用的解一元二次方程的方法。

关于韦达定理经典例题及解题过程的文章

关于韦达定理经典例题及解题过程的文章

关于韦达定理经典例题及解题过程的文章韦达定理(Vieta's formulas)是代数学中的一个重要定理,它描述了多项式的根与系数之间的关系。

这个定理由法国数学家弗朗索瓦·韦达(François Viète)在16世纪提出,被广泛应用于代数方程的研究和解题过程中。

韦达定理的经典例题之一是求解二次方程的根。

我们先来看一个具体的例子:已知二次方程x^2 - 5x + 6 = 0,求解该方程的根。

解题过程如下:首先,我们可以通过观察系数得到一些信息。

根据韦达定理,二次方程的两个根之和等于系数b(即-5),两个根之积等于常数项c(即6)。

因此,我们可以得到以下两个等式:根1 + 根2 = -5\n根1 × 根2 = 6接下来,我们需要找到满足这两个等式的两个数。

通过试探法,我们可以发现满足条件的两个数是2和3。

因此,方程的两个根分别为2和3。

这里需要注意的是,在实际解题过程中,并不需要通过试探法来找到满足条件的两个数。

我们可以直接使用韦达定理的公式来求解。

对于一般的二次方程ax^2 + bx + c = 0,根据韦达定理,我们可以得到以下两个等式:根1 + 根2 = -b/a\n根1 × 根2 = c/a通过这两个等式,我们可以直接求解出方程的两个根。

回到我们的例子中,二次方程x^2 - 5x + 6 = 0的系数分别为a=1,b=-5,c=6。

代入韦达定理的公式中,我们可以得到以下结果:根1 + 根2 = -(-5)/1 = 5\n根1 × 根2 = 6/1 = 6因此,方程的两个根分别为2和3,与我们通过试探法得到的结果一致。

通过这个例题,我们可以看到韦达定理在解决二次方程问题中的重要性。

它不仅能够帮助我们找到方程的根,还能够提供关于根与系数之间的关系。

在实际应用中,韦达定理也被广泛用于高阶多项式方程以及其他代数方程的求解过程中。

总结起来,韦达定理是代数学中一个重要且实用的工具。

韦达定理的应用 讲义及练习

韦达定理的应用  讲义及练习

韦达定理的应用-教师版一.综述直线与圆锥曲线相交问题是解析几何综合题中最典型问题,主要考查二次方程韦达定理的应用.一般地解题的框架为:1、直线方程代入曲线方程,判别式保证有两解,准备好韦达定理; 2、主要目标分析,合理转化;3、韦达定理代入,整理求解. 二.例题精讲 破解规律例 1. 已知抛物线 的焦点为 ,过点 的直线 与 交于 , 两点,设 ,证明:, ;分析:设直线 的方程为:,与抛物线联立得 ,利用韦达定理即可证得; 答案:见解析解析:设直线 的方程为:,联立方程化简得: ,易知 所以 ,而.点评:当直线恒过x 轴上的点时,可以考虑设直线方程为 这样联立方程消去x 比较容易.规律总结:直线与圆锥曲线相交问题,可以利用韦达定理设而不求来解决问题.要注意联立后的二次方程判别式是否为正.现学现用1: 椭圆离心率为, , 是椭圆的左、右焦点,以 为圆心, 为半径的圆和以 为圆心、 为半径的圆的交点在椭圆 上. (1)求椭圆 的方程;(2)设椭圆 的下顶点为 ,直线与椭圆 交于两个不同的点 ,是否存在实数使得以 为邻边的平行四边形为菱形?若存在,求出 的值;若不存在,说明理由. 解析:(1)由题知,解得,故,椭圆的方程为(2)由题意知 ,联立方程,整理得 ,(化简可得),①设,则,,设 中点为 ,>0∆(),0n由,知,所以点 的坐标为,因为 ,所以 , 又直线 斜率均存在,所以 . 于是解得,即,将代入①,满足 .故存在 使得以 为邻边的平行四边形可以是菱形,值为.例2. 已知双曲线与双曲线的渐近线相同,且经过点.(1)求双曲线的方程;(2)已知双曲线的左右焦点分别为,直线经过,倾斜角为, 与双曲线交于两点,求的面积.分析:第二问, 将直线方程代入曲线方程,化简后写出韦达定理,利用弦长公式求出弦长,点到直线距离求出高,进而得到面积.答案:(1)(2) 解析:(1)设所求双曲线方程为,代入点得,即 所以双曲线方程为,即. (2).直线的方程为.设 联立得 满足 由弦长公式得点到直线的距离()2222:10,0x y C a b a b -=>>22162y x -=()2,3C C 12F F 、l 2F 34πl C ,A B 1F AB ∆2213y x -=1F AB S ∆=C 2262y x λ-=()2,3223262λ-=12λ=-C 221622y x -=-2213y x -=()()1220,20F F -,,AB ()2y x =--()()1122,,,A x y B x y ()222 13y x y x =---=⎧⎪⎨⎪⎩22470x x +-=0.∆>AB =6==()120F -,:20AB x y +-=d ==所以 点评:三角形面积问题,常转化为求弦长和点到直线距离.有些题目也可借助坐标轴将三角形分割.规律总结:圆锥曲线中的弦长、面积等问题,常将直线与圆锥曲线方程的联立,利用韦达定理和弦长公式来处理.现学现用2: 已知椭圆的中心在原点,焦点为 , , , ,且长轴长为8. Ⅰ 求椭圆的方程;Ⅱ 直线 与椭圆相交于 , 两点,求弦长 .解析: Ⅰ 椭圆的中心在原点,焦点为 , , , , 且长轴长为 故要求的椭圆的方程为Ⅱ 把直线 代入椭圆的方程化简可得 ,,,弦长例3:已知双曲线的左右两个顶点是,,曲线上的动点关于轴对称,直线与交于点, (1)求动点的轨迹的方程;(2)点,轨迹上的点满足,求实数的取值范围.分析:(1)借助题设条件运用两个等式相乘建立等式;(2)依据题设条件运用直线与椭圆的位置关系建立二次方程,运用判别式及根与系数的关系建立不等式,从而求出范围答案:(1);(2) . 解析:(1)由已知 ,设 则直线 ,直线, 两式相乘得,化简得,即动点的轨迹的方程为;(2)过的直线若斜率不存在则或3,设直线斜率存在,111622F AB S AB d ∆=⋅=⋅⋅=22:14x C y -=1A 2A C ,P Q x 1A P 2A Q M M D ()0,2E D ,A B EA EB λ=λ2214x y +=1,33⎡⎤⎢⎥⎣⎦()()122,0,2,0A A-.,P t Q t ⎛⎛ ⎝⎭⎝⎭)1:2A P y x =+)2:2A Q y x =-()22144y x -=-2214xy +=M D 2214x y +=()0,2E 13λ=k ()()1122,,,A x y B x y, 则 由(2)(4)解得代入(3)式得 , 化简得,由(1)解得代入上式右端得,,解得, 综上实数的取值范围是. 规律总结:牵涉到共线线段的长度比,或三角形面积比问题,可以转化为坐标的比值,结合韦达定理消去坐标参数.也可以直接利用求根公式,结合坐标比值求解,现学现用3: 已知双曲线的离心率为2,右顶点为.(1)求双曲线的方程; (2)设直线与轴交于点,与双曲线的左、右支分别交于点,且,求的值.解析:(1)∵,∴ (2)设点横坐标为, 点横坐标为.平行线分线段成比例定理:联立: 得: ,()222221416120440y kx k x kx x y ⎧⎨⎩=+⇒+++=+-=()()()()122122120116214123144k x x k x x k x x λ∆≥+=-+=⎧⎪⎪⎨+=⎪⎪⎪⎪⎩12,x x ()2222161214141k k k λλ-⎛⎫⋅= ⎪++⎝⎭+()22314641k λλ⎛⎫=+ ⎪⎝⎭+0∆≥234k ≥()2311641λλ<≤+133λ<<1,33⎡⎤⎢⎥⎣⎦2222:1(0,0)x y C a b a b-=>>()1,0C y x m =-+y P C ,Q R 2PQ PR=m 2,1,2,e a c b ====22:13y C x -=Q Q x P P x 2Q Px PQ PRx ==22{33y x m x y =-+-=222230x mx m +--=,则或(舍)与实际情况不符故三.课堂练习 强化技巧1.已知椭圆过,且离心率为. (1)求椭圆的方程;(2)过右焦点的直线与椭圆交于两点, 点坐标为,求直线的斜率之和.【答案】(1);(2)的斜率之和为2. 解析(Ⅰ)解:由已知得解之得,a =2,b,c =1.所以椭圆方程为:(Ⅱ)设,由(1)得,设直线的方程为与椭圆联立得 消去x 得, 所以①所以 ② 将①带入②,化简得:当直线斜率不存在时,A (1, -),B (1, ),,P Qx =2QP x x ===21,1m m ==1m =-1m =2222:1(0)x y C a b a b +=>>31,2E ⎛⎫ ⎪⎝⎭12e =C F l ,A B D ()4,3,DA DB 22143x y +=,DA DB 222221911,,42c a b c a b a +===+22143x y +=()()1122,,,Ax y B x y ()1,0F l ()1y k x =-221{ 43x y y kx k+==-()222223484120k x k x k +-+-=221212228412,4343k k x x x x k k -+==++121212121233333333=2444444DA DB y y kx k kx k k k k k k x x x x x x --------+=+=+++------()()()1212121281=233=2334+1+14+6x x k k k k x x x x x x ⎛⎫-+-++- ⎪---⎝⎭2DA DB k k +=l 32322DA DB k k +=所以的斜率之和为2.2. 已知椭圆C 的中心在原点,焦点在x 轴上,左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上. (1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程。

初中数学韦达定理专项

初中数学韦达定理专项

2. 二、韦达定理的推导求根公式法推导一元二次方程²的求根公式为ax ²+bx +c =0 (a≠0)的求根公式为aac b b x 242-±-= 那么两个根aac b b x 2421-+-= aac b b x 2422---=+a ac b b 242---=a b 22-=ab -×a ac b b 242---=2224)4()(a ac b b ---=ac 三、韦达定理的应用1.已知方程求两根之和与两根之积例如,对于方程2x ²-5x +3=0,这里a =2,b =-5,c =3根据韦达定理,两根之和x 1+x 2 =a b -=25232.已知两根之和与两根之积构造方程若已知两根之和为m ,两根之积为n ,则可构造方程x ²-mx +n =0。

比如,两根之和为 4,两根之积为 3,那么构造的方程为x ²-4x +3=0。

3. 不解方程求与两根有关的代数式的值例如,求(x 1-x 2)²的值。

(x 1-x 2)²=(x 1+x 2)²-4x 1x 2 ,已知两根之和与两根之积,代入即可求解。

4. 利用韦达定理判断方程根的情况由韦达定理可知,当b ²-4ac >0时,方程有两个不相等的实数根,此时两根之和与两根之积均有确定的值。

当b ²-4ac=0时,方程有两个相等的实数根,两根之和为-当b ²-4ac <0时,方程无实数根,韦达定理在这种情况下无意义。

四、韦达定理的注意事项1. 韦达定理只有在一元二次方程有实数根的情况下才成立。

2. 在应用韦达定理时,要先确定方程中a 、b 、c 的值,且a ≠0。

3. 对于一些特殊的一元二次方程,如缺项方程(如ax ²+c =0),也可以利用韦达定理求解,但要注意分析具体情况。

五、韦达定理的典型例题及讲解 1.已知方程的一根,求另一根及字母系数的值例题:关于x 的一元二次方程02)1(2=---x x m ,若x=-1是方程的一个根,求m 的值及另一个根。

两种方法证明韦达定理

两种方法证明韦达定理

两种方法证明韦达定理韦达定理是代数学中的一个重要定理,主要描述了一元二次方程的根与系数之间的关系。

本文将详细介绍两种证明韦达定理的方法,帮助读者深入理解这一数学原理。

方法一:利用一元二次方程的求根公式证明首先,我们有一元二次方程:[ ax^2 + bx + c = 0 ]其求根公式为:[ x_{1,2} = frac{-b pm sqrt{b^2 - 4ac}}{2a} ]根据求根公式,我们可以得到方程的两个根:[ x_1 = frac{-b + sqrt{b^2 - 4ac}}{2a} ][ x_2 = frac{-b - sqrt{b^2 - 4ac}}{2a} ]将两个根相加,得到:[ x_1 + x_2 = frac{-b + sqrt{b^2 - 4ac}}{2a} + frac{-b - sqrt{b^2 -4ac}}{2a} ][ x_1 + x_2 = frac{-2b}{2a} = -frac{b}{a} ]将两个根相乘,得到:[ x_1 cdot x_2 = left(frac{-b + sqrt{b^2 - 4ac}}{2a}ight) cdot left(frac{-b - sqrt{b^2 - 4ac}}{2a}ight) ][ x_1 cdot x_2 = frac{(-b)^2 - (b^2 - 4ac)}{4a^2} = frac{b^2 - b^2 +4ac}{4a^2} = frac{4ac}{4a^2} = frac{c}{a} ]因此,我们证明了韦达定理:对于一元二次方程( ax^2 + bx + c = 0 ),其两个根( x_1 ) 和( x_2 ) 满足( x_1 + x_2 = -frac{b}{a} ) 和( x_1 cdot x_2 = frac{c}{a} )。

方法二:利用因式分解证明对于一元二次方程( ax^2 + bx + c = 0 ),我们可以将其因式分解为:[ ax^2 + bx + c = a(x - x_1)(x - x_2) ]其中( x_1 ) 和( x_2 ) 分别为方程的两个根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根的判别式和韦达定理是实系数一元二次方程的重要基础知识,利用它们可进一步研究根的性质,也可以将一些表面上看不是一元二次方程的问题转化为一元二次方程来讨论.
1.判别式的应用
例1 (1987年武汉等四市联赛题)已知实数a、b、c、R、P满足条件PR>1,Pc+2b+Ra=0.求证:一元二次方程ax2+2bx+c=0必有实根.
证明△=(2b)2-4ac.①若一元二次方程有实根,
必须证△≥0.由已知条件有2b=-(Pc+Ra),代入①,得
△=(Pc+Ra)2-4ac
=(Pc)2+2PcRa+(Ra)2-4ac
=(Pc-Ra)2+4ac(PR-1).
∵(Pc-Ra)2≥0,又PR>1,a≠0,
(1)当ac≥0时,有△≥0;
(2)当ac<0时,有△=(2b)2-4ac>0.
(1)、(2)证明了△≥0,故方程ax2+2bx+c=0必有实数根.
例2 (1985年宁波初中数学竞赛题)如图21-1,k是实数,O是数轴的原点,A是数轴上的点,它的坐标是正数a.P是数轴上另一点,坐标是x,x<a,且OP2=k·PA·OA.
(1)k为何值时,x有两个解x1,x2(设x1<x2);
此处无图
(2)若k>1,把x1,x2,0,a按从小到大的顺序排列,并用不等号“<”连接.
解(1)由已知可得x2=k·(a-x)·a,即
x2+kax-ka2=0,当判别式△>0时有两解,这时
△=k2a2+4ka2=a2k(k+4)>0.
∵a>0,∴k(k+4)>0,故k<-4或k>0.
(2)x1<0<x2<a.
例3(1982年湖北初中数学竞赛题)证明不可能分解为两个一次因式之积.
分析若视原式为关于x的二次三项式,则可利用判别式求解.
证明
将此式看作关于x的二次三项式,则判别式
△=
显然△不是一个完全平方式,故原式不能分解为两个一次因式之积.
例3 (1957年北京中学生数学竞赛题)已知x,y,z是实数,且x+y+z=a,①
②求证:0≤x≤0≤y≤0≤z≤
分析将①代入②可消去一个字母,如消去z,然后整理成关于y的二次方程讨论.
证明由①得z=a-x-y,代入②整理得
此式可看作关于y的实系数一元二次方程,据已知此方程有实根,故有
△=16(x-a)2-16(4x2-4ax+a2)≥0
≥0≤x≤
同理可证:0≤y≤,0≤z≤.
例5设a1,a2,a3,b是满足不等式(a1+a2+a3)2≥2()+4b的实数.
求证:a1a2+a2a3+a3a1≥3b.
证明由已知可得
≤0.
设则
∵a3是实数,故△≥0,即有
(a1+a2)2≥()-2a1a2+4b+r≥2()-(a1+a2)2+4b.
于是(a1+a2)2≥()+2b,∴a1a2≥b.
同理有a2a3≥b,a3a1≥b.三式相加即得
a1a2+a2a3+a3a1≥3b.
例6 设a、b、c为实数,方程组

均无实数根.求证:对于一切实数x都有>
证明由已知条件可以推出a≠0,因为若a=0,则方程组至少有一个有实数解.
进一步可知,方程ax2+bx+c=±x无实根,因此判别式△=<0,
于是(b-1)2+(b+1)-8ac<0.即4ac-b2>1.


2.韦达定理的应用
例7 (1899年匈牙利数学奥林匹克竞赛题)假设x1、x2是方程x2-(a+d)x+ad-bc=0的根.证明这时
是方程的根.
证明由已知条件得

=a3+d3+3abc+3bcd,
由韦达定理逆定理可知,、是方程
的根.
例8已知两个系数都是正数的方程
a1x2+b1x+c1=0,①
a2x2+b2x+c2=0,②
都有两个实数根,求证:
(1)这两个实数根都是负值;
(2)方程a1a2x2+b1b2x+c1c2=0 ③
③也有两个负根.
证明∵方程①有两个实数根,∴>0. ④
同理>0. ⑤
又a1、b1、c1都是正数,∴>0,<0.
由此可知方程①的两根是负值.同样可证方程②的两根也是负值.
显然a1c1<4a1c1代入④,得>0,⑥
由>0,得>⑦
∴△
=

=>0,
∴方程③也有两个实数根.
又a1a2>0,b1b2>0,c1c2>0,
∴>0,<0.
由此可知方程③的两个根也是负值.
例9(1983年上海初中数学竞赛题)对自然数n,作x的二次方程x2+(2n+1)x+n2=0,使它的根为αn和βn.求下式的值:
+
解由韦达定理得
=

=(n≥3),
∴原式=
+
=
例10(1989年全国初中联赛试题)首项不相等的两个二次方程
(a-1)x2-(a2+2)x+(a2+2a)=0 ①
及(b-1)x2-(b2+2)x+(b2+2b)=0 ②
(其中a,b为正整数)有一公共根,求的值.
解由题得知,a,b为大于1的整数,且a≠b.设x0是方程①②的公共根,则x0≠1,否则将x=1代入①得a =1,矛盾.得x0代入原方程,并经变形得

及④
所以a,b是关于t的方程
相异的两根,因此
于是ab-(a+b)=2,即(a-1)(b-1)=3.
由或
解得或

例11 (仿1986年全国高中联赛题)设实数a,b,c满足
①②
求证:1≤a≤9.
证明由①得bc=a2-8a+7.
①-②得b+c=
所以实数b,c可看成一元二次方程
的两根,则有△≥0,即
≥0,
即(a-1)(a-9)≤0,∴1≤a≤9.
例12 (1933年福建初中数学竞赛题)求证:对任一矩形A,总存在一个矩形B,使得矩形A和矩形B的周长和面积比都等于常数k(k≥1).
分析设矩形A及B的长度分别是a,b及x,y,为证明满足条件的矩形B存在,只须证明方程组
(k,a,b为已知数)
有正整数解即可.
再由韦达定理,其解x,y可以看作是二次方程
z2-k(a+b)z+kab=0的两根.
∵k≥1,故判别式
△=k2(a+b)2-4kab
≥k2(a+b)2-4k2ab
=k2(a-b)2≥0,
∴上述二次方程有两实根z1,z2.
又z1+z2=k(a+b)>0,z1z2=kab>0,
从而,z1>0,z2>0,即方程组恒有x>0,y>0的解,所以矩形B总是存在的.
练习二十一
1.填空题
(1)设方程的两根为m,n(m>n),则代数式的值是_______;
(2)若r和s是方程x2-px+q=0的两非零根,则以r2+和为根的方程是__________; (3)已知方程x2-8x+15=0的两根可以写成a2+b2与a-b,其中a与b是方程x2+px+q=0的两根,那么|p| -q=__________.
2.选择题
(1)若p,q都是自然数,方程px2-qx+1985=0的两根都是质数,则12p2+q的值等于( ).
(A)404 (B)1998 (C)414 (D)1996
(2)方程的较大根为r,的较小根为s,则r-s 等于( ).
(A)(B)1985 (C)(D)
(3)x2+px+q2=0(p≠0)的两个根为相等的实数,则x2-qx+p2=0的两个根必为().
(A) 非实数(B)相等两实数(C)非实数或相等两实数(D)实数
(4)如果关于方程mx2-2(m+2)x+m+5=0没有实数根,那么关于x的方程(m-5)x2-2(m+2)x+ m=0的实根个数为
(A)2 (B)1 (C)0 (D)不确定
3.(1983年杭州竞赛)设a1≠0,方程a1x2+b2x+c1=0的两个根是1-a1和1+a1;a1x2+b1x+c2=0的两个根是
和;a1x2+b1x+c1=0的两根相等,求a1,b1,c1,b2,c2的值.
4.常数a是满足1≤a≤50的自然数.若关于x的二次方程(x-2)2+(x-a)2=x2的两根都是自然数,试求a的值.
5.设x2、x2为正系数方程ax2+bx+c=0的两根,x1+x2=m,x1·x2=n2,且m,n.求证:
(1) 如果m<n,那么方程有不等的实数根;
(2) 如果m>n,那么方程没有实数根.
6.求作一个以两正数α,β为根的二次方程,并设α,β满足
7.(1987年全国初中竞赛题)当a,b为何值时,方程x2+(1+a)x+(3a2+4ab+4b2+2)=0有实根?8.(1985年苏州初中数学竞赛题)试证:1986不能等于任何一个整系数二次方程ax2+bx+c=0的判别式的值.
9.(第20届全苏中学生数学竞赛题)方程x2+ax+1=b的根是自然数,证明a2+b2是合数.
10.(1972年加拿大试题)不用辅助工具解答:
(1)证满足的根在和197.99494949…间;
(2)同(1)证<1.41421356.
练习二十一
1.(1)
(2)
(3)3.
2.C B A.
3.
4.x=a+2±由于x为自然数,可知a为完全平方数
即a=1,4,9,16,25,36,49.
5.略
6.3x2-7x+2=0.
7.因为方程有实根,所以判别式
8.设1986=4k+2(其中k是自然数).
令△=b2-4ac=4k+2,这时b2能被2整除,因而b也能被2整除.取b=2t,这时b2=4t2,且4t2-4ac=4k+2.这时等式左边的数能被4整除,而右边的数不能被4整除,得出矛盾,故命题得证.
10.由,可得x2-198x+1=0,其根。

相关文档
最新文档