2020届内蒙古赤峰市高三下学期4.16模拟考试试题文科数学(解析版)

合集下载

内蒙古赤峰市2024届高三下学期4.20模拟考试文科数学试题

内蒙古赤峰市2024届高三下学期4.20模拟考试文科数学试题

内蒙古赤峰市2024届高三下学期4.20模拟考试文科数学试题一、单选题1.已如集合{}1,0,1,2,3,4A =-,集合{}2230B x x x =--≤,则A B =I ( )A .{}1,0,1,2,3-B .{}1,0,1-C .{}0,1,2D .{}1,0-2.复数5i 2z =-的共轭复数为( ) A . i 2+ B .i 2- C .2i -- D .2i --3.下列函数最小值为4的是( ) A .4y x x=+B .224y x x =+C .4y x =+D .()4?y x =+4.已知a r ,b r 是两个不共线的向量,命题甲:向量+r r ta b 与2a b -r r 共线;命题乙: 12t =-,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知ABC V 的两个顶点,A B 的坐标分别是()()1,0,1,0-,且,AC BC 所在直线的斜率之积等于()0m m ≠,则( )A .当0m <时,顶点C 的轨迹是焦点在x 轴上的椭圆,并除去()()1,0,1,0-两点B .当0m <时,顶点C 的轨迹是焦点在y 轴上的椭圆,并除去()()1,0,1,0-两点 C .当0m >时,顶点C 的轨迹是焦点在x 轴上的双曲线,并除去()()1,0,1,0-两点D .当0m >时,顶点C 的轨迹是焦点在y 轴上的双曲线,并除去()()1,0,1,0-两点6.已知圆 ()()22:112C x y +++=₁,圆222:440C x y x y +--=,则两圆的公切线条数为( )A .4B .3C .2D .17.在《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑,已知鳖臑P ABC -的三视图如图所示(单位:cm ),则该几何体的外接球的表面积为(单位:cm 2)( )A .164πB .64πC .100πD .256π8.函数2()cos f x x x =-的图象大致为( )A .B .C .D .9.已知()()22cos ,0,2πf x x x x =∈,则()f x 的零点之和为( ) A .4π3B .10π3C .14π3D .10π10.已知点()()()0,0,4,0,4,0O A B -, 设点M 满足 4MA MB -=,且M 为函数y OM =( )A B C D 11.已知函数e(2)()ln x f x x-=,下列函数是奇函数的是( )A .()11f x ++B .()11f x -+C .()11f x --D .()11f x +-12.如图是瑞典数学家科赫在1904年构造的能够描述雪花形状的图案.图形的作法是:从第一个正三角形(边长为1)P 1开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线,称为科赫曲线.设P n 的周长和面积分别为L n 、S n ,下列结论正确的是( )①P ₅的边数为434;⨯ ②4543;3L ⎛⎫=⨯ ⎪⎝⎭③n n L S ⎧⎫⎨⎬⎩⎭既不是等差数列,也不是等比数列; ④0n N S N ∃><,A .①②③B .①②④C .①③④D .①②③④二、填空题13.若连续抛两次骰子得到的点数分别为a ,b ,则点(,)P a b 在直线7a b +=上的概率为. 14.将函数sin cos y x x =-的图象向左平移()0πm m <<个单位后, 所得图象关于y 轴对称,则实数 m 的值为.15.已知函数 ()43log 3a x x f x x x -+≤⎧=⎨>⎩,,,(0a >且1a ≠), 若()y f x =有最小值, 则实数a 的取值范围是.16.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c , 已知 22²210c a b =+=,,,BC AC 边上的中线AM ,BN 相交于点P , 则直线,AM BN 的夹角为.三、解答题17.随着中国科技的迅猛发展和进步,中国民用无人机行业技术实力和国际竞争力不断提升,市场规模持续增长.为了适应市场需求,我国某无人机制造公司研发了一种新型民用无人机,为测试其性能,对其飞行距离与核心零件损坏数进行了统计,数据如下:(1)据关系建立y 关于x 的回归模型 ˆˆˆybx a =+求y 关于x 的回归方程(ˆb 精确到0.1,ˆa 精确到1).(2)为了检验核心零件报废是否与保养有关,该公司进行第二次测试,从所有同型号民用无人机中随机选取100台进行等距离测试,对其中60台进行测试前核心零件保养,测试结束后,有20台无人机核心零件报废,其中保养过的占比30%,请根据统计数据完成2×2列联表,并根据小概率值0.01α=的独立性检验,能否认为核心零件的报废与保养有关? 附:回归方程 ˆˆˆybx a =+中斜率和截距的最小二乘原理估计公式 121()()ˆ()nii i nii xx y y b xx ==--=-∑∑,()()()()()22,,.ˆˆn ad bc ay bx K n a b c d a bc d a c b d -=-==+++++++参考数据: 8821186,112,82743,62680i i i i i x y x y x ======∑∑18.已知数列{}n a 中,112a =,123n n n a a a +=+()*n N ∈. (1)求证:11n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求数列{}n a 的通项公式;(2)已知数列{}n b 满足()312n n n nn b a -=,求数列{}n b 的前n 项和n T .19.如图, 在三棱台 111A B C ABC -中, 111A B C △和 ABC V 都为等边三角形,且边长分别为2和4,1112,90CC ACC BCC =∠=∠=︒,G 为线段AC 的中点, H 为线段BC 上的点,1//A B 平面1C GH .(1)求证: 点H 为线段BC 的中点; (2)求三棱锥 B A AH -₁的体积. 20. 已知 ()0,2x ∈,(1)比较sin x , x 的大小, 并证明; (2)求证:sin 2e .2x xx+<- 21.已知点P 为圆()22:24C x y -+=上任意一点,()2,0A -,线段PA 的垂直平分线交直线PC于点M ,设点M 的轨迹为曲线H . (1)求曲线H 的方程;(2)若过点M 的直线l 与曲线H 的两条渐近线交于S ,T 两点,且M 为线段ST 的中点. (i )证明:直线l 与曲线H 有且仅有一个交点; (ii ) 求证:OS OT ⋅是定值.22.直角坐标系xOy 中,曲线C₁的参数方程为 sin2sin cos k k x y θθθ=⎧⎨=+⎩(θ为参数),曲线2C 的参数方程为 cos 1sin x a t y a t =⎧⎨=+⎩,,(t 为参数, 0.a >)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线3C 的极坐标方程为 0θα=,其中0α满足 01tan .2α=(1)当 1k =时,求曲线C₁的普通方程;(2)当 4k =时,若C₁与3C 在第一象限的交点在2C 上,求a 的值. 23.已知 x y ≠, (1)化简①22;x y x y-- ②33x y x y--(2)用数学归纳法证明: n n x y -能被x y -整除.。

2020赤峰420-文数

2020赤峰420-文数

D.既不充分也不必要条件
4.随着我国经济实力的不断提升,居民收入也在不断增加。抽样发现赤峰市某家庭 2019 年全年的收入与 2015
年全年的收入相比增加了一倍,实现翻番。同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不
同品类的消费额占全年总收入的比例,得到了如下折线图:
则下列结论中正确的是
极轴建立极坐标系,曲线
C
的极坐标方程为
2
12 3 sin2
.
(1)若 a=-2,求曲线 C 与 l 的交点坐标;
(2)过曲线 C 上任意一点 P 作与 l 夹角为 45°的直线,交 l 于点 A,且|PA|的最大值 10, 求 a 的值.
23. (10 分)选修 4- -5:不等式选讲
已知函数 f (x) | x 1| | x 2 | .
粮仓的表面积(含上下两底)最小那么它的底面半径是____尺.
16.设数列{an} 的前
n
项和为 Sn , 且满足 2an
Sn
1,
则使 a12
a22
an2
5 2n1 成立的 3
n
的最大值为
_____.
三、解答题:共 70 分。解答应写出文字说明,证明过程或演算步骤。第 17~21 题为必考题,每个试题考生都
7.李生素数猜想是希尔伯特在 1900 年提出的 23 个问题之一,2013 年华人数学家张益唐证明了孪生素数猜想
的一个弱化形式,问题可以描述为:存在无穷多个素数 p,使得 p+2 是素数,素数对(p, p+2)称为孪生素数对.问:如果
从 30 以内的素数组成的孪生素数对中随机抽取一对,这对孪生素数的积不超过 20 的概率是
2

2020年内蒙古赤峰市高考数学模拟试卷(文科)含答案解析

2020年内蒙古赤峰市高考数学模拟试卷(文科)含答案解析

2020年内蒙古赤峰市高考数学模拟试卷(文科)一、选择题1.设全集U={﹣2,﹣1,0,1,2},集合M={﹣1,0,1},N={x|x2﹣x﹣2=0},则(∁U M)∩N=()A.{2}B.{﹣1}C.{﹣2,﹣1,2}D.{﹣1,1}2.已知复数z=,则()A.z的实部为B.z的虚部为﹣iC.|z|=D.z的共轭复数为+i3.若方程x2+=1(a是常数),则下列结论正确的是()A.任意实数a方程表示椭圆B.存在实数a方程表示椭圆C.任意实数a方程表示双曲线D.存在实数a方程表示抛物线4.已知=(1,2),=(﹣2,4),且k+与垂直,则k=()A.B.﹣C.﹣D.5.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:x 11 10.5 10 9.5 9y 5 6 8 10 10根据上表得回归直线方程=x+,其中=﹣3.2,=﹣,据此回归方程估计零售价为5元时销售量估计为()A.16个B.20个C.24个D.28个6.不等式x2﹣2x+m>0在R上恒成立的必要不充分条件是()A.m>2 B.0<m<1 C.m>0 D.m>17.如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.898.设S n是公差d=﹣1的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则a n=()A.﹣﹣n B.﹣n C. +n D.﹣+n9.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.100cm3B.98cm3C.88cm3D.78cm310.已知ω>0,|φ|<,若x=和x=是函数f(x)=cos(ωx+φ)的两个相邻的极值点,将y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,则下列说法正确的是()A.y=g(x)是奇函数B.y=g(x)的图象关于点(﹣,0)对称C.y=g(x)的图象关于直线x=对称D.y=g(x)的周期为π11.已知点,过点P的直线与圆x2+y2=14相交于A,B两点,则|AB|的最小值为()A.2 B. C. D.412.已知椭圆的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率为()A.B.C.D.二、填空题13.已知sin(α+)=,且,则cosα=.14.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于.15.已知长方体ABCD﹣A1B1C1D1各个顶点都在球面上,AB=3,AD=2,A1A=2,过棱AD 作该球的截面,则当截面面积最小时,球心到截面的距离为.16.已知函数f(x)=2lnx﹣x2+a在[,e]上有两个零点,则实数a的取值范围为.三、解答题17.设数列{a n}的前n项之和为S n,且满足S n=1﹣a n,n∈N*.(1)求数列{a n}的通项公式;(2)令b n=(n+1)a n,求数列{b n}的前n项和T n.18.如图,在多面体ABC﹣A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,△A1BC是正三角形,B1C1∥BC,B1C1=BC.(Ⅰ)求证:面A1AC⊥面ABC;(Ⅱ)求该几何体的体积.19.从某校随机抽取200名学生,获得了他们的一周课外阅读时间(单位:小时)的数据,整理得到数据分组级频数分布直方图:编号分组频数1 [0,2)122 [2,4)163 [4,6)344 [6,8)445 [8,10)506 [10,12)247 [12,14)128 [14,16) 49 [16,18) 4合计200(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.20.已知椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点A(4,2)在椭圆上,且AF2与x轴垂直.(1)求椭圆的方程;(2)过点F2作直线与椭圆交于B、C两点,求△COB面积的最大值.21.设函数f(x)=xlna﹣x2﹣a x(a>0,a≠1).(1)当a=e时,求函数f(x)的图象在点(0,f(0))的切线方程;(2)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e为自然对数的底数),求实数a的取值范围.[选修4-1:几何证明选讲]22.如图,四边形ABCD内接于⊙O,过点A作⊙O的切线EP交CB的延长线于P,∠PAB=35°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠PAB=35°,求证:=.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0).(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x﹣a|+|x+b|+c的最小值为1.(1)求a+b+c的值;(2)求证:a2+b2+c2.2020年内蒙古赤峰市高考数学模拟试卷(文科)参考答案与试题解析一、选择题1.设全集U={﹣2,﹣1,0,1,2},集合M={﹣1,0,1},N={x|x2﹣x﹣2=0},则(∁U M)∩N=()A.{2}B.{﹣1}C.{﹣2,﹣1,2}D.{﹣1,1}【考点】交、并、补集的混合运算.【分析】直接由全集U,集合M求出∁U M,则N∩(∁U M)的答案可求.【解答】解:∵全集U={﹣2,﹣1,0,1,2},集合M={﹣1,0,1},N={x|x2﹣x﹣2=0}={﹣1,2},∴∁U M={﹣2,2}.则N∩(∁U M)={﹣1,2}∩{﹣2,2}={2}.故选:A.2.已知复数z=,则()A.z的实部为B.z的虚部为﹣iC.|z|=D.z的共轭复数为+i【考点】复数代数形式的乘除运算.【分析】根据复数的运算性质求出z,分别判断各个选项即可.【解答】解:∵z===﹣﹣i,故|z|=,故选:C.3.若方程x2+=1(a是常数),则下列结论正确的是()A.任意实数a方程表示椭圆B.存在实数a方程表示椭圆C.任意实数a方程表示双曲线D.存在实数a方程表示抛物线【考点】曲线与方程.【分析】根据三种圆锥曲线的定义,结合举例可得选项.【解答】解:对于a=1,方程x2+=1表示圆,选项A错误;当a>0且a≠1时,方程x2+=1表示椭圆,B正确;当a<0时,方程x2+=1表示双曲线,C错误;对于任意实数a,方程x2+=1不是抛物线,D错误.故选:B.4.已知=(1,2),=(﹣2,4),且k+与垂直,则k=()A.B.﹣C.﹣D.【考点】平面向量数量积的运算.【分析】由向量数量积的坐标表示和向量模的公式,可得,的数量积和模,再由向量垂直的条件:数量积为0,计算即可得到k的值.【解答】解:=(1,2),=(﹣2,4),可得•=﹣2+8=6,||==2,由k+与垂直,可得(k+)•=0,k•+2=0,即有6k+20=0,解得k=﹣.故选B.5.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:x 11 10.5 10 9.5 9y 5 6 8 10 10根据上表得回归直线方程=x+,其中=﹣3.2,=﹣,据此回归方程估计零售价为5元时销售量估计为()A.16个B.20个C.24个D.28个【考点】线性回归方程.【分析】求出样本中心代入回归方程得出,从而得出回归方程解析式,令x=5,计算即可.【解答】解:=,=.∴7.8=﹣3.2×10+,解得=39.8.∴线性回归方程为=﹣3.2x+39.8.当x=5时,=﹣3.2×5+39.8=23.8≈24.故选C.6.不等式x2﹣2x+m>0在R上恒成立的必要不充分条件是()A.m>2 B.0<m<1 C.m>0 D.m>1【考点】一元二次不等式的解法.【分析】根据不等式x2﹣x+m>0在R上恒成立,△<0,可解得m的范围,然后看m>1与选项中的m范围,即可得出答案.【解答】解:当不等式x2﹣2x+m>0在R上恒成立时,△=4﹣4m<0,解得m>1;所以m>1是不等式恒成立的充要条件;m>2是不等式成立的充分不必要条件;0<m<1是不等式成立的既不充分也不必要条件;m>0是不等式成立的必要不充分条件.故选:C.7.如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89【考点】程序框图;程序框图的三种基本逻辑结构的应用.【分析】写出前几次循环的结果,不满足判断框中的条件,退出循环,输出z的值.【解答】解:第一次循环得z=2,x=1,y=2;第二次循环得z=3,x=2,y=3;第三次循环得z=5,x=3,y=5;第四次循环得z=8,x=5,y=8;第五次循环得z=13,x=8,y=13;第六次循环得z=21,x=13,y=21;第七次循环得z=34,x=21,y=34;第八次循环得z=55,x=34,y=55;退出循环,输出55,故选B8.设S n是公差d=﹣1的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则a n=()A.﹣﹣n B.﹣n C. +n D.﹣+n【考点】等比数列的通项公式.【分析】由S1,S2,S4成等比数列,得到S22=S1•S4,即(2a1﹣1)2=a1•(4a1﹣6),求出a1,即可求出通项公式.【解答】解:由题意可得,a n=a1+(n﹣1)(﹣1)=a1+1﹣n,S n==,再根据若S1,S2,S4成等比数列,可得S22=S1•S4,即(2a1﹣1)2=a1•(4a1﹣6),解得a1=﹣,∴a n=﹣+1﹣n=﹣n,故选:B.9.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.100cm3B.98cm3C.88cm3D.78cm3【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是由长方体截去一个三棱锥而得到的.【解答】解:由三视图可知:该几何体是由正方体截去一个三棱锥而得到的.∴该几何体的体积V=6×6×3﹣=100cm3.故选:A.10.已知ω>0,|φ|<,若x=和x=是函数f(x)=cos(ωx+φ)的两个相邻的极值点,将y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,则下列说法正确的是()A.y=g(x)是奇函数B.y=g(x)的图象关于点(﹣,0)对称C.y=g(x)的图象关于直线x=对称D.y=g(x)的周期为π【考点】命题的真假判断与应用;函数y=Asin(ωx+φ)的图象变换.【分析】根据x=和x=是函数f(x)=cos(ωx+φ)的两个相邻的极值点,得到函数的周期,求出ω=1,然后根据三角函数的图象关系求出g(x),结合函数奇偶性,对称性的性质分别进行判断即可.【解答】解:∵若x=和x=是函数f(x)=cos(ωx+φ)的两个相邻的极值点,∴若x=和x=是函数f(x)=cos(ωx+φ)的两个相邻的对称轴,则函数的周期T=2×(﹣)=2π,即=2π,则ω=1,即f(x)=cos(x+φ),①若x=时,函数取得极大值,则f()=cos(+φ)=1,则+φ=2kπ,即φ=2kπ﹣,当k=0时,φ=﹣,此时f(x)=cos(x﹣),将y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,即g(x)=)=cos[(x+)﹣]=cosx,此时函数g(x)是偶函数不是奇函数,故A错误,g(﹣)=cos(﹣)=0,即函数y=g(x)的图象关于点(﹣,0)对称,故B正确,g()=cos()=0,即函数y=g(x)的图象关于关于直线x=不对称,故C错误,y=g(x)的周期为2π,故D错误,②若x=时,函数取得极小值,则f()=cos(+φ)=cos(+φ)=﹣1,则+φ=2kπ﹣π,即φ=2kπ﹣,当k=1时,φ=,∵|φ|<,∴此时φ不存在.综上故选:B.11.已知点,过点P的直线与圆x2+y2=14相交于A,B两点,则|AB|的最小值为()A.2 B. C. D.4【考点】简单线性规划.【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得直线过在(1,3)处取得最小值.【解答】解:约束条件的可行域如下图示:画图得出P点的坐标(x,y)就是三条直线x+y=4,y﹣x=0和x=1构成的三角形区域,三个交点分别为(2,2),(1,3),(1,1),因为圆c:x2+y2=14的半径r=,得三个交点都在圆内,故过P点的直线l与圆相交的线段AB长度最短,就是过三角形区域内距离原点最远的点的弦的长度.三角形区域内距离原点最远的点就是(1,3),可用圆d:x2+y2=10与直线x=y的交点为(,)验证,过点(1,3)作垂直于直线y=3x的弦,国灰r2=14,故|AB|=2=4,所以线段AB的最小值为4.故选:D12.已知椭圆的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】由题意可求得AB的方程,设出P点坐标,代入AB的方程,由PF1⊥PF2,得•=0,运用导数求得极值点,结合椭圆的离心率公式,解方程即可求得答案.【解答】解:依题意,作图如下:由A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),可得直线AB的方程为: +=1,整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y),则bx=ay﹣ab,x=y﹣a,由PF1⊥PF2,∴•=(﹣c﹣x,﹣y)•(c﹣x,﹣y)=x2+y2﹣c2=(y﹣a)2+y2﹣c2,令f(y)=(y﹣a)2+y2﹣c2,则f′(y)=2(y﹣a)•+2y,由f′(y)=0得:y=,于是x=﹣,∴•=(﹣)2+()2﹣c2=0,整理得:=c2,又b2=a2﹣c2,e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2==()2,可得e=,故选:D.二、填空题13.已知sin(α+)=,且,则cosα=﹣.【考点】三角函数的化简求值.【分析】由,可得:<π,=﹣.利用cosα=,展开即可得出.【解答】解:∵,∴<π,∴=﹣=﹣.∴cosα==+=+=.故答案为:﹣.14.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于180.【考点】二项式定理.【分析】如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间那项的二次项系数最大,由此可确定n的值,进而利用展开式,即可求得常数项.【解答】解:如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间项的二次项系数最大.∵展开式中只有第六项的二项式系数最大,∴n=10∴展开式的通项为=令=0,可得r=2∴展开式中的常数项等于=180故答案为:18015.已知长方体ABCD﹣A1B1C1D1各个顶点都在球面上,AB=3,AD=2,A1A=2,过棱AD 作该球的截面,则当截面面积最小时,球心到截面的距离为.【考点】球内接多面体.【分析】过棱AD作该球的截面,则当截面面积最小时,截面的直径为AD=2,求出球的半径,可得球心到截面的距离.【解答】解:过棱AD作该球的截面,则当截面面积最小时,截面的直径为AD=2,∵长方体ABCD﹣A1B1C1D1各个顶点都在球面上,AB=3,AD=2,A1A=2,∴球的半径为=,∴球心到截面的距离为=,故答案为:.16.已知函数f(x)=2lnx﹣x2+a在[,e]上有两个零点,则实数a的取值范围为(1,2+).【考点】函数零点的判定定理.【分析】求出f(x)的导数f′(x),分析f′(x)的零点和区间[,e]的位置关系,判断f (x)的单调性为在[,1]上单调递增,在(1,e)上单调递减,若有两个不同的零点,则,即可解出a的取值范围.【解答】解:f(x)=2lnx﹣x2+a,f′(x)=,∵x∈[,e],故f′(x)=0,解得x=1,当<x<1,f′(x)>0;当1<x<e,f′(x)<0,故f(x)在x=1有唯一的极值点,f(1)=a﹣1,f()=a﹣2﹣,f(e)=a+2﹣e2,则f(e)<f(),f(x)在[,e]上有两个零点的条件,,解得1<a<2+,故实数a 的取值范围(1,2+].故答案为:(1,2+].三、解答题17.设数列{a n }的前n 项之和为S n ,且满足S n =1﹣a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =(n +1)a n ,求数列{b n }的前n 项和T n .【考点】数列的求和;数列递推式.【分析】(1)通过S n =1﹣a n 与S n ﹣1=1﹣a n ﹣1作差可知a n =a n ﹣1,进而计算可得结论; (2)通过(1)可知b n =(n +1),进而利用错位相减法计算即得结论.【解答】解:(1)∵S n =1﹣a n ,S n ﹣1=1﹣a n ﹣1,∴a n =a n ﹣1﹣a n ,即a n =a n ﹣1,又∵S 1=1﹣a 1,即a 1=,∴数列{a n }是首项、公比均为的等比数列,∴其通项公式a n =;(2)由(1)可知b n =(n +1)a n =(n +1), ∴T n =2•+3•+4•+…+(n +1), T n =2•+3•+…+n •+(n +1), 两式相减得: T n =2•+++…+﹣(n +1) =+﹣(n +1)=﹣, ∴T n =3﹣.18.如图,在多面体ABC ﹣A 1B 1C 1中,四边形ABB 1A 1是正方形,AC=AB=1,△A 1BC 是 正三角形,B 1C 1∥BC ,B 1C 1=BC .(Ⅰ)求证:面A 1AC ⊥面ABC ;(Ⅱ)求该几何体的体积.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【分析】(Ⅰ)由已知得,从而A1A⊥AC,由此能证明面A1AC ⊥面ABC.(Ⅱ)依题意得:而,,由此能求出该几何体的体积.【解答】(Ⅰ)证明:∵在多面体ABC﹣A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,△A1BC是正三角形,B1C1∥BC,B1C1=BC,∴,∴,∴A1A⊥AC,又A1A⊥AB,∴A1A⊥平面ABC,∴面A1AC⊥面ABC.(Ⅱ)解:依题意得:而,,故:.19.从某校随机抽取200名学生,获得了他们的一周课外阅读时间(单位:小时)的数据,整理得到数据分组级频数分布直方图:编号分组频数1 [0,2)122 [2,4)163 [4,6)344 [6,8)445 [8,10)506 [10,12)247 [12,14)128 [14,16) 49 [16,18) 4合计200(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.【考点】频率分布直方图.【分析】(1)根据频率分布表求出1周课外阅读时间少于12小时的频数,再根据频率=求频率;(2)根据小矩形的高=,求a、b的值;(3)利用平均数公式求得数据的平均数,可得答案.【解答】解:(1)由频率分布表知:1周课外阅读时间少于12小时的频数为2+4+4=10,∴1周课外阅读时间少于12小时的频率为1﹣=0.9;(2)由频率分布表知:数据在[4,6)的频数为34,∴频率为0.17,∴a=0.085;数据在[8,10)的频数为25,∴频率为0.25,∴b=0.125;(3)数据的平均数为(12×1+3×16+5×34+7×44+9×50+11×24+13×12+15×4+17×4)=7.68(小时),∴样本中的200名学生该周课外阅读时间的平均数在第四组.20.已知椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点A(4,2)在椭圆上,且AF2与x轴垂直.(1)求椭圆的方程;(2)过点F2作直线与椭圆交于B、C两点,求△COB面积的最大值.【考点】椭圆的简单性质.【分析】(1)由题意可得c=4,令x=4,代入椭圆方程可得=2,由a,b,c的关系,解得a,b,进而得到椭圆方程;(2)点F2(4,0),可设直线BC:x=ty+4,代入椭圆方程x2+2y2=32,可得y的方程,运用韦达定理,以及三角形的面积公式可得S△OBC=|OF2|•|y1﹣y2|,化简整理,运用解不等式即可得到所求最大值.【解答】解:(1)由A(4,2)在椭圆上,且AF2与x轴垂直,可得c=4,令x=4,代入椭圆方程可得y=±b=±,即有=2,又a2﹣b2=16,解得a=4,b=4,则椭圆方程为+=1;(2)点F2(4,0),可设直线BC:x=ty+4,代入椭圆方程x2+2y2=32,可得(2+t2)y2+8ty﹣16=0,设B(x1,y1),C(x2,y2),可得△=64t2+64(2+t2)>0y1+y2=﹣,y1y2=﹣,|y1﹣y2|===,S△OBC=|OF2|•|y1﹣y2|=•4•=16•=16•≤16•=8,当且仅当=,即t=0时,△COB面积的最大值为8.21.设函数f(x)=xlna﹣x2﹣a x(a>0,a≠1).(1)当a=e时,求函数f(x)的图象在点(0,f(0))的切线方程;(2)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e为自然对数的底数),求实数a的取值范围.【考点】利用导数研究曲线上某点切线方程.【分析】(1)求得a=e时,f(x)=xlne﹣x2﹣e x的导数,可得f(x)在(0,f(0))处的切线的斜率和切点,即可得到所求切线的方程;(2)由题意可得f(x)的最大值减去f(x)的最小值大于或等于e﹣1,由单调性知,f(x)的最小值是f(1)或f(﹣1),最大值f(0)=1,由f(1)﹣f(﹣1)的单调性,判断f(1)与f(﹣1)的大小关系,再由f(x)的最大值减去最小值f(0)大于或等于e﹣1求出a的取值范围.【解答】解:(1)当a=e时,f(x)=xlne﹣x2﹣e x的导数为f′(x)=1﹣2x﹣e x,可得函数f(x)的图象在点(0,f(0))的切线斜率为1﹣0﹣1=0,切点为(0,﹣1),即有切线的方程为y=﹣1;(2)由存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1成立,而当x∈[﹣1,1]时|f(x1)﹣f(x2)|≤f(x)max﹣f(x)min,则只要f(x)max﹣f(x)min≥e﹣1,f(x)=xlna﹣x2﹣a x的导数为f′(x)=lna﹣2x﹣a x lna,又x,f'(x),f(x)的变化情况如下表所示:x (﹣∞,0)0 (0,+∞)f′(x)+0 ﹣f(x)增函数极大值减函数所以f(x)在[﹣1,0]上是增函数,在[0,1]上是减函数,所以当x∈[﹣1,1]时,f(x)的最大值f(x)max=f(0)=﹣1,f(x)的最小值f(x)min为f(﹣1)和f(1)中的最小值.因为f(1)﹣f(﹣1)=(lna﹣1﹣a)﹣(﹣lna﹣1﹣)=2lna﹣a+,令g(a)=2lna﹣a+,由g′(a)=﹣1﹣=﹣<0,所以g(a)在a∈(0,+∞)上是减函数.而g(1)=0,故当a>1时,g(a)<0,即f(1)<f(﹣1);当0<a<1时,g(a)>0,即f(1)>f(﹣1),所以,当a>1时,f(0)﹣f(1)≥e﹣1,即a﹣lna≥e﹣1,而函数y=a﹣lna的导数y′=1﹣,可得函数y在a∈(1,+∞)上是增函数,解得a≥e;当0<a<1时,f(0)﹣f(﹣1)≥e﹣1,即+lna≥e﹣1,函数y=+lna的导数为y′=﹣=,可得函数y在a∈(0,1)上是减函数,解得0<a≤.综上可知,所求a的取值范围为(0,]∪[e,+∞).[选修4-1:几何证明选讲]22.如图,四边形ABCD内接于⊙O,过点A作⊙O的切线EP交CB的延长线于P,∠PAB=35°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠PAB=35°,求证:=.【考点】与圆有关的比例线段;弦切角.【分析】(1)由弦切角定理得∠ACB=∠PAB=25°,从而∠ABC=65°,由此利用四边形ABCD 内接于⊙O,能求出∠D.(2)由∠DAE=25°,∠ACD=∠PAB,∠D=∠PBA,从而△ADC∽△PBA,由此能证明DA2=DC•BP,AP2=PC•BP,即可证明结论.【解答】(1)解:∵EP与⊙O相切于点A,∴∠ACB=∠PAB=35°,又BC是⊙O的直径,∴∠ABC=55°.∵四边形ABCD内接于⊙O,∴∠ABC+∠D=180°,∴∠D=112°.(2)证明:∵∠DAE=35°,∴∠ACD=∠PAB,∠D=∠PBA,∴△ADC∽△ABP,∴=,∠DBA=∠BDA,∴DA=BA,∴DA2=DC•BP,AP2=PC•BP,∴=.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0).(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)直线l的参数方程为(t为参数),化为,消去t可得直线l的普通方程.曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0),解得ρ=4.把ρ2=x2+y2代入可得曲线C的极坐标方程.(2)⊙Cd的圆心(0,0)到直线l的距离d=2.可得cos=,进而得出答案.【解答】解:(1)直线l的参数方程为(t为参数),化为,消去t可得直线l的普通方程:x+y﹣4=0.曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0),解得ρ=4.可得曲线C的直角坐标方程:x2+y2=16.(2)⊙Cd的圆心(0,0)到直线l的距离d==2.∴cos==,∵,∴∠AOB=,可得∠AOB=.[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x﹣a|+|x+b|+c的最小值为1.(1)求a+b+c的值;(2)求证:a2+b2+c2.【考点】基本不等式.【分析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值;(2)通过作差法证明即可.【解答】解:(1)∵a>0,b>0,c>0,∴f(x)=|x﹣a|+|x+b|+c≥|x﹣a﹣x﹣b|+c=a+b+c,当且仅当(x﹣a)(x﹣b)≤0时:“=”成立,故a+b+c=1;(2)3(a2+b2+c2)﹣12=3(a2+b2+c2)﹣(a+b+c)2=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(b﹣c)2+(c﹣a)2≥0,∴a2+b2+c2.2020年8月27日。

2020年内蒙古自治区赤峰市长胜中学高三数学文测试题含解析

2020年内蒙古自治区赤峰市长胜中学高三数学文测试题含解析

2020年内蒙古自治区赤峰市长胜中学高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知i是虚数单位,复数(其中)是纯虚数,则m= (A)-2 (B)2 (C)(D)参考答案:B略2. 如图是一个算法的程序框图,当输入的值为时,则其输出的结果是( )A.5 B.4 C.3 D.2参考答案:D第一次不满足条件,。

第二次,不满足条件,。

第三次满足条件,此时,输出,选D.3. 已知定义在R的函数对任意的x满足,当,.函数,若函数在[-6,+∞)上有6个零点,则实数a的取值范围是()A.B.C.D.参考答案:C因为,故是周期函数且周期为,如图的图像与的图像在有两个不同的交点,故的图像与在有4个不同的交点,故,解的或,选C.4. 已知由不等式组,确定的平面区域的面积为7,定点M的坐标为,若,O为坐标原点,则的最小值是A. B. C. D.参考答案:B 依题意:画出不等式组所表示的平面区域(如右图所示)可知其围成的区域是等腰直角三角形面积为,由直线恒过点,且原点的坐标恒满足,当时,,此时平面区域的面积为,由于,由此可得.由可得,依题意应有,因此(,舍去)故有,设,故由,可化为,所以当直线过点时,截距最大,即取得最小值,故选B.5. 在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=()A.33B.72C.84D.189参考答案:C6. 已知函数,方程有四个实数根,则的取值范(▲ )A. B. C. D.参考答案:D7. 经过抛物线的焦点和双曲线的右焦点的直线方程为A. B. C. D.参考答案:B8. 函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为()A.10 B.5 C.﹣1 D.参考答案:D【考点】导数的几何意义.【专题】计算题.【分析】由导函数的几何意义可知函数图象在切点处的切线的斜率值即为其点的导函数值,由此求得切线的斜率值,再根据x=1求得切点的坐标,最后结合直线的方程求出切线在x轴上的截距即得.【解答】解:∵f(x)=x3+4x+5,∴f′(x)=3x2+4,∴f′(1)=7,即切线的斜率为7,又f(1)=10,故切点坐标(1,10),∴切线的方程为:y﹣10=7(x﹣1),当y=0时,x=﹣,切线在x轴上的截距为﹣,故选D.【点评】本小题主要考查导数的几何意义、直线方程的概念、直线在坐标轴上的截距等基础知识,属于基础题.9. 某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.参考答案:B【考点】由三视图求面积、体积.【专题】计算题;数形结合;数形结合法;空间位置关系与距离.【分析】几何体为同底的三棱柱和三棱锥的组合体,代入体积公式计算即可求出体积.【解答】解:由三视图可知几何体为直三棱柱和三棱锥的组合体,直棱柱的底面为直角三角形,直角边为1,2,棱柱的高为1,三棱锥的底面与棱柱的底面相同,棱锥的高为1.∴几何体的体积V=+=1+=.故选B.【点评】本题考查了常见几何体的三视图和结构特征,体积计算,属于基础题.10. 若不等式的解集为(-1,3),则实数a等于()A. 8B. 2C. -4D. -2参考答案:D【分析】根据绝对值不等式的解法化简,结合其解集的情况求得的值.【详解】由得.当时,无解.当时,,解得,故选D.【点睛】本小题主要考查绝对值不等式的解法,考查分类讨论的数学思想方法,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 已知为的外心,,,为钝角,是边的中点,则的值等于.参考答案:5略12. 已知长方体的三条棱长分别为,,,并且该长方体的八个顶点都在一个球的球面上,则此球的表面积为____________.参考答案:13. 设,在二项式的展开式中,含的项的系数与含的项的系数相等,则的值为.参考答案:1略14. 已知,则.参考答案:试题分析:考点:向量数量积【方法点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a·b=|a||b|cos θ;二是坐标公式a·b=x1x2+y1y2;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.15. 已知函数f(x)=,当时, f(x)≥+3恒成立,则=参考答案:-216. 已知函数f(x)=sin2x+cos2x,则f(x)的最小正周期是;如果f (x)的导函数是f′(x),则f′()= .参考答案:π;﹣1.【考点】二倍角的余弦.【专题】三角函数的图像与性质.【分析】由条件利用三角函数的恒等变换求得f(x)的解析式,再利用正弦函数的周期性求得f(x)的最小正周期.求出f′(x),可得f′()的值.【解答】解:函数f(x)=sin2x+cos2x=sin2x+?=sin (2x+)+,故函数f(x)的周期为=π,f(x)的导函数是f′(x)=2cos(2x+),故f′()=2cos=﹣1,故答案为:π;﹣1.【点评】本题主要考查三角函数的恒等变换、正弦函数的周期性、求三角函数的导数,属于基础题.17. 椭圆为定值,且的的左焦点为,直线与椭圆相交于点、两点,的周长的最大值是12,则该椭圆的离心率是______。

内蒙古自治区赤峰市四家子中学2020年高三数学文模拟试卷含解析

内蒙古自治区赤峰市四家子中学2020年高三数学文模拟试卷含解析

内蒙古自治区赤峰市四家子中学2020年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在复平面内,复数(为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D2. 已知向量,且∥,若均为正数,则的最小值是()A.24 B.8 C. D.参考答案:B:∵∥,∴﹣2x﹣3(y﹣1)=0,化为2x+3y=3,∴=当且仅当2x=3y=时,等号成立。

∴ 的最小值是8.故选:B.3. 直线和直线的夹角为()A. B.C. D.参考答案:C4. 下列四个函数中,既是奇函数又在定义域上单调递增的是A、B、C、D、参考答案:D5. 下列命题中错误的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β参考答案:D考点:平面与平面垂直的性质.专题:空间位置关系与距离;简易逻辑.分析:本题考查的是平面与平面垂直的性质问题.在解答时:A注意线面平行的定义再结合实物即可获得解答;B反证法即可获得解答;C利用面面垂直的性质通过在一个面内作交线的垂线,然后用线面垂直的判定定理即可获得解答;D结合实物举反例即可.解答:解:由题意可知:A、结合实物:教室的门面与地面垂直,门面的上棱对应的直线就与地面平行,故此命题成立;B、假若平面α内存在直线垂直于平面β,根据面面垂直的判定定理可知两平面垂直.故此命题成立;C、结合面面垂直的性质可以分别在α、β内作异于l的直线垂直于交线,再由线面垂直的性质定理可知所作的垂线平行,进而得到线面平行再由线面平行的性质可知所作的直线与l平行,又∵两条平行线中的一条垂直于平面那么另一条也垂直于平面,故命题成立;D、举反例:教室内侧墙面与地面垂直,而侧墙面内有很多直线是不垂直与地面的.故此命题错误.故选D.点评:本题考查的是平面与平面垂直的性质问题.在解答的过程当中充分体现了面面垂直、线面垂直、线面平行的定义判定定理以及性质定理的应用.值得同学们体会和反思.6. 已知tanθ=,则tan(﹣2θ)=()A.7 B.﹣7 C.D.﹣参考答案:D【考点】两角和与差的正切函数.【分析】由题意和二倍角的正切公式求出tan2θ的值,由两角差的正切公式求出的值.【解答】解:由得,==,所以===,故选D.7. 若集合,,则集合等于()A. B.C. D.参考答案:【答案】D 【解析】如右图所示。

2020年内蒙古赤峰市高考数学模拟试卷(文科)(4月份)(有答案解析)

2020年内蒙古赤峰市高考数学模拟试卷(文科)(4月份)(有答案解析)

2020年内蒙古赤峰市高考数学模拟试卷(文科)(4月份)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B. C. D.2.设复数z在复平面上的对应点为,为z的共轭复数,则A. 是纯虚数B. 是实数C. 是纯虚数D. 是纯虚数3.“”是“”成立的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.随着我国经济实力的不断提升,居民收入也在不断增加.抽样发现赤峰市某家庭2019年全年的收入与2015年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如图折线图:则下列结论中正确的是A. 该家庭2019年食品的消费额是2015年食品的消费额的一半B. 该家庭2019年教育医疗的消费额是2015年教育医疗的消费额的倍C. 该家庭2019年休闲旅游的消费额是2015年休闲旅游的消费额的六倍D. 该家庭2019年生活用品的消费额与2015年生活用品的消费额相当5.已知,,,则a,b,c的大小关系为A. B. C. D.6.若双曲线C:的一条渐近线方程为,则A. B. C. D.7.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式,问题可以描述为:存在无穷多个素数p,使得是素数,素数对称为孪生素数对.问:如果从30以内的素数组成的孪生素数对中随机抽取一对,这对孪生素数的积不超过20的概率是A. B. C. D.8.设等比数列的前n项和为,若,且,,成等差数列,则A. 510B. 255C. 512D. 2569.将函数的图象向右平移个单位长度得到函数的图象,下列结论正确的是A. 是最小正周期为的偶函数B. 是最小正周期为的奇函数C. 在上单调递减D. 在上的最大值为10.已知椭圆C:,,是其左右焦点,若对椭圆C上的任意一点P,都有恒成立,则实数a的取值范围为A. B.C. D.11.已知三棱锥中,,当三棱锥体积最大值时,三棱锥的外接球的体积为A. B. C. D.12.已知函数的图象上存在点M,函数的图象上存在点N,且点M,N关于原点对称,则实数a的取值范围是A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.设在R上是奇函数,且,当时,,则______.14.已知非零向量,满足,且,则与的夹角为______.15.九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有仓,广三丈,袤四丈五尺,容粟一万斛,问高几何?”其意思为:“今有一个长方体的粮仓,宽3丈,长4丈5尺,可装粟一万斛.已知1斛粟的体积为立方尺,1丈为10尺,则该粮仓的高是______尺.若将这些粟装入一个圆柱形粮仓内,若使这个圆柱形粮仓的表面积含上下两底最小那么它的底面半径是______尺.16.设数列的前n项和为,且满足,则使成立的n的最大值为______.三、解答题(本大题共7小题,共82.0分)17.如图,四棱锥中,底面ABCD为直角梯形,,,,,为等边三角形,平面底面ABCD,E为AD的中点.求证:平面平面PCE;点F在线段CD上,且,求三棱锥的体积.18.在中,内角A,B,C所对的边分别是a,b,c,且.求角A;若,求的面积的最大值.19.3月3日,武汉大学人民医院的团队在预印本平台上发布了一项研究:在新冠肺炎病例的统计数据中,男性患者往往比女性患者多.研究者分析了1月1日日的6013份病例数据,发现的患者为男性;进入重症监护病房的患者中,则有为男性.随后,他们分析了武汉大学人民医院的数据.他们按照症状程度的不同进行分析,结果发现,男性患者有为危重,而女性患者危重情况的为也就是说,男性的发病情况似乎普遍更严重.研究者总结道:“男性在新冠肺炎的传播中扮演着重要的角色.”那么,病毒真的偏爱男性吗?有一个中学生学习小组,在自己封闭的社区进行无接触抽样问卷调查,收集到男、女患者各50个数据,统计如下:轻中度感染重度包括危重总计男性患者20m x女性患者30n y总计5050100求列联表中的数据,,,的值;能否有把握认为,新冠肺炎的感染程度和性别有关?该学生实验小组打算从“轻中度感染”的患者中按男女比例再抽取5人,追踪某种中药制剂的效果.然后从这5人中随机抽取3人进行每日的健康记录,求至少抽到2名女性患者的概率.附表及公式:,.20.已知曲线C上的任意一点M到点的距离比到直线l:的距离少1,动点P在直线s:上,过点P作曲线C的两条切线PA,PB,其中A,B为切点.求曲线C的方程;判断直线AB是否能恒过定点?若能,求定点坐标;若不能,说明理由.21.已知函数.当时,求函数的极值;当时,求函数在上的最小值.22.在平面直角坐标系xOy中,直线l的参数方程为为参数,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.若,求曲线C与l的交点坐标;过曲线C上任意一点P作与l夹角为的直线,交l于点A,且的最大值,求a 的值.23.已知函数.解不等式;记函数的最大值为s,若b,,证明:.-------- 答案与解析 --------1.答案:C解析:解:,,.故选:C.可以求出集合A,B,然后进行交集的运算即可.本题考查了描述法、区间的定义,一元二次不等式的解法,交集的定义及运算,考查了计算能力,属于基础题.2.答案:D解析:解:由题意,,则,是实数;是纯虚数;是实数;,是纯虚数.故选:D.由已知求得z,进一步求出,然后逐一核对四个选项得答案.本题考查复数的代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.答案:A解析:解:,解得:.“”是“”成立的充分不必要条件.故选:A.,解出范围即可判断出关系.本题考查了对数函数的单调性、简易逻辑,考查了推理能力与计算能力,属于基础题.4.答案:C解析:解:因为某家庭2019年全年的收入与2015年全年的收入相比增加了一倍,设2015年全年的收入为A,2019年全年的收入为2A.由图可知,该家庭2019年食品的消费额,2015年食品的消费额为,相等,A错;由图可知,该家庭2019年教育医疗的消费额,2015年食品的消费额为,,B错;由图可知,该家庭2019年休闲旅游的消费额,2015年休闲旅游的消费额为,,C对;由图可知,该家庭2019年生活用品的消费额,2015年生活用品的消费额为,不相等,D错;故选:C.根据题意可设出年收入,然后求出所有金额,进行比较.本题考查图表,进行推理,属于基础题.5.答案:B解析:解:,,,,,,故选:B.利用对数函数和指数函数的性质求解.本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意对数函数和指数函数的性质的合理运用.6.答案:A解析:解:由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A.利用双曲线的渐近线方程,列出方程,求解m即可.本题考查双曲线的简单性质的应用,是基本知识的考查.7.答案:C解析:解:从30以内的素数有2,3,5,7,11,13,17,19,组成的孪生素数对有:,,,,共4个,这对孪生素数的积不超过20的有:,共1个,这对孪生素数的积不超过20的概率是.故选:C.利用列举法先求出从30以内的素数,再求出组成的孪生素数对,进而求出这对孪生素数的积不超过20的个数,由此能求出这对孪生素数的积不超过20的概率.本题考查概率的求法,考查列举法等基础知识,考查运算求解能力,是基础题.8.答案:B解析:解:等比数列的前n项和为,,且,,成等差数列,,解得,.故选:B.利用等比数列通项公式和等差数列性质列方程求出公比,由此能求出等比数列的前8项和.本题考查等比数列的前8项和的求法,考查等差数列、等比数列的性质等基础知识,考查运算求解能力,是基础题.9.答案:D解析:解:令;向右平移个单位,A答案:,所以A错.B答案:此函数为偶函数,所以B错误.C答案:增区间为,所以C错误.D答案:正确.故选:D.本题考查的三角函数图象的基本性质.先将给定函数化成的形式,跟据题中所给条件作出判断.本题主要考查由函数的部分图象求解析式,函数的图象变换规律,属于基础题.10.答案:C解析:解:椭圆上的点与椭圆的焦点构成的三角形的三角形中最大时点P为短轴上的顶点,要使恒成立,则为锐角,即,即,所以,而所以,解得:或,故选:C.由于椭圆上的点与椭圆的焦点构成的三角形的三角形中最大时点P为短轴上的顶点,而恒成立可得为锐角,即可得b,c的关系,再由a,b,c之间的关系可得a的取值范围.本题考查椭圆的性质,椭圆上的点与椭圆的焦点构成的三角形的三角形中最大时点P为短轴上的顶点,及数量积的符合可得角的大小,属于中档题.11.答案:A解析:解:,当PA,PB,PC两两相互垂直时三棱锥体积最大值,放在正方体中,如图所示,可得棱长为的正方体,由外接球的直径2R是正方体的对角线可得,,解得;所以外接球的体积为故选:A.由题意可得该三棱锥为三条棱相等且两两相互垂直,放在正方体中,可得该正方体的棱长为,由正方体的对角线等于外接球的直径可得外接球的半径,进而求出体积.考查三棱锥体积最大的情况及球的体积公式,属于中档题.12.答案:B解析:解:函数的图象与函数关于原点对称,则原题等价于函数与函数的图象有交点,即方程有解,即有解,令,当时,,单调递减,当时,,单调递增.,,,所以实数a的取值范围是,故选:B.求出函数关于原点对称的函数,已知函数的图象上存在点M,函数的图象上存在点N,且点M,N关于原点对称,等价为与,有交点,构造函数,求出函数的导数,研究函数的单调性和最值,利用数形结合进行求解即可.本题主要考查函数与方程的应用,将条件转化为两个函数有交点,构造函数,求导数研究函数的最值是解决本题的关键.注意利用数形结合进行求解比较好理解.13.答案:解析:解:,关于直线对称,又为奇函数,的最小正周期为4,.故答案为:.先求出函数的一条对称轴为,进一步求得其周期为4,由此即可转化得解.本题考查利用函数性质求函数值,主要考查了函数的对称性,奇偶性及周期性,属于基础题.14.答案:解析:解:由,且,所以,所以;所以,又,所以与的夹角为.故答案为:.由题意,利用平面向量的数量积,求出夹角的余弦值,从而求得夹角.本题考查了利用平面向量的数量积求出夹角大小的问题,是基础题.15.答案:20解析:解:设粮仓的高是尺,则该粮仓的容积为立方尺.一万斛粟的体积为立方尺.由题意有:,得尺;设圆柱形粮仓的底面半径为r,高为,由题意可得,则,圆柱形粮仓的表面积平方尺.当且仅当,即时上式取等号.故答案为:20;.设粮仓的高是尺,则该粮仓的容积可求,求出一万斛粟的体积,由体积相等列式求得h;设圆柱形粮仓的底面半径为r,高为,由体积关系可得,代入圆柱形粮仓的表面积公式,利用基本不等式求最值.本题考查圆柱与棱柱体积的求法,考查数学转化思想方法,考查计算能力,是中档题.16.答案:3解析:解:由,当时,,得,当时,,得,,故是以1为首项,公比为2的等比数列,,,所以,化简得:,令,解不等式得,,故最大的,故答案为:3.先求出是以1为首项,公比为2的等比数列,根据题意得到,求出最大的n即可.本题考查了等比数列求通项公式,前n项和,还考查了不等式的解法,考查运算能力,中档题.17.答案:解:证明:为等边三角形,E为AD的中点,,平面底面ABCD,平面底面,底面ABCD,平面ABCD,,由题意知ABCE是正方形,,,平面PCE,平面PBC,平面平面PCE.解:过F作,垂足为G,三棱锥的体积:.解析:推导出,,,从而平面PCE,由此能证明平面平面PCE.过F作,垂足为G,三棱锥的体积.本题考查面面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18.答案:解:由题意及正弦定理得,,,,化简得,,,,,,,由余弦定理得,,,当且仅当,,,的面积的最大值为.解析:由题中所给方程,通过正弦定理化边为角,利用三角函数性质求解;结合中结果,利用余弦定理,求出bc的值域,代入面积公式求面积,求出最值.本题考查解三角形,注意选择合理的公式,属于中档题.19.答案:解:由题意可得,,,,;,没有把握认为,新冠肺炎的感染程度和性别有关;由于在“轻中度感染”的患者中,按男女比例2:3,设抽取的5人中3名女性患者用a,b,c表示,2名男性患者用D,E表示,则所有组合为:E,,E,,E,,a,,a,,b,,a,,a,,b,,b,共10种可能的情况.其中至少抽到2名女性患者的情况有7种,则至少抽到2名女性患者的概率为.解析:直接由题意可得m,n,x,y的值;求出的值,结合临界值表得结论;利用分层抽样可得在“轻中度感染”的患者中抽取到的男女人数,再由枚举法写出基本事件总数,得到其中至少抽到2名女性患者的情况种数,再由古典概型概率计算公式求解.本题考查独立性检验,考查利用枚举法求随机事件的概率,考查计算能力,是基础题.20.答案:解:由已知得动点M到点的距离与到直线l:的距离相等,由抛物线的定义可知,曲线C为抛物线,焦点,准线l:.曲线C的方程为;设,,,由,即,得.抛物线C在点A处的切线方程为,即.,,又点在切线PA上,,同理,综合得,,的坐标都满足.直线AB:,恒过抛物线的焦点.解析:由已知得动点M到点的距离与到直线l:的距离相等,然后直接利用抛物线的定义求曲线C的方程;设,,,利用导数求过点A与B的切线方程,可得点,的坐标都满足,由此可得直线AB:,恒过抛物线的焦点.本题考查利用抛物线的定义求抛物线的方程,训练了利用“同一法”求直线方程,是中档题.21.答案:解:函数的定义域为,分,,,,函数在上为减函数;,函数在上为增函数;所以,无极大值分由可得,,由,可得,分当,即时,在成立,在此区间上为减函数,所以分当,即时,,;,;所以在为减函数,在为增函数,所以分当,即时,,,在上为增函数,分综上所述,分解析:可求得,进一步分析知函数在上为减函数,函数在上为增函数,可求函数的极值;由可得可得,,分,即,,即,当,即时,三类讨论,分别求得其最小值,最后通过分段函数式表示即可.本题考查利用导数研究函数的单调性与最值,考查分类讨论思函数与方程思想的综合运用,考查逻辑推理与综合运算能力,属于难题.22.答案:解:曲线C的极坐标方程为,整理得,转换为直角坐标方程为.当时,直线l的参数方程为为参数,整理得,转换为直角坐标方程为.所以,解得或,所以交点坐标为和曲线的直角坐标方程为,故曲线C上任意一点到直线的距离,则,当时,的最大值为,解得.当时,的最大值为,解得.故或.解析:直接利用参数方程极坐标方程和直角坐标方程之间的转换的应用求出结果.利用直线和曲线的位置关系的应用建立关系,进一步点到直线的距离求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.答案:解:,当时,恒成立;当时,,即,则;当时,显然不成立.故不等式的解集为;证明:由知,,于是,由基本不等式可知当且仅当时取等号,当且仅当时取等号,当且仅当时取等号,上述三式相加可得,当且仅当时取等号,,.解析:将函数化为分段函数的形式,再分类讨论解不等式即可;易知,利用基本不等式可得,由此得证.本题考查绝对值不等式的解法以及基本不等式的运用,考查推理能力及计算能力,属于基础题.。

2020届内蒙古赤峰市高三下学期模拟考试文科数学试题

2020届内蒙古赤峰市高三下学期模拟考试文科数学试题
参考答案
1.C
【分析】
化简集合 , ,根据交集定义,即可求得 ;
【详解】

故选:C.
【点睛】
本题主要考查了集合的交集运算,解题关键是掌握交集定义和一元二次不等式的解法,考查了分析能力和计算能力,属于基础题.
2.D
【分析】
由复数 在复平面上的对应点为 ,可得 ,根据 为 的共轭复数,可得 ,逐项验证,即可求得答案.
轻—中度感染
重度(包括危重)
总计
男性患者
女性患者
总计
(1)求 列联表中的数据 的值;
(2)能否有 把握认为,新冠肺炎的感染程度和性别有关?
(3)该学生实验小组打算从“轻—中度感染”的患者中按男女比例再抽取5人,追踪某种中药制剂的效果.然后从这5人中随机抽取3人进行每日的健康记录,求至少抽到2名女性患者的概率.
四、解答题
17.如图,四棱锥 中,底面 为直角梯形, , , 为等边三角形,平面 底面 为 的中点.
(1)求证:平面 平面 ;
(2)点 在线段 上,且 ,求三棱锥 的体积.
18.在 中,内角 所对的边分别是 ,且 .
(1)求角 ;
(2)若 ,求 的面积的最大值.
19.3月3日,武汉大学人民医院的团队在预印本平台 上发布了一项研究:在新冠肺炎病例的统计数据中,男性患者往往比女性患者多.研究者分析了1月1日~29日的6013份病例数据,发现 的患者为男性;进入重症监护病房的患者中,则有 为男性.随后,他们分析了武汉大学人民医院的数据.他们按照症状程度的不同进行分析,结果发现,男性患者有 为危重,而女性患者危重情况的为 .也就是说男性的发病情况似乎普遍更严重.研究者总结道:“男性在新冠肺炎的传播中扮演着重要的角色.”那么,病毒真的偏爱男性吗?有一个中学生学习小组,在自己封闭的社区进行无接触抽样问卷调查,收集到男、女患者各50个数据,统计如下:

2020-2021学年高三数学(文科)高三毕业4月份联考检测试题及答案解析

2020-2021学年高三数学(文科)高三毕业4月份联考检测试题及答案解析

最新高三(下)4月联考数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(∁U A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}2.复数=()A.1+3i B.﹣1﹣3i C.﹣1+3i D.1﹣3i3.下列有关命题的说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:.则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若,则”的否命题是“若,则”4.若点(sin,cos)在角α的终边上,则sinα的值为()A.B. C.D.5.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()A.607 B.328 C.253 D.0076.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.407.已知函数图象过点,则f(x)图象的一个对称中心是()A.B.C.D.8.如图,网格纸上正方形小格的边长为1cm,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积为()A.20πcm3B.16πcm3C.12πcm3D.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.4810.△ABC的外接圆的圆心为O,半径为2,且,且||=||,则向量在方向上的投影为()A.B.3 C.D.﹣311.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)12.已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B. C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数f(x)=,则f[f()]= .14.已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为.15.已知圆C:(x﹣1)2+(y﹣2)2=2,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为.16.已知△ABC中,角A,B,C所对的边分别是a,b,c,sinA+sinB﹣4sinC=0,且△ABC的周长L=5,面积S=﹣(a2+b2),则cosC= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}为等差数列,a2=3,a4=7;数列{b n}为公比为q(q>1)的等比数列,且满足集合{b1,b2,b3}={1,2,4}.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.18.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2[30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.2[120,150] 0.2 0.1优秀不优秀总计甲班乙班总计2.072 2.7063.841 5.024 6.635 7.879 10.828k00.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k0)(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过曲线C上的一点作两条直线分别交曲线于A,B两点,已知OA,OB的斜率互为相反数,求直线AB的斜率.21.已知函数f(x)=lnx﹣mx2,g(x)=mx2+x,m∈R,令F(x)=f(x)+g(x).(Ⅰ)当时,求函数f(x)的单调区间及极值;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲]24.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.高三(下)4月联考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(∁U A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}【考点】交、并、补集的混合运算.【分析】由全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},知C U A={4,6,7,8},由此能求出(C u A)∩B.【解答】解:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴C U A={4,6,7,8},∴(C u A)∩B={4,6}.故选B.2.复数=()A.1+3i B.﹣1﹣3i C.﹣1+3i D.1﹣3i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故选:B.3.下列有关命题的说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:.则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若,则”的否命题是“若,则”【考点】必要条件、充分条件与充要条件的判断.【分析】A.f(0)=0推不出函数f(x)是奇函数,例如f(x)=x2;函数f(x)是奇函数,例如f(x)=,则f(0)无意义,即可判断出结论;B.利用非命题的定义即可判断出真假;C.若p∧q为假命题,则p,q至少一个为假命题,即可判断出真假;D.利用否命题的定义即可判断出真假.【解答】解:A.f(0)=0推不出函数f(x)是奇函数,例如f(x)=x2;函数f(x)是奇函数,例如f(x)=,则f(0)无意义,因此.“f(0)=0”是“函数f(x)是奇函数”的既不充分也不必要条件,不正确;B.若p:.则¬p:∀x∈R,x2﹣x﹣1≤0,因此不正确;C.若p∧q为假命题,则p,q至少一个为假命题,因此不正确;D.“若,则”的否命题是“若,则”,正确.故选:D.4.若点(sin,cos)在角α的终边上,则sinα的值为()A.B. C.D.【考点】任意角的三角函数的定义.【分析】由条件利用任意角的三角函数的定义转化求解sinα的值.【解答】解:角α的终边上一点的坐标为(sin,cos)即(,),则由任意角的三角函数的定义,可得sinα=,故选:A.5.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()A.607 B.328 C.253 D.007【考点】系统抽样方法.【分析】从第5行第6个数2的数开始向右读,依次为253,313,457,860,736,253,007,其中860,736不符合条件故可得结论.【解答】解:从第5行第6个数2的数开始向右读,第一个数为253,符合条件,第二个数为313,符合条件,第三个数为457,符合条件,以下依次为:860,736,253,007,328,其中860,736不符合条件且253与第一个重复了不能取,这样007是第四数,第五个数应为328.故第五个数为328..故选:B.6.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.40【考点】数列的求和.【分析】由题意知道,本题是构造新等差数列的问题,经过推导可知{x n}是等差数列,运用等差数列的性质可求解答案.【解答】解:由题意知:∵数列{}为调和数列∴﹣=x n+1﹣x n=d∴{x n}是等差数列又∵x1+x2+…+x20=200=∴x1+x20=20又∵x1+x20=x5+x16∴x5+x16=20故选:B.7.已知函数图象过点,则f(x)图象的一个对称中心是()A.B.C.D.【考点】正弦函数的图象.【分析】由题意可得=2sinφ,结合(|φ|<)可得φ的值,由五点作图法令2x+=0,可解得:x=﹣,则可求f(x)的图象的一个对称中心.【解答】解:∵函数f(x)=2sin(2x+φ)(|φ|<)的图象过点(0,),∴=2sinφ,由(|φ|<),可得:φ=,∴f(x)=2sin(2x+),∴由五点作图法令2x+=0,可解得:x=﹣,则f(x)的图象的一个对称中心是(﹣,0).故选:B.8.如图,网格纸上正方形小格的边长为1cm,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积为()A.20πcm3B.16πcm3C.12πcm3D.【考点】由三视图求面积、体积.【分析】由三视图判断几何体的形状,通过三视图的数据求出几何体的体积,再计算原几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π;底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π;所以切削掉部分的体积为54π﹣34π=20πcm3.故选:A.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.10.△ABC的外接圆的圆心为O,半径为2,且,且||=||,则向量在方向上的投影为()A.B.3 C.D.﹣3【考点】平面向量数量积的运算.【分析】由题意可得,可得四边形OBAC是平行四边形,结合||=||可得四边形OBAC是边长为2的菱形,且∠ABO=∠AC0=60°,可得∠ACB=∠AC0=30°,由投影的定义可得.【解答】解:∵,∴,即,可得四边形OBAC是平行四边形,∵△ABC的外接圆的圆心为O,半径为2,∴||=||=||=2,∴四边形OBAC是边长为2的菱形,且∠ABO=∠AC0=60°,∴∠ACB=∠AC0=30°,∴向量在方向上的投影为:cos∠ACB=2cos30°=.故选:A11.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)【考点】椭圆的简单性质.【分析】作出图形,则易知|AF2|=a+c,|BF2|=,再由∠BAF2是直线的倾斜角,易得k=tan∠BAF2,然后通过0<k<,分子分母同除a2得0<<求解.【解答】解:如图所示:|AF2|=a+c,|BF2|=,∴k=tan∠BAF2=,又∵0<k<,∴0<<,∴0<<,∴<e<1.故选:D.12.已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B. C.D.【考点】利用导数研究曲线上某点切线方程.【分析】分别求出函数f(x)的导数,函数g(x)的导数.由于两曲线y=f(x),y=g(x)有公共点,设为P(x0,y0),则有f(x0)=g(x0),且f′(x0)=g′(x0),解出x0=a,得到b关于a的函数,构造函数,运用导数求出单调区间和极值、最值,即可得到b的最大值.【解答】解:函数f(x)的导数为f'(x)=x+2a,函数g(x)的导数为,由于两曲线y=f(x),y=g(x)有公共点,设为P(x0,y0),则,由于x0>0,a>0则x0=a,因此构造函数,由h'(t)=2t(1﹣3lnt),当时,h'(t)>0即h(t)单调递增;当时,h'(t)<0即h(t)单调递减,则即为实数b的最大值.故选D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数f(x)=,则f[f()]= .【考点】函数的值.【分析】根据分段函数的表达式,直接代入进行求解即可.【解答】解:由分段函数可知,f()=log,f(﹣1)=,故答案为:.14.已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为12π.【考点】球的体积和表面积.【分析】由∠BAC=90°,AB=AC=2,得到BC,即为A、B、C三点所在圆的直径,取BC的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,则OA可求,再由球的表面积公式即可得到.【解答】解:如图所示:取BC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,∴OA==,即球的半径R为,∴球O的表面积为S=4πR2=12π.故答案为:12π.15.已知圆C:(x﹣1)2+(y﹣2)2=2,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为2.【考点】圆的标准方程.【分析】得到圆心坐标和半径.等边△PAB的一边AB为圆C的一条弦,可得|PC|的最大值为直径,即可得出结论.【解答】解:由圆C:(x﹣1)2+(y﹣2)2=2,∴圆心坐标C(1,2),半径r=.∵等边△PAB的一边AB为圆C的一条弦,∴|PC|的最大值为直径2.故答案为:2.16.已知△ABC中,角A,B,C所对的边分别是a,b,c,sinA+sinB﹣4sinC=0,且△ABC的周长L=5,面积S=﹣(a2+b2),则cosC= .【考点】余弦定理.【分析】利用正弦定理化简已知的第一个等式,得到a+b=4c,代入第二个等式中计算,即可求出c的长,利用三角形的面积公式表示出三角形ABC的面积S,代入已知的等式中,利用完全平方公式变形后,将a+b=4代入化简,即可求出cosC的值.【解答】解:△ABC中,∵sinA+sinB﹣4sinC=0,∴a+b=4c,∵△ABC的周长L=5,∴a+b+c=5,∴c=1,a+b=4.∵面积S=﹣(a2+b2),∴absinC=﹣(a2+b2)=﹣[(a+b)2﹣2ab]=ab,∴sinC=,∵c<a+b,C是锐角,∴cosC==.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}为等差数列,a2=3,a4=7;数列{b n}为公比为q(q>1)的等比数列,且满足集合{b1,b2,b3}={1,2,4}.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)通过联立a2=3、a4=7计算可知等差数列{a n}的首项和公差,从而可得其通项公式;通过等比数列{b n}成公比大于1的等比数列可确定b1=1、b2=2、b3=4,进而可求出首项和公比,从而可得通项公式;(Ⅱ)通过(I),利用分组求和法计算即得结论.【解答】解:(Ⅰ)设等差数列的首项和公差分别为a1、d,∵a2=3,a4=7,∴a1+d=3,a1+3d=7,解得:a1=1,d=2,∴a n=1+2(n﹣1)=2n﹣1,∵等比数列{b n}成公比大于1的等比数列且{b1,b2,b3}={1,2,4},∴b1=1,b2=2,b3=4,∴b1=1,q=2,∴b n=2n﹣1;(Ⅱ)由(I)可知S n=(a1+a2+…+a n)+(b1+b2+…+b n)=+=n2+2n﹣1.18.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2[30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.2[120,150] 0.2 0.1优秀不优秀总计甲班乙班总计2.072 2.7063.841 5.024 6.635 7.879 10.828k00.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k0)(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?【考点】独立性检验;古典概型及其概率计算公式.【分析】(Ⅰ)由图表得到乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.然后利用枚举法得到从这六名学生随机抽取两名的基本事件个数,进一步得到恰有一位学生成绩优秀的事件个数,由古典概型概率计算公式得答案;(Ⅱ)直接由公式求出K的值,结合图表得答案.【解答】解:(Ⅰ)乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.从这六名学生随机抽取两名的基本事件有:{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个,设事件G表示恰有一位学生成绩优秀,符合要求的事件有:{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共8个,∴;(Ⅱ)优秀不优秀总计甲班 4 16 20乙班 2 18 20总计 6 34 40.在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系.19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面平行的性质.【分析】(1)证明FB∥平面AED,BC∥平面AED,利用面面平行的判定定理可得结论;(2)连接AC,AC∩BD=O,证明AO⊥面BDEF,即可求出四棱锥A﹣BDEF的体积.【解答】(1)证明:∵ABCD是菱形,∴BC∥AD,∵BC⊄面ADE,AD⊂面ADE,∴BC∥面ADE…∵BDEF是矩形,∴BF∥DE,∵BF⊄面ADE,DE⊂面ADE,∴BF∥面ADE,∵BC⊂面BCF,BF⊂面BCF,BC∩BF=B,∴面BCF∥面ADE…(2)解:连接AC,AC∩BD=O∵ABCD是菱形,∴AC⊥BD∵ED⊥面ABCD,AC⊂面ABCD,∴ED⊥AC,∵ED,BD⊂面BDEF,ED∩BD=D,∴AO⊥面BDEF,…∴AO为四棱锥A﹣BDEF的高由ABCD是菱形,,则△ABD为等边三角形,由BF=BD=a,则,∵,∴…20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过曲线C上的一点作两条直线分别交曲线于A,B两点,已知OA,OB的斜率互为相反数,求直线AB的斜率.【考点】直线与圆的位置关系.【分析】(Ⅰ)设圆P的半径为r,由题意得|PM|+|PN|=(1+r)+(5﹣r)=6,从而曲线C是以(﹣1,0),(1,0)为焦点,长轴长为6的椭圆,由此能求出曲线C的方程.(Ⅱ)设直线QA、QB的斜率分别为k,﹣k,则A(1+λ,),B(1+μ,),由此能求出直线AB的斜率.【解答】解:(Ⅰ)∵圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C,设圆P的半径为r,由题意得|PM|+|PN|=(1+r)+(5﹣r)=6,∴曲线C是以(﹣1,0),(1,0)为焦点,长轴长为6的椭圆,∴曲线C的方程为.(Ⅱ)设直线QA、QB的斜率分别为k,﹣k,则直线QA、QB的一个方向向量为(1,k),(1,﹣k),则=λ(1,k),=μ(1,﹣k),∴A(1+λ,),B(1+μ,),代入=1,并整理,得,两式相减,得:λ﹣μ=﹣,两式相加,得:λ+μ=﹣,∴直线AB的斜率k AB==.21.已知函数f(x)=lnx﹣mx2,g(x)=mx2+x,m∈R,令F(x)=f(x)+g(x).(Ⅰ)当时,求函数f(x)的单调区间及极值;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(Ⅱ)法一:令,求出函数的导数,通过讨论m的范围求出函数的单调区间,从而求出m的最小值即可;法二:分离参数,得到恒成立,令,根据函数的单调性求出函数h(x)的最大值,从而求出m的最小值即可.【解答】解:(Ⅰ),所以.…令f′(x)=0得x=1;…由f′(x)>0得0<x<1,所以f(x)的单调递增区间为(0,1).由f′(x)<0得x>1,所以f(x)的单调递增区间为(1,+∞).…所以函数,无极小值…(Ⅱ)法一:令.所以.…当m≤0时,因为x>0,所以G′(x)>0所以G(x)在(0,+∞)上是递增函数,又因为.所以关于x的不等式G(x)≤mx﹣1不能恒成立.…当m>0时,.令G′(x)=0得,所以当时,G′(x)>0;当时,G′(x)<0.因此函数G(x)在是增函数,在是减函数.…故函数G(x)的最大值为.令,因为.又因为h(m)在m∈(0,+∞)上是减函数,所以当m≥2时,h(m)<0.所以整数m的最小值为2.…法二:由F(x)≤mx﹣1恒成立知恒成立…令,则…令φ(x)=2lnx+x,因为,φ(1)=1>0,则φ(x)为增函数故存在,使φ(x0)=0,即2lnx0+x0=0…当时,h′(x)>0,h(x)为增函数当x0<x时,h′(x)<0,h(x)为减函数…所以,而,所以所以整数m的最小值为2.…请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.【考点】与圆有关的比例线段;圆內接多边形的性质与判定.【分析】(1)推导出B,C,D,E四点在以BC为直径的圆上,由割线定理能证明AD•AB=AE •AC.(2)过点F作FG⊥BC于点G,推导出B,G,F,D四点共圆,F,G,C,E四点共圆,由此利用割线定理能求出BC的长.【解答】证明:(1)由已知∠BDC=∠BEC=90°,所以B,C,D,E四点在以BC为直径的圆上,由割线定理知:AD•AB=AE•AC.…解:(2)如图,过点F作FG⊥BC于点G,由已知,∠BDC=90°,又因为FG⊥BC,所以B,G,F,D四点共圆,所以由割线定理知:CG•CB=CF•CD,①…同理,F,G,C,E四点共圆,由割线定理知:BF•BE=BG•BC,②…①+②得:CG•CB+BG•BC=CF•CD+BF•BE,即BC2=CF•CD+BF•BE=3×5+3×5=30,…所以BC=.…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.【考点】简单曲线的极坐标方程;点的极坐标和直角坐标的互化.【分析】解:(I)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(II)设(ρ1,θ1)为点P的极坐标,由,联立即可解得.设(ρ2,θ2)为点Q的极坐标,同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.【解答】解:(I)利用cos2φ+sin2φ=1,把圆C的参数方程为参数)化为(x﹣1)2+y2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得.设(ρ2,θ2)为点Q的极坐标,由,解得.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.[选修4-5:不等式选讲]24.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用零点分段法去掉绝对值符号,转化为不等式组,解出x的范围;(2)由基本不等式,可以解得m2+n2+p2≥mn+mp+np,将条件平方可得(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,代入m2+n2+p2≥mn+mp+np,即可证得要求证得式子.【解答】(1)解:①x≥2时,f(x)=2x﹣4+x+1=3x﹣3,由f(x)<6,∴3x﹣3<6,∴x<3,即2≤x<3,②﹣1<x<2时,f(x)=4﹣2x+x+1=5﹣x,由f(x)<6,∴5﹣x<6,∴x>﹣1,即﹣1<x <2,③x≤﹣1时,f(x)=4﹣2x﹣1﹣x=3﹣3x,由f(x)<6,∴3﹣3x<6,∴x>﹣1,可知无解,综上,不等式f(x)<6的解集为(﹣1,3);(2)证明:∵f(x)=2|x﹣2|+|x+1|,∴f(2)=3,∴m+n+p=f(2)=3,且m,n,p为正实数∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,∵m2+n2≥2mn,m2+p2≥2mp,n2+p2≥2np,∴m2+n2+p2≥mn+mp+np,∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9≥3(mn+mp+np)又m,n,p为正实数,∴可以解得mn+np+pm≤3.故证毕.2016年10月19日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考卷(文科)数学(4月份)模拟试卷一、选择题(共12小题).1.已知集合A={x|x2﹣x﹣2<0},B={x|y=},则A∩B=()A.(﹣∞,2]B.(﹣∞,1]C.(﹣1,1]D.[﹣1,2]2.设复数z在复平面上的对应点为(1,﹣1),为z的共轭复数,则()A.z+是纯虚数B.z﹣是实数C.z•是纯虚数D.是纯虚数3.“x>y>0”是“lg(x+1)>lg(y+1)”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.随着我国经济实力的不断提升,居民收入也在不断增加.抽样发现赤峰市某家庭2019年全年的收入与2015年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如图折线图:则下列结论中正确的是()A.该家庭2019年食品的消费额是2015年食品的消费额的一半B.该家庭2019年教育医疗的消费额是2015年教育医疗的消费额的1.5倍C.该家庭2019年休闲旅游的消费额是2015年休闲旅游的消费额的六倍D.该家庭2019年生活用品的消费额与2015年生活用品的消费额相当5.已知a=2,b=5,c=log32,则a,b,c的大小关系为()A.a<b<c B.c<b<a C.c<a<b D.b<a<c6.若双曲线C:的一条渐近线方程为3x+2y=0,则m=()A.B.C.D.7.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式,问题可以描述为:存在无穷多个素数p,使得p+2是素数,素数对(p,p+2)称为孪生素数对.问:如果从30以内的素数组成的孪生素数对中随机抽取一对,这对孪生素数的积不超过20的概率是()A.B.C.D.8.设等比数列{a n}的前n项和为S n,若a1=1,且4a2,2a3,a4成等差数列,则S8=()A.510B.255C.512D.2569.将函数y=sin x cos x﹣cos2x+的图象向右平移个单位长度得到函数g(x)的图象,下列结论正确的是()A.g(x)是最小正周期为2π的偶函数B.g(x)是最小正周期为4π的奇函数C.g(x)在(π,2π)上单调递减D.g(x)在[0,]上的最大值为10.已知椭圆C:+=1,F1,F2是其左右焦点,若对椭圆C上的任意一点P,都有•>0恒成立,则实数a的取值范围为()A.(﹣3,0)∪(0,3)B.[﹣3,0)∪(0,3]C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣3]∪[3,+∞)11.已知三棱锥P﹣ABC中,PA=PB=PC=,当三棱锥P﹣ABC体积最大值时,三棱锥P﹣ABC的外接球的体积为()A.πB.36πC.πD.π12.已知函数y=1+2lnx(x∈[,e])的图象上存在点M,函数y=﹣x2+a的图象上存在点N,且点M,N关于原点对称,则实数a的取值范围是()A.[0,1+]B.[0,e2﹣3]C.[1+,e2﹣3]D.[1+,+∞)二、填空题13.设f(x)在R上是奇函数,且f(1﹣x)=f(1+x),当x∈(0,1)时,f(x)=x3,则f()=.14.已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为.15.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有仓,广三丈,袤四丈五尺,容粟﹣一万斛,问高几何?”其意思为:“今有一个长方体的粮仓,宽3丈,长4丈5尺,可装粟一万斛.已知1斛粟的体积为2.7立方尺,1丈为10尺,则该粮仓的高是尺.若将这些粟装入一个圆柱形粮仓内,若使这个圆柱形粮仓的表面积(含上下两底)最小那么它的底面半径是尺.16.设数列{a n}的前n项和为S n,且满足2a n=S n+1,则使a12+a22+…+a n2<•2n+1成立的n的最大值为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22~23题为选考题,考生根据要求作答.(--)必考题:共60分17.如图,四棱锥P﹣ABCD中,底面ABCD为直角梯形,AB⊥AD,∠ADC=45°,AD ∥BC,AD=2AB=2,△ADP为等边三角形,平面PAD⊥底面ABCD,E为AD的中点.(1)求证:平面PBC⊥平面PCE;(2)点F在线段CD上,且=,求三棱锥F﹣ABP的体积.18.在△ABC中,内角A,B,C所对的边分别是a,b,c,且b+c=a cos B+a sin B.(1)求角A;(2)若a=2,求△ABC的面积的最大值.19.3月3日,武汉大学人民医院的团队在预印本平台SSRN.上发布了一项研究:在新冠肺炎病例的统计数据中,男性患者往往比女性患者多.研究者分析了1月1日~29日的6013份病例数据,发现55.9%的患者为男性;进入重症监护病房的患者中,则有58.8%为男性.随后,他们分析了武汉大学人民医院的数据.他们按照症状程度的不同进行分析,结果发现,男性患者有11.8%为危重,而女性患者危重情况的为7%.也就是说,男性的发病情况似乎普遍更严重.研究者总结道:“男性在新冠肺炎的传播中扮演着重要的角色.”那么,病毒真的偏爱男性吗?有一个中学生学习小组,在自己封闭的社区进行无接触抽样问卷调查,收集到男、女患者各50个数据,统计如下:轻﹣中度感染重度(包括危重)总计男性患者20m x女性患者30n y总计5050100(1)求2×2列联表中的数据m,n,x,y的值;(2)能否有99.9%把握认为,新冠肺炎的感染程度和性别有关?(3)该学生实验小组打算从“轻﹣中度感染”的患者中按男女比例再抽取5人,追踪某种中药制剂的效果.然后从这5人中随机抽取3人进行每日的健康记录,求至少抽到2名女性患者的概率.附表及公式:K2=,n=a+b+c+d.P(K2≥k0)0.050.0250.0100.0050.001 k0 3.841 5.024 6.6357.87910.828 20.已知曲线C上的任意一点M到点F(0,1)的距离比到直线l:y=﹣2的距离少1,动点P在直线s:y=﹣1上,过点P作曲线C的两条切线PA,PB,其中A,B为切点.(1)求曲线C的方程;(2)判断直线AB是否能恒过定点?若能,求定点坐标;若不能,说明理由.21.已知函数f(x)=x2+(1﹣a)x﹣lnx.(1)当a>0时,求函数f(x)的极值;(2)当a<0时,求函数f(x)在上[,1]的最小值.(二)选考题:共10分.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B铅笔在答题卡.上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)若a=﹣2,求曲线C与l的交点坐标;(2)过曲线C上任意一点P作与l夹角为45°的直线,交l于点A,且|PA|的最大值,求a的值.[选修4--5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)解不等式f(x)≤l;(2)记函数f(x)的最大值为s,若a+b+c=s(a,b,c>0),证明:a2b2+b2c2+c2a2≥3abc.参考答案一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣2<0},B={x|y=},则A∩B=()A.(﹣∞,2]B.(﹣∞,1]C.(﹣1,1]D.[﹣1,2]【分析】可以求出集合A,B,然后进行交集的运算即可.解:A={x|﹣1<x<2},B={x|x≤1},∴A∩B=(﹣1,1].故选:C.2.设复数z在复平面上的对应点为(1,﹣1),为z的共轭复数,则()A.z+是纯虚数B.z﹣是实数C.z•是纯虚数D.是纯虚数【分析】由已知求得z,进一步求出,然后逐一核对四个选项得答案.解:由题意,z=1﹣i,则,∴是实数;是纯虚数;是实数;,是纯虚数.故选:D.3.“x>y>0”是“lg(x+1)>lg(y+1)”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】lg(x+1)>lg(y+1)⇔x+1>y+1>0,解出范围即可判断出关系.解:lg(x+1)>lg(y+1)⇔x+1>y+1>0,解得:x>y>﹣1.∴“x>y>0”是“lg(x+1)>lg(y+1)”成立的充分不必要条件.故选:A.4.随着我国经济实力的不断提升,居民收入也在不断增加.抽样发现赤峰市某家庭2019年全年的收入与2015年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如图折线图:则下列结论中正确的是()A.该家庭2019年食品的消费额是2015年食品的消费额的一半B.该家庭2019年教育医疗的消费额是2015年教育医疗的消费额的1.5倍C.该家庭2019年休闲旅游的消费额是2015年休闲旅游的消费额的六倍D.该家庭2019年生活用品的消费额与2015年生活用品的消费额相当【分析】根据题意可设出年收入,然后求出所有金额,进行比较.解:因为某家庭2019年全年的收入与2015年全年的收入相比增加了一倍,设2015年全年的收入为A,2019年全年的收入为2A.由图可知,该家庭2019年食品的消费额0.2×2A=0.4A,2015年食品的消费额为0.4×A =0.4A,相等,A错;由图可知,该家庭2019年教育医疗的消费额0.2×2A=0.4A,2015年食品的消费额为0.3×A=0.3A,,B错;由图可知,该家庭2019年休闲旅游的消费额0.3×2A=0.6A,2015年休闲旅游的消费额为0.1×A=0.1A,,C对;由图可知,该家庭2019年生活用品的消费额0.15×2A=0.3A,2015年生活用品的消费额为0.05×A=0.05A,不相等,D错;故选:C.5.已知a=2,b=5,c=log32,则a,b,c的大小关系为()A.a<b<c B.c<b<a C.c<a<b D.b<a<c【分析】利用对数函数和指数函数的性质求解.解:∵a10=25=32,b10=52=25,∴a>b>1,∵0<log32<1,∴0<c<1,∴c<b<a,故选:B.6.若双曲线C:的一条渐近线方程为3x+2y=0,则m=()A.B.C.D.【分析】利用双曲线的渐近线方程,列出方程,求解m即可.解:由题意知双曲线的渐近线方程为,3x+2y=0可化为,则,解得.故选:A.7.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式,问题可以描述为:存在无穷多个素数p,使得p+2是素数,素数对(p,p+2)称为孪生素数对.问:如果从30以内的素数组成的孪生素数对中随机抽取一对,这对孪生素数的积不超过20的概率是()A.B.C.D.【分析】利用列举法先求出从30以内的素数,再求出组成的孪生素数对,进而求出这对孪生素数的积不超过20的个数,由此能求出这对孪生素数的积不超过20的概率.解:从30以内的素数有2,3,5,7,11,13,17,19,组成的孪生素数对有:(3,5),(5,7),(11,13),(17,19),共4个,这对孪生素数的积不超过20的有:(3,5),共1个,∴这对孪生素数的积不超过20的概率是p=.故选:C.8.设等比数列{a n}的前n项和为S n,若a1=1,且4a2,2a3,a4成等差数列,则S8=()A.510B.255C.512D.256【分析】利用等比数列通项公式和等差数列性质列方程求出公比,由此能求出等比数列的前8项和.解:∵等比数列{a n}的前n项和为S n,a1=1,且4a2,2a3,a4成等差数列,∴2×(2q2)=4q+q3,解得q=2,∴S8==255.故选:B.9.将函数y=sin x cos x﹣cos2x+的图象向右平移个单位长度得到函数g(x)的图象,下列结论正确的是()A.g(x)是最小正周期为2π的偶函数B.g(x)是最小正周期为4π的奇函数C.g(x)在(π,2π)上单调递减D.g(x)在[0,]上的最大值为【分析】本题考查的三角函数图象的基本性质.先将给定函数化成A sin(ωx+φ)的形式,跟据题中所给条件作出判断.解:令f(x)=sin x cos x﹣cos2x+=sin2x﹣cos2x﹣=sin(2x﹣)﹣;∵f(x)向右平移个单位∴g(x)=sin[2(x﹣﹣)]﹣=sin(2x﹣)﹣=﹣cos2x﹣,A答案:T===π,所以A错.B答案:此函数为偶函数,所以B错误.C答案:增区间为kπ≤x≤kπ+,所以C错误.D答案:正确.故选:D.10.已知椭圆C:+=1,F1,F2是其左右焦点,若对椭圆C上的任意一点P,都有•>0恒成立,则实数a的取值范围为()A.(﹣3,0)∪(0,3)B.[﹣3,0)∪(0,3]C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣3]∪[3,+∞)【分析】由于椭圆上的点与椭圆的焦点构成的三角形的三角形中∠F1PF2最大时点P为短轴上的顶点,而•>0恒成立可得∠F1PF2为锐角,即∠F1PO<45°可得b,c的关系,再由a,b,c之间的关系可得a的取值范围.解:椭圆上的点与椭圆的焦点构成的三角形的三角形中∠F1PF2最大时点P为短轴上的顶点,要使•>0恒成立,则∠F1PF2为锐角,即∠F1PO<45°,即tan F1PO=<1,所以c2<b2,而c2=a2﹣b2=a2+9﹣a2=9所以9<a2,解得:a>3或a<﹣3,故选:C.11.已知三棱锥P﹣ABC中,PA=PB=PC=,当三棱锥P﹣ABC体积最大值时,三棱锥P﹣ABC的外接球的体积为()A.πB.36πC.πD.π【分析】由题意可得该三棱锥为三条棱相等且两两相互垂直,放在正方体中,可得该正方体的棱长为,由正方体的对角线等于外接球的直径可得外接球的半径,进而求出体积.解:PA=PB=PC=,当PA,PB,PC两两相互垂直时三棱锥P﹣ABC体积最大值,放在正方体中,如图所示,可得棱长为的正方体,由外接球的直径2R是正方体的对角线可得,2R==3,解得R=;所以外接球的体积为V==故选:A.12.已知函数y=1+2lnx(x∈[,e])的图象上存在点M,函数y=﹣x2+a的图象上存在点N,且点M,N关于原点对称,则实数a的取值范围是()A.[0,1+]B.[0,e2﹣3]C.[1+,e2﹣3]D.[1+,+∞)【分析】求出函数y=﹣x2+a关于原点对称的函数y=x2﹣a,已知函数y=1+2lnx(x∈[,e])的图象上存在点M,函数y=﹣x2+a的图象上存在点N,且点M,N关于原点对称,等价为y=1+2lnx(x∈[,e])与y=x2+a,有交点,构造函数,求出函数的导数,研究函数的单调性和最值,利用数形结合进行求解即可.解:函数y=﹣x2+a的图象与函数y=x2﹣a关于原点对称,则原题等价于函数y=1+2lnx(x∈[,e])与函数y=x2﹣a的图象有交点,即方程1+2lnx=x2﹣a(x∈[,e])有解,即a=x2﹣1﹣2lnx(x∈[,e])有解,令f(x)=x2﹣1﹣2lnx(x∈[,e])f′(x)=2x﹣=,当x∈(,1)时,f′(x)<0,f(x)单调递减,当x∈(1,e)时,f′(x)>0,f(x)单调递增.f(x)min=f(1)=0,f()==1+,f(e)=e2﹣3,所以实数a的取值范围是[0,e2﹣3],故选:B.二、填空题:共4小题,每小题5分,共20分.13.设f(x)在R上是奇函数,且f(1﹣x)=f(1+x),当x∈(0,1)时,f(x)=x3,则f()=.【分析】先求出函数f(x)的一条对称轴为x=1,进一步求得其周期为4,由此即可转化得解.解:∵f(1﹣x)=f(1+x),∴f(x)关于直线x=1对称,又f(x)为奇函数,∴f(x)的最小正周期为4,∴.故答案为:.14.已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为.【分析】由题意,利用平面向量的数量积,求出夹角的余弦值,从而求得夹角.解:由,且,所以(﹣)•=•﹣=0,所以•=;所以cosθ===,又θ∈[0,π],所以与的夹角为.故答案为:.15.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有仓,广三丈,袤四丈五尺,容粟﹣一万斛,问高几何?”其意思为:“今有一个长方体的粮仓,宽3丈,长4丈5尺,可装粟一万斛.已知1斛粟的体积为2.7立方尺,1丈为10尺,则该粮仓的高是20尺.若将这些粟装入一个圆柱形粮仓内,若使这个圆柱形粮仓的表面积(含上下两底)最小那么它的底面半径是尺.【分析】设粮仓的高是h(尺),则该粮仓的容积可求,求出一万斛粟的体积,由体积相等列式求得h;设圆柱形粮仓的底面半径为r,高为h1,由体积关系可得,代入圆柱形粮仓的表面积公式,利用基本不等式求最值.解:设粮仓的高是h(尺),则该粮仓的容积为45×30h=1350h(立方尺).一万斛粟的体积为10000×2.7=27000(立方尺).由题意有:1350h=27000,得h=20(尺);设圆柱形粮仓的底面半径为r,高为h1,由题意可得πr2•h1=27000,则,∴圆柱形粮仓的表面积S===(平方尺).当且仅当,即r=时上式取等号.故答案为:20;.16.设数列{a n}的前n项和为S n,且满足2a n=S n+1,则使a12+a22+…+a n2<•2n+1成立的n的最大值为3.【分析】先求出{a n}是以1为首项,公比为2的等比数列,根据题意得到,求出最大的n即可.解:由2a n=S n+1,①当n=1时,2a1=a1+1,得a1=1,当n≥2时,2a n﹣1=S n﹣1+1,②①﹣②得,a n=2a n﹣1,故{a n}是以1为首项,公比为2的等比数列,,,所以a12+a22+…+a n2=1+4+42+…+4n﹣1=,化简得:(2n)2﹣10•2n﹣1<0,令t=2n>0,解不等式t2﹣10t﹣1<0得,0<t<,故最大的n=3,故答案为:3.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22~23题为选考题,考生根据要求作答.(--)必考题:共60分17.如图,四棱锥P﹣ABCD中,底面ABCD为直角梯形,AB⊥AD,∠ADC=45°,AD ∥BC,AD=2AB=2,△ADP为等边三角形,平面PAD⊥底面ABCD,E为AD的中点.(1)求证:平面PBC⊥平面PCE;(2)点F在线段CD上,且=,求三棱锥F﹣ABP的体积.【分析】(1)推导出PE⊥AD,PE⊥BC,CE⊥BC,从而BC⊥平面PCE,由此能证明平面PBC⊥平面PCE.(2)过F作FG⊥AB,垂足为G,三棱锥F﹣ABP的体积V F﹣ABP=V P﹣ABF=.解:(1)证明:∵△PAD为等边三角形,E为AD的中点,∴PE⊥AD,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,∴PE⊥底面ABCD,BC⊂平面ABCD,∴PE⊥BC,由题意知ABCE是正方形,∴CE⊥BC,∵PE∩EC=E,∴BC⊥平面PCE,∵BC⊂平面PBC,∴平面PBC⊥平面PCE.(2)解:过F作FG⊥AB,垂足为G,∴三棱锥F﹣ABP的体积:V F﹣ABP=V P﹣ABF=====.18.在△ABC中,内角A,B,C所对的边分别是a,b,c,且b+c=a cos B+a sin B.(1)求角A;(2)若a=2,求△ABC的面积的最大值.【分析】(1)由题中所给方程,通过正弦定理化边为角,利用三角函数性质求解;(2)结合(1)中结果,利用余弦定理,求出bc的值域,代入面积公式求面积,求出最值.解:(1)由题意及正弦定理得sin B+sin C=sin A cos B+sin A sin B,∵A+B+C=π,∴sin C=sin(A+B),sin B+sin(A+B)=sin A cos B+sin A sin B,化简得sin B(sin A﹣cos A﹣1)=0,∵sin B>0,∴sin A﹣cos A﹣1=0,∴sin(A﹣)=,∵0<A<π,∴A=,(2)∵a=2,∴由余弦定理得,bc=b2+c2﹣12,∴bc=b2+c2﹣12≥2bc﹣12,(当且仅当b=c),∴bc≤12,∴,∴△ABC的面积的最大值为3.19.3月3日,武汉大学人民医院的团队在预印本平台SSRN.上发布了一项研究:在新冠肺炎病例的统计数据中,男性患者往往比女性患者多.研究者分析了1月1日~29日的6013份病例数据,发现55.9%的患者为男性;进入重症监护病房的患者中,则有58.8%为男性.随后,他们分析了武汉大学人民医院的数据.他们按照症状程度的不同进行分析,结果发现,男性患者有11.8%为危重,而女性患者危重情况的为7%.也就是说,男性的发病情况似乎普遍更严重.研究者总结道:“男性在新冠肺炎的传播中扮演着重要的角色.”那么,病毒真的偏爱男性吗?有一个中学生学习小组,在自己封闭的社区进行无接触抽样问卷调查,收集到男、女患者各50个数据,统计如下:轻﹣中度感染重度(包括危重)总计男性患者20m x女性患者30n y总计5050100(1)求2×2列联表中的数据m,n,x,y的值;(2)能否有99.9%把握认为,新冠肺炎的感染程度和性别有关?(3)该学生实验小组打算从“轻﹣中度感染”的患者中按男女比例再抽取5人,追踪某种中药制剂的效果.然后从这5人中随机抽取3人进行每日的健康记录,求至少抽到2名女性患者的概率.附表及公式:K2=,n=a+b+c+d.P(K2≥k0)0.050.0250.0100.0050.001 k0 3.841 5.024 6.6357.87910.828【分析】(1)直接由题意可得m,n,x,y的值;(2)求出K2的值,结合临界值表得结论;(3)利用分层抽样可得在“轻﹣中度感染”的患者中抽取到的男女人数,再由枚举法写出基本事件总数,得到其中至少抽到2名女性患者的情况种数,再由古典概型概率计算公式求解.解:(1)由题意可得,m=30,n=20,x=50,y=50;(2)∵<10.828,∴没有99.9%把握认为,新冠肺炎的感染程度和性别有关;(3)由于在“轻﹣中度感染”的患者中,按男女比例2:3,设抽取的5人中3名女性患者用a,b,c表示,2名男性患者用D,E表示,则所有组合为:(D,E,a),(D,E,b),(D,E,c),(D,a,b),(D,a,c),(D,b,c),(E,a,b),(E,a,c),(E,b,c),(a,b,c)共10种可能的情况.其中至少抽到2名女性患者的情况有7种,则至少抽到2名女性患者的概率为.20.已知曲线C上的任意一点M到点F(0,1)的距离比到直线l:y=﹣2的距离少1,动点P在直线s:y=﹣1上,过点P作曲线C的两条切线PA,PB,其中A,B为切点.(1)求曲线C的方程;(2)判断直线AB是否能恒过定点?若能,求定点坐标;若不能,说明理由.【分析】(1)由已知得动点M到点F(0,1)的距离与到直线l:y=﹣1的距离相等,然后直接利用抛物线的定义求曲线C的方程;(2)设A(x1,y1),B(x2,y2),P(t,﹣1),利用导数求过点A与B的切线方程,可得点A(x1,y1),B(x2,y2)的坐标都满足,由此可得直线AB:y=,恒过抛物线的焦点F(0,1).解:(1)由已知得动点M到点F(0,1)的距离与到直线l:y=﹣1的距离相等,由抛物线的定义可知,曲线C为抛物线,焦点F(0,1),准线l:y=﹣1.∴曲线C的方程为x2=4y;(2)设A(x1,y1),B(x2,y2),P(t,﹣1),由x2=4y,即,得y.∴抛物线C在点A处的切线方程为,即.∵,∴,又点P(t,﹣1)在切线PA上,∴,①同理,②综合①②得,A(x1,y1),B(x2,y2)的坐标都满足.∴直线AB:y=,恒过抛物线的焦点F(0,1).21.已知函数f(x)=x2+(1﹣a)x﹣lnx.(1)当a>0时,求函数f(x)的极值;(2)当a<0时,求函数f(x)在上[,1]的最小值.【分析】(1)可求得f′(x)=ax+(1﹣a)﹣=,进一步分析知函数f(x)在(0,1)上为减函数,函数f(x)在(1+∞)上为增函数,可求函数f(x)的极值;(2)由(1)可得f′(x)=(x>0)⇒可得x1=﹣,x2=1,分﹣≥1,即﹣1≤a<0,<﹣<1,即﹣4<a<﹣1,当0<﹣≤,即≤﹣4时,三类讨论,分别求得其最小值,最后通过分段函数式表示即可.解:(1)函数f(x)的定义域为(0,+∞),f′(x)=ax+(1﹣a)﹣=…2分∵a>0,x>0,∴>0,f′(x)<0⇒0<x<1,函数f(x)在(0,1)上为减函数;f′(x)>0⇒x>1,函数f(x)在(1+∞)上为增函数;所以f(x)极小值=f(1)=1﹣,无极大值…5分(2)由(1)可得f′(x)=(x>0),∵a<0,由f′(x)=0,可得x1=﹣,x2=1…6分当﹣≥1,即﹣1≤a<0时,f′(x)≤0在x∈[,1]成立,f(x)在此区间[,1]上为减函数,所以f(x)min=f(1)=1﹣…7分当<﹣<1,即﹣4<a<﹣1时,x∈[,﹣],f′(x)<0;x∈(﹣,1),f′(x)>0;所以f(x)在[,﹣]为减函数,在(﹣,1)为增函数,所以f(x)min=f(﹣)=1﹣+ln(﹣)…9分当0<﹣≤,即a≤﹣4时,∵x∈[,1],f′(x)≥0,∴f(x)在[,1]上为增函数,∴f(x)min=f()=﹣a+2ln2…11分综上所述,f(x)min=…12分(二)选考题:共10分.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B铅笔在答题卡.上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)若a=﹣2,求曲线C与l的交点坐标;(2)过曲线C上任意一点P作与l夹角为45°的直线,交l于点A,且|PA|的最大值,求a的值.【分析】(1)直接利用参数方程极坐标方程和直角坐标方程之间的转换的应用求出结果.(2)利用直线和曲线的位置关系的应用建立关系,进一步点到直线的距离求出结果.解:(1)曲线C的极坐标方程为,整理得3ρ2+ρ2sin2θ=12,转换为直角坐标方程为.当a=﹣2时,直线l的参数方程为(t为参数),整理得,转换为直角坐标方程为x+2y+2=0.所以,解得或,所以交点坐标为(﹣2,0)和(1,).(2)曲线的直角坐标方程为x+2y﹣a=0,故曲线C上任意一点P()到直线的距离d==,则|PA|==,当a≥0时,|PA|的最大值为,解得a=1.当a<0时,|PA|的最大值为,解得a=﹣1.故a=1或﹣1.[选修4--5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)解不等式f(x)≤l;(2)记函数f(x)的最大值为s,若a+b+c=s(a,b,c>0),证明:a2b2+b2c2+c2a2≥3abc.【分析】(1)将函数f(x)化为分段函数的形式,再分类讨论解不等式即可;(2)易知a+b+c=3,利用基本不等式可得2(a2b2+b2c2+c2a2)≥2abc(a+b+c),由此得证.解:(1),当x≤﹣1时,﹣3≤1恒成立;当﹣1<x<2时,2x﹣1≤1,即x≤1,则﹣1<x≤1;当x≥2时,3≤1显然不成立.故不等式的解集为(﹣∞,1];(2)证明:由(1)知,s=3,于是a+b+c=3,由基本不等式可知(当且仅当a=c时取等号),(当且仅当a=b时取等号),(当且仅当c=b时取等号),上述三式相加可得,2(a2b2+b2c2+c2a2)≥2abc(a+b+c)(当且仅当a=b=c时取等号),∵a+b+c=3,∴a2b2+b2c2+c2a2≥3abc.。

相关文档
最新文档