概率的几个基本性质

合集下载

概率的基本性质

概率的基本性质
(2)从6名学生中选出4人参加数学竞赛, 共有15种可能情况;
(3)“A没被选中”包含下列5个基本事 件: (B,C,D,E ),(B,C,D,F ), (B,C,E,F ),(B,D,E,F ),
(C,D,E,F )
有关集合知识:
1、集合之间的包含关系:
A B
BA
2、集合之间的运算: (1)交集: A∩B
(2)投掷一颗骰子,掷出的点数不为3, 5.
5、互斥事件
若A∩B为不可能事件( A∩B = ),那么称事 件A与事件B互斥。
事件A与事件B互斥的含义是:这两个事件在任 何一次试验中都不会同时发生,可用图表示为:
A={出现4点} B={出现6点} M={出现的点数为偶数}
B
A
N={出现的点数为奇数}
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反),
(反,正,反),(反,反,正),(反,反,反)};
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反), (反,正,反),(反,反,正),(反,反,反)};
基本事件空间:所有基本事件构成的集合 称为基本事件空间。基本事件空间常用大 写希腊字母Ω表示。
例如,掷一枚硬币,观察落地后哪一 面向上,这个试验的基本事件空间就是 集合{正面向上,反面向上}。
即 Ω = {正面向上,反面向上}.
或简记为Ω ={正,反}.
掷一颗骰子,观察掷出的点数,这个事 件的基本事件空间是
解:(1)这个试验的基本事件空间是: Ω={(A,B,C,D ),(A,B,C,E ),(A,B,C,F ),
(A,B,D,E ),(A,B,D,F ),(A,B,E,F ),

高中数学必修二课件:概率的基本性质

高中数学必修二课件:概率的基本性质

一次购物 1至4件 5至8件

9至 12件
13至 16件
顾客数(人)
x
30
25
ቤተ መጻሕፍቲ ባይዱ
y
结算时间
1
1.5
2
2.5
(分钟/人)
已知这100位顾客中一次购物量超过8件的顾客占55%.
17件 及以上
10
3
①确定x,y的值,并求顾客一次购物的结算时间的平均值;
②求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
错解:因为P(A)=36=12,P(B)=36=12, 所以P(A∪B)=P(A)+P(B)=1. 错因分析:由于事件A与事件B不是互斥事件,更不是对立事件,因此 P(A∪B)=P(A)+P(B)不成立.因此解答此题应从“A∪B”这一事件出发求解. 答:因为A∪B包含4种结果,即出现1,2,3和5,所以P(A∪B)=46=23.
②由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小 明”为事件A′+C′,根据互斥事件的概率加法公式,得P(A′+C′)=P(A′) +P(C′)=0.28+0.08=0.36.
(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集
了在该超市购物的100名顾客的相关数据,如下表所示.
(2)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2, 3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的 编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖, 其余结果不中奖.
①求中二等奖的概率; ②求不中奖的概率.
【解析】 从五个小球中一次任意摸出两个小球,不同的结果有(0,1), (0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共 10种.记两个小球的编号之和为x.

概率知识点归纳整理总结

概率知识点归纳整理总结

概率知识点归纳整理总结概率基础知识1. 样本空间和事件概率论的基本概念是样本空间和事件。

样本空间是一个随机试验所有可能结果的集合,通常用Ω表示。

事件是样本空间的一个子集,表示随机试验的一些结果。

事件的概率描述了该事件发生的可能性有多大。

2. 概率的定义在样本空间Ω中,事件A包含n(A)个基本事件,概率P(A)定义为P(A)=n(A)/n(Ω),即事件A的发生可能性是A包含的基本事件数目与样本空间的基本事件数目之比。

3. 概率的性质概率具有以下几个性质:(1)非负性:对于任意事件A,有0≤P(A)≤1;(2)规范性:样本空间的概率为1,即P(Ω)=1;(3)可列可加性:若事件A1,A2,A3,...两两互斥,则P(A1∪A2∪A3∪...)=P(A1)+P(A2)+P(A3)+...。

4. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B),其定义为P(A|B)=P(A∩B)/P(B)。

5. 独立事件两个事件A和B称为独立事件,当且仅当P(A∩B)=P(A)P(B)。

6. 贝叶斯定理贝叶斯定理是用来计算逆概率的定理,它表示为P(A|B)=P(B|A)P(A)/P(B)。

概率的应用1. 排列与组合排列和组合是概率论的一个重要应用。

排列是指从n个不同元素中取出m个元素进行排列的种数,用P(n,m)表示,其公式为P(n,m)=n!/(n-m)!。

组合是指从n个不同元素中取出m个元素进行组合的种数,用C(n,m)表示,其公式为C(n,m)=n!/(m!(n-m)!)。

2. 事件的独立性在概率论中,独立性是一个重要的概念。

事件A和事件B称为独立事件,如果P(A∩B)=P(A)P(B),即事件A的发生与事件B的发生互不影响。

在实际应用中,很多情况下要求两个事件的独立性,以便于计算事情发生的可能性。

3. 随机变量随机变量是概率论中的一个重要概念,它是一个从样本空间到实数的映射。

随机变量可分为离散型和连续型两种。

概率的基本性质(经典)

概率的基本性质(经典)
一次硬币正面朝上的概率是0.498.
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 概 率
温故知新
当几个集合是有限集时,常用列举法列出集 合中的元素,求集合A∪B与A∩B中的元素个 数.A∩B中的元素个数即为集合A与B中____ 公共___元素的个数;而当A∩B=Ø时, A∪B中的元素个数即为两个集合中元素个数 __之和____;而当A∩B≠Ø时,A∪B中的元 素个数即为A、B中元素个数之和_____减去 __A∩B中的元素个数.本节要学习的互斥事 件和对立事件与集合之间的运算有着密切的 联系,学习中要仔细揣摩、认真体会
上 页
下 页
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 • 某班有50名同学,其中男女各25名,今有这个班的一个学 生在街上碰到一个同班同学,则下列结论正确的是( ) 概 • A.碰到异性同学比碰到同性同学的概率大 率 上 • B.碰到同性同学比碰到异性同学的概率大 页 • C.碰到同性同学和异性同学的概率相等 • D.碰到同性同学和异性同学的概率随机变化 下
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 概 率
被调查者不必告诉调查人员自己回答的是哪一个问题,只需要 回答“是”或“不是”,因为只有被调查者本人知道回答了 哪个问题,所以都会如实回答.如果被调查者中的600人 (学号从1到600)中有180人回答了“是”,由此可以估计 在这600人中闯过红灯的人数是( ) 上 页 A.30 B.60 C.120 D.150 下 [答案] B 页

概率的基本公理

概率的基本公理

概率的基本公理
概率的基本公理
概率是对不确定性所关注的某些现象所做出的可能性之间的关系的数学表示,因此它是科学研究中主要用于处理不确定性的重要理论工具,也是中国从古至今用于形成统计学思想的基础理论。

概率的传统理论基于以下几个基本公理:
(1)基本性质:概率是一个介于0与1之间的实数,它是一种反映可能性的大小,在实际中可以表示为一定范围内的实际发生概率;
(2)单事件概率:单一事件发生的概率一定是满足0小于等于P(A)小于等于1的简单实数;
(3)组合事件概率:如果事件A和事件B连接在一起,因此P(AB)代表他们同时发生的概率;
(4)对所有可能事件概率的和:在一组确定的可能事件中,所有可能事件的概率之和等于1。

概率是统计科学的重要理论基础,概率的基本公理也是中国多古至今科学研究中处理不精确性现象的重要工具。

传统的概率理论基于四个基本公理,它们基本上可以概括中国概率理论的核心思想。

3.1.3概率的几个基本性质

3.1.3概率的几个基本性质
2.甲,乙两人下棋,若和棋的概率是0.5,乙获胜的概率是0.3 求:(1)甲获胜的概率;(2)甲不输的概率。
解:(1)“甲获胜”是“和棋或乙获胜”的对立事件,因为“和棋 与“乙获胜”是互斥事件,所以 甲获胜的概率为:1-(0.5+0.3)=0.2 (2)设事件A={甲不输},B={和棋},C={甲获胜} 则A=B∪C,因为B,C是互斥事件,所以 P(A)=P(B)+P(C)=0.5+0.2=0.7
A A∩B B A B
A B
(4)若A B为不可能事件(A B=), 那么称事件A与事件B互斥。
(5)若A B为不可能事件,A B为必然事件, 那么称事件A与事件B互为对立事件。
1.给定下列命题,判断对错。 1 )互斥事件一定对立; 2 )对立事件一定互斥; 3 )互斥事件不一定对立;
(2)若事件A发生,则事件B一定发生,反之也成立, 则称这两个事件相等。
记:A=B
若B A,且A B,则称事件A与事件B相等。
(3)若某事件发生当且仅当事件发生A或事件B发生, 则称此事件为事件A与事件B的 并事件(或和事件)。记A B(或A+B)
B
A
A∪B
(4)若某事件 生 且 事件A生且事件 B 生, 此事件 事件A与事件B的交 事件(或 事件)。 记A B(或AB)
4) 若A B, 则 p(A) <P(B)
2) 概率的加法公式
( 互斥事件时同时发生的概率)
在掷骰子实验中,事件,A { 出现1 点 };B { 出现2点 };
C { 出现的点数小于3};
A B C=A∪B
P(C)=p(A∪B)=p(A)+p(B)=1/6+1/6=1/3 当事件A与B互斥时, A∪B发生的概率为 P(A∪B)=P(A)+P(B)

概率的基本概念与性质

概率的基本概念与性质

概率的基本概念与性质概率是数学中一个非常重要的概念,在我们日常生活和各个学科中都有广泛的应用。

本文将介绍概率的基本概念和其性质,以帮助读者对概率有更深入的了解。

一、概率的概念概率是描述事件发生可能性的数值,通常用一个介于0到1之间的数表示。

0表示不可能事件,1表示必然事件。

在概率理论中,把某个随机试验的所有可能结果构成的集合称为样本空间Ω,包含于样本空间Ω的每一个结果称为样本点。

设A是样本空间Ω中的一个事件,则A的概率P(A)是指事件A发生的可能性大小。

二、概率的性质1. 非负性:对于任意事件A,概率值P(A)大于等于0。

2. 规范性:对于样本空间Ω,其概率值为1,即P(Ω)=1。

3. 容斥性:对于两个事件A和B,概率值的和可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。

其中,P(A∩B)表示事件A和事件B同时发生的概率。

4. 加法性:对于两个互斥事件A和B(即事件A和B不可能同时发生),概率值的和可以表示为P(A∪B)=P(A)+P(B)。

5. 频率解释:概率可以通过重复试验的频率来估计。

当试验重复次数趋于无穷大时,某个事件发生的频率将接近其概率值。

三、计算概率的方法1. 古典概率:适用于每一个样本点发生的可能性相等的情况。

即P(A)=事件A包含的样本点数/样本空间Ω中的样本点数。

2. 几何概率:适用于具有几何结构的问题。

概率可以通过几何图形的面积、长度或体积来计算。

3. 统计概率:通过统计数据来计算概率,具体包括频率概率和条件概率。

四、条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。

条件概率可以通过求解P(A∩B)/P(B)得到。

五、独立事件两个事件A和B是独立的,当且仅当事件A的发生不依赖于事件B的发生。

对于独立事件,乘法公式可以表示为P(A∩B)=P(A)P(B)。

六、贝叶斯定理贝叶斯定理是用来计算反向概率,即在已知事件B发生的条件下,事件A发生的概率。

概率的基本概念与性质

概率的基本概念与性质

概率的基本概念与性质概率,是数学中一个重要的概念,用来描述随机事件发生的可能性大小。

它在各个领域都有广泛的应用,如统计学、经济学、物理学等。

本文将介绍概率的基本概念和性质,帮助读者更好地理解概率论的基础知识。

1. 概率的定义和表示方法概率是描述事物发生可能性的一个数值,通常用介于0和1之间的实数表示。

概率可以使用分数、小数或百分比来表示。

以事件A发生的概率为例,可以用P(A)或Pr(A)来表示。

2. 概率的性质(1) 非负性:对于任何事件A,其概率P(A)都大于等于0,即P(A)≥0。

(2) 可加性:对于任意的不相容事件(互斥事件)A和B,它们的概率可以相加,即P(A∪B) = P(A) + P(B)。

(3) 规范性:对于一定发生或一定不发生的事件,其概率分别为1和0,即P(S) = 1和P(∅) = 0,其中S代表样本空间,∅代表不可能事件。

3. 概率的计算方法(1) 古典概型:指的是所有可能的结果都是等可能发生的情况。

在古典概型中,事件A的概率等于事件A包含的有利结果数目与样本空间的大小之比,即P(A) = 有利结果数目 / 样本空间大小。

(2) 几何概型:指的是通过对空间的测量来计算概率。

例如,在计算一个点在一个平均分布的正方形区域中的概率时,可以用该点所在区域的面积与整个区域的面积之比。

(3) 统计概率:是通过观察和统计数据来计算概率。

统计概率常用于实际问题,根据大量数据的分析和推断得出概率值。

4. 概率的性质与公式(1) 加法规则:对于任意两个事件A和B,其概率可以通过加法规则计算,即P(A∪B) = P(A) + P(B) - P(A∩B)。

其中P(A∩B)表示事件A和B同时发生的概率。

(2) 乘法规则:对于相互独立的两个事件A和B,其概率可以通过乘法规则计算,即P(A∩B) = P(A) × P(B)。

注意,乘法规则只适用于独立事件。

(3) 条件概率:指在事件B发生的条件下,事件A发生的概率,表示为P(A|B)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以 甲获胜的概率为:1-(0.5+0.3)=0.2
(2)设事件A={甲不输},B={和棋},C={甲获胜} 则A=B∪C,因为B,C是 互斥事件,
所以 甲不输的概率:P(A)=P(B)+P(C)=0.5+0.2=0.7
小结
概率的基本性 质
0≤P(A) ≤1
必然事件的概率 为1
不可能事件的概率 为0
概率的加法公 式
对立事件计算公 式
概率的几个基本性 质
பைடு நூலகம்
概率的几个基本性质
(1)、对于任何事件的概率的范围是: 0≤P(A)≤1
其中不可能事件的概率是P(A)=0 必然事件的概率是P(A)=1
不可能事件与必然事件是一般事件的特 殊情况
思考 什么情况下两个事件 A 与 B 的并事件发生的概率, :会等于 事件 A 与事件 B 各自发生的概率之和? (2)概率的加法公式:
解: (1)因为C=AUB,且A与B不会同时发生,所以A与B是互斥事 件,根据概率的加法公式,得P(C)=P(A)+P(B)=0.5
(2)因为C与D是互斥事件,又由于 CUD 为必然事件,所以 C与D互为对立事件,所以P(D)=1-P(C)=0.5
练习: 1.如果某士兵射击一次,未中靶的概率为0.05,求中靶概率。
如果事件 A 与事件 B 互斥,则
P(A B) P(A) P(B)
特别地,如果事件 A 与事件 B 是互为对立事件 ,则
P(A) 1 P(B)
例.如果从不包括大小王的52张扑克牌中随机抽取一张,那么 取到红心( 事件A)的概率是1/4,取到方块(事件B)的概率是1/4。问:
(1)取到红色牌(事件C)的概率是多少? (2)取到黑色牌(事件D)的概率是多少?
解:设该士兵射击一次,“中靶”为事件A,“未中靶”为事件B, 则A与B互为对立事件,故P(A)=1-P(B)=1-0.05=0.95。
2.甲,乙两人下棋,若和棋的概率是0.5,乙获胜的概率是0.3 求:(1)甲获胜的概率;(2)甲不输的概率。
解:(1)“甲获胜”是“和棋或乙获胜”的对立事件,因为“和棋”与“乙 获胜”是互斥事件
相关文档
最新文档