最新93压力控制阀A
2024年起重信号司索工(建筑特殊工种)证考试题库

2024年起重信号司索工(建筑特殊工种)证考试题库1、【单选题】《安全生产法》所指的危险物品包括()。
(A )A、易燃易爆物品、危险化学品、放射性物品B、枪支弹药C、高压气瓶D、手持电动工具2、【单选题】下面属于压力控制阀的是()。
(D )A、节流阀B、调速阀C、换向阀D、溢流阀3、【单选题】不属于最常用的制动器类型的是()。
(C )A、带式制动器B、锥形制动器C、能耗制动器D、电磁制动器4、【单选题】不属于滑动轴承特点的是()。
(D )A、工作平稳B、工作可靠C、无噪声D、吸振能力差5、【单选题】二力平衡原理是指两个力()。
(D )A、大小相等,方向相同,作用在同一直线上B、大小相等,方向相同,不作用在同一直线上C、大小相等,方向相反,不作用在同一直线上D、大小相等,方向相反,作用在同一直线上6、【单选题】使两物体直接接触而又能产生一定相对运动的连接称为()。
( B )A、机械B、运动副C、机构D、机器7、【单选题】关于考核发证机关将撤销建筑施工特种作业人员资格证书的表述,正确的是()。
(D )A、依法不予延期B、持证人逾期未申请办理延期复核手续C、持证人死亡D、持证人弄虚作假骗取资格证书或者办理延期复核手续8、【单选题】凡在坠落高度基准面()米以上有可能坠落的高处进行的作业均称为高处作业。
(B )A、1B、2C、3D、49、【单选题】动臂式塔式起重机允许带载变幅,但载荷达到额定起重量的()及以上时严禁变幅。
(A )A、90%B、85%C、80%D、70%10、【单选题】千斤顶顶升过程中,其脱空距离应保持在()以内,以防造成事故。
( A )A、50mmB、60mmC、70mmD、80mm11、【单选题】千斤项有三种基本类型,其中不包括()。
(D )A、齿条式B、螺旋式C、液压式D、连杆式12、【单选题】卷扬机必须有良好的接地或接零装置,接地电阻不得大于()欧姆。
(D )A、4B、5C、8D、1013、【单选题】卸扣本体变形达原尺寸的时应报废。
2025年煤矿采煤机(掘进机)操作证考试题库及答案

2025年煤矿采煤机(掘进机)操作证考试题库及答案一.单项选择题1.采掘工作面及其他作业地点风流中瓦斯浓度达到 1.5%时,()停止工作,切断电源,撤出人员,进行处理。
(B)A、不应B、必须C、不一定2.采掘工作面风流中二氧化碳浓度达到()时,必须停止工作,撤出人员,查明原因,制定推论,进行处理。
(B)A、0.01B、0.015C、0.02D、0.0123.采煤工作面刮板输送机必须安设能发出停止和启动信号的装置,发出信号点的间距不得超过()。
(A)A、15mB、10mC、20m4.采煤机在割煤过程中要割直、割平,并严格控制(),防止出现工作面弯曲和台阶式的顶板和底板。
(C)A、截深B、速度C、采高5.有特殊的起升、变幅、回转机构的起重机,单独使用的指挥手势信号是:()。
最新解析。
(B)A、通用手势信号B、专用手势信号C、指挥吊运信号6.采煤机完好标准规定,牵引部导链装置齐全,磨损不大于()。
(D)A、2mmB、5mmC、8mmD、10mm7.采煤机截割部传动系统中()机械过载保护装置。
(A)A、有B、没有C、有的没有8.采煤机滚筒转速一般为()。
(B)A、<30r/minB、30至50r/minC、50至100r/min9.()只能用于在正常运行条件下不会产生电弧、火花和危险温度的设备上。
(B)A、隔爆型电气设备B、增安型电气设备C、本质安全型电气设备10.()在井下拆开、敲打、撞击矿灯。
(A)A、严禁B、可以C、矿灯有故障时才能11.上盘相对上升,下盘相对下降是()断层。
(B)A、正B、逆C、平推12.中厚煤层的厚度为()。
(B)A、1.3至4.0mB、1.3至3.5mC、2.0至3.5m13.使用有链牵引采煤机,在开机前,必须先喊话或发出(),防止因牵引链跳动伤人。
(A)A、信号B、命令C、指令14.停风区中瓦斯浓度或二氧化碳浓度超过()时,必须制定安全排瓦斯措施,报矿技术负责人批准。
(C)A、1.50%B、2.00%C、3.00%15.厚煤层的厚度为()。
2023年化工自动化控制仪表备考押题二卷合一带答案2

2023年化工自动化控制仪表备考押题二卷合一带答案(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.全能考点(共100题)1.【单选题】将压力油强制送入轴和轴承的配合间隙中,利用液体静压力支承载荷的一种滑动轴承叫()。
A、静压润滑轴承B、动压润滑轴承C、滚动轴承D、向心轴承参考答案:B2.【单选题】液化石油气钢瓶瓶阀的主体是用()制作的。
A、黄铜B、紫铜C、合金钢D、白铜参考答案:A3.【单选题】下列不属于分程控制系统特点的是()。
A、可以改善调节品质B、调节范围稳定不变C、提高系统的安全可靠性参考答案:B4.【判断题】电子式电动执行机构性能价格比越,这也是它大量使用的又一主要因素。
参考答案:√5.【判断题】《中华人民共和国特种设备安全法》规定,特种设备生产、经营、使用单位及其主要负责人对其生产、经营、使用的特种设备安全负责。
参考答案:√6.【判断题】超声波液位计安装时,探头与容器壁距离不能太近。
参考答案:√7.【单选题】阀门的基本参数不包括()。
A、公称直径B、公称压力C、衬里材料参考答案:C8.【单选题】施工升降机扶墙架连接螺栓()A、可以使用膨胀螺栓B、8.8级以上高强螺栓C、6.8级以上螺栓D、3.6-6.8级普通螺栓即可参考答案:B9.【单选题】在西门子S7系列PLC中,可以利用强制功能对()进行强制操作。
A、外设B、位存储器C、输入参考答案:C10.【单选题】高性能的高压变频调速装置的主电路开关器件采用。
A、快速恢复二极管B、绝缘栅双极晶体管C、电力晶体管D、功率场效应晶体管参考答案:B11.【单选题】管内穿线的工程量,应区别线路性质、导线材质、导线截面,以“()”为计算单位。
A、延长米B、米C、厘米D、分米参考答案:A12.【判断题】PLC的英文全称是ProgrammableLogicController,这说明它只能进行逻辑计算。
参考答案:×13.【多选题】人的不安全行为分为____。
第八课《压力控制阀》

工作原理: ⑴当作用在锥阀芯上的油液压力小于左腔的弹簧弹力时,先导阀口关闭,
19 19
金蓝领
减压阀
特点:与先导型溢流阀比较: 减压阀是出口压力控制,保证出口压力为定值;溢流阀是进口压力控制, 保证进口压力为定值。 减压阀阀口常开;溢流阀阀口常闭。 减压阀有单独的泄油口;溢流阀弹簧腔的泄漏油经阀体內流道內泄至出口。
6
金蓝领
直动式溢流阀
特点:
溢流流量增加时,弹簧附加压 缩量Δ X增加, 由 P= K(X0+ Δ X )/A可知, 阀前压力增加。流量到达额定 压力时,阀前压力最大,此压 力称调定压力。调定压力与开 启压力之间的差值称为调压偏 差。直动式溢流阀调压偏差较 大,压力稳定性和灵敏性差, 只适合低压小流量场合。
金蓝领
先导式溢流阀
应用:先导式溢流阀能实现直动式溢流阀所有的功能,除此之外还具有:
1、使泵卸荷:
金蓝领
先导式溢流阀
2、远程调压:只有溢流阀1调整压力高于远程调压阀2的调整压力时,远
程调压阀2才起作用。
金蓝领
减压阀
减压阀是利用液体流过缝隙产生压力降的原理,使出口压力低于进口压力的 压力控制阀。减压阀可分为定值减压阀、定比减压阀和定差减压阀三种。应 用最广的是定值减压阀,简称减压阀。按结构不同分为先导式和直动式两种。 下图为先导式减压阀工作原理图。它分为两部分,由先导阀调压,主阀减压。 压力油从进油口流入,从出油口流出,出油口的压力低于进油口。
7
金蓝领
直动式溢流阀
结构:
原始状态,阀芯在弹簧力的作用下处于最下端位置,进出油口隔断。进口 油液经阀芯径向孔、轴向孔作用在阀芯底端面,当液压力等于或大于弹簧 力时,阀芯上移,阀口开启,进口压力油经阀口溢回油箱。
2023年N1叉车司机试题第13套

1、【多选题】关于让车规定,下列说法正确的是:()。
( ACD )A、低速车让高速车B、重车让空车C、进厂车让出车厂车D、本单位车让外单位车2、【多选题】又车工作中的四禁止:()。
( ABCD )A、禁止行驶中突然换向;B、禁止用货叉开关库门;C、禁止用叉子撞击货件;D、禁止翻盘作业和利用惯性急速倾倒货物:3、【多选题】叉车之所以不能用货叉吊起货物是因为O( AB )A、叉车不具有吊车的稳定性B、叉车的货叉门架结构强度无法保证C、叉车的运行速度太快D、叉车的体积没有起重机大4、【多选题】叉车作业时,下列说法正确的是()( ABD )A、重量不明时不叉B、货物重心大于叉车的载荷中心距时不叉C、心情不好时不叉D、进叉时可能叉坏货物时不叉5、【多选题】叉车启动前,应确认()( AB )A、叉车四周无人B、前后换向杆中位C、货叉距地面300~400mD、货叉后倾6、【多选题】叉车工作中要保持三个距离:()。
( ABC )A、又车与站台坡边距离0. 5m以上;B、两车同方向行驶保持5m以上;C、走行过程中,货又升离地面300~400mm0D、转弯处行驶速度不得超过5km∕h°7、【多选题】叉车掉下站台坡边是又车常见的事故。
主要有以下几种原因:()。
( ABCD )A、靠站台坡边行走;倒车时未朝后看;B、幸艮避行人、会让车辆时车速太快躲得太急C、转向时车速太高、打方向盘太慢或地方太小根本就转不过来;D、地面上有小障碍物碰了转向轮,使叉车转向失控8、【多选题】叉车的传动方式一般有O ( ABC )A、机械传动B、液压力传动C、静压传动D、涡轮杆传动9、【多选题】按机动车事故类别分:( ABCD )A、车辆伤害事故B、物体打击事故C、高处坠落事故D、火灾、爆炸事故10、【多选题】液压系统中控制和调节装置的作用是()。
( ABD )A、控制液流的方向B、控制系统流量C、控制系统D、保证系统协调工作11、【多选题】液压系统实际流量:( ACD )A、比理论流量小B、比理论流量大C、与系统泄漏量有关D、与压力变化有关12、【多选题】理论上,在制动力最大而且恒定时车辆的制动距离()( AC )A、与速度有关与载荷无关B、与载荷有关与速度无关C、根据能量定律制动距离与制动前的初始速度平方成正比D、载荷越大制动距离越大13、【单选题】“注意安全”、“当心车辆”等这些适用于厂内交通运输的安全标志属于()。
气动控制阀-最新国标

目次1 范围 (3)2 规范性引用文件 (3)3 术语和定义 (3)4 产品分类及通用要求 (3)5 技术要求 (5)6 试验方法 (9)7 检验规则 (15)8 标志、包装和贮存 (16)附录A (资料性)公称通径对照表 (17)附录B (规范性)阀座泄漏量计算实例 (18)气动控制阀1 范围本标准规定了工业过程控制系统用气动控制阀的产品分类及通用要求、技术要求、试验方法、检验规则、标志、包装和贮存。
本标准适用于气动执行机构与阀组成的各类气动控制阀(以下简称控制阀)。
本标准中有关内容也适用于独立的气动执行机构和阀组件。
适用于放射性工作环境或其它危险工作环境等国家有特定要求工作条件的控制阀可参考本标准。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T 13384 机电产品包装通用技术条件GB/T 17213(所有部分)工业过程控制阀GB/T 26815 工业自动化仪表术语执行器术语GB/T 9124(所有部分)钢制管法兰GB/T 12224 钢制阀门一般要求GB/T 26640 阀门壳体最小壁厚尺寸要求规范IEC 60534 Industrial-process control valves3 术语和定义GB/T 17213及GB/T 26815确立的术语和定义适用于本标准。
4 产品分类及通用要求4.1 按控制阀动作方式分类a)直行程控制阀;b)角行程控制阀;4.2 按控制阀使用功能分类a)调节型;b)开关型;4.3 按控制阀作用方式分类a)气关式;b)气开式。
4.4 按控制阀执行机构型式分类a)薄膜式气动控制阀;b)活塞式气动控制阀。
注1:气动执行机构按结构分为:a)薄膜式气动执行机构;b)活塞式气动执行机构。
液压练习题(5)

液压练习题(3)1.液压泵将机械能转变为液压油的();而液压缸又将这能量转变为工作机构运动的机械能。
A 电能B 动压能C 机械能D 压力能2.在静止的液体内部某一深度的一个点,它所受到的压力是()。
A 向上的压力大于向下的压力B 向下的压力大于向上的压力C 各个方向的压力都相等3.机械效率值永远是()A 大于1B 小于1C 等于1D 负数4.在一条很长的管中流动的液体,其压力是()A 前大后小B 各处相等C 前小后大5.液压油流过不同截面积的通道时,各个截面积的()是与通道的截面积成反比的。
A 流量B 流速C 压力6.当液压缸的截面积一定时,液压缸(或活塞)的运动速度取决于进入液压缸的液体的()A 流速B 压力C 流量D 功率7.当液压缸活塞所受的外力一定时,活塞的截面积越大,其所受的压力就()A 越大B 越小C 不变8.液压传动系统中的功率等于()A 速度乘作用力B 压力乘流量C 作用力乘流量9.在管道中流动的液压油,其流量是()A 流速乘截面积B 压力乘作用力C 功率乘面积10.水压机的大活塞上所受的力,是小活塞受力的50倍,则大活塞截面积是小活塞截面积的()倍,小活塞对水的压力与通过水传给大活塞的压力比是1:1。
A 50B 100C 20011.水压机的大小活塞直径之比是10:1,那么,大活塞所受的力是小活塞所受力的100倍。
如果大活塞上升2mm,则小活塞被压下的距离是()mm。
A 200B 50C 10 D2012.拖动液压泵工作的电机功率应比液压泵输出功率()A 相等B 小些C 大些13.三类泵中容积效率最低的为()A 齿轮泵B 叶片泵C 柱塞泵14.液压马达是液压系统中的()A 动力元件 B 执行元件 C 控制元件15.液压泵的工作压力决定于()A 流量B 负载C 流速16.齿轮泵一般适用于()A 低压B 中压C 高压17.轴向柱塞泵一般适用于()A 低压B 中低压C 中高压18.YBP型单向限压式变量泵的工作压力小于限定压力时,泵的输出流量为()A 最大B 最小C 零19.叶片式液压马达的叶片安装是()A 径向B 向前倾斜C 向后倾斜20 某液压系统中,液压泵的额定压力为 2.5MPa,则该系统的工作压力应()2.5MPa。
萨克森丹佛斯 MCV116 压力控制执行器(PCP)阀说明书

ARMATURE PIVOTFLAPPERORIFICE ORIFICENOZZLE NOZZLEC1R C 2MAGNET MAGNETPressure Control Pilot (at null).1All rights reserved. Contents subject to change.2345MCV116 SPECIFICATIONSBLN 95-9033-5Type 1Type 2U /M A 11X X A 12X X A 13X X A 14X X A 15X X A 21X X A 22X XScale Factor Delta bar/mA .165 ± .014.101 ± .010.282 ± .028.378 ± .034.866 ± .082.107 ± .010.069 ± .007Delta psi/mA 2.4 ± .2 1.47 ± .15 4.1 ± .4 5.5 ± .512.6 ± 1.2 1.55 ± .15 1.00 ± .1Typical Supply bar 34.434.434.434.434.417.217.2 Pressure psi 500500500500500250250Coil Resistance ohms 23 (32)19/15.5 (25/22)69 (92)106 (145)643 (900)23 (32)19/15.5 (25/22)Coil Inductance henries 0.0780.062/0.0470.250.399 2.250.0780.062/0.047Test Current mA ± 85± 125± 42± 40± 13± 85± 125Saturation Current mA 250350*/175**15011050250350*/175**Minimum Pressure Delta bar ± 20.7± 20.7± 20.7± 20.7± 20.7± 11.0± 11.0 Output Range Delta psi ± 300± 300± 300± 300± 300± 160± 160Typical Null as Delta bar 0 ± 0.350 ± 0.350 ± 0.350 ± 0.350 ± 0.350 ± 0.350 ± 0.35 Shipped Delta psi 0 ± 50 ± 50 ± 50 ± 50 ± 50 ± 50 ± 5Pressure Null Shift %± 2± 2± 2± 2± 2± 1.5± 1.5Temperature Null Delta bar ± 0.28± 0.28± 0.28± 0.28± 0.28± 0.21± 0.21 Shift Delta psi ± 4± 4± 4± 4± 4± 3± 3C1/C2 Null Pressure at bar 11.0 ± .6811.0 ± .6811.0 ± .6811.0 ± .6811.0 ± .687.9 ± .347.9 ± .34 Typical Supply Pressure psi 160 ± 10160 ± 10160 ± 10160 ± 10160 ± 10115 ± 5115 ± 5Internal Leakage LPM < 3.44< 3.44< 3.44< 3.44< 3.44< 3.44< 3.44cis < 3.5< 3.5< 3.5< 3.5< 3.5< 3.5< 3.5Load Flow LPM > 0.73> 0.73> 0.73> 0.73> 0.73> 0.73> 0.73cis > 0.75> 0.75> 0.75> 0.75> 0.75> 0.75> 0.75Load Pressure LPM/bar > 0.285> 0.285> 0.285> 0.285> 0.285> 0.428> 0.428 Droop Slope cis/psi > 0.02> 0.02> 0.02> 0.02> 0.02> 0.03> 0.03Hysteresis %< 9< 9< 9< 9< 9< 7< 7Symmetry %< 10< 10< 10< 10< 10< 10< 10Linearity %< 5< 5< 5< 5< 5< 5< 5Threshold mA < 1< 1< 5< 0.2< 0.05< 1< 1 Resonant Frequency Hz > 300> 300> 300> 300> 300> 350> 350Frequency Response Hz (min.)150150150150150150150 with Current Driver Maximum Voltage Volts 7.561212307.56Maximum Current mA 37537517511546375375Type 3Type 4A 31X X A 32X X A 35X X F 31X X A 42X X F 42X X G 42X XScale Factor .079 ± .007.054 ± .005.428 ± .043.079 +/-.007.079 +/-.007.079 +/-.007.079 +/-.0071.15 ± .1.78 ± .08 6.2 ± .6 1.15 +/-.1 1.15 +/-.1 1.15 +/-.1 1.15 +/-.1Typical Supply 17.217.217.224242424 Pressure 250250250350350350350Coil Resistance 23 (32)19/15.5 (25/22)643 (900)23 (32)19/15.5 (25/22)19/15.5 (25/22)19/15.5 (25/22)Coil Inductance 0.0780.062/0.047 2.250.0780.062/0.0470.062/0.0470.062/0.047Test Current ± 85± 1251685858585Saturation Current 250350*/175**50250250/125250/125250/125Minimum Pressure ± 12.4± 12.4± 12.4 Output Range ± 180± 160± 180± 180± 180± 160± 160Typical Null as 0 ± 0.1380 ± 0.1380 ± 0.1380.1 ± 0.1380.1 ± 0.1380.1 ± 0.1380.1 ± 0.138 Shipped 0 ± 20 ± 20 ± 2 1.5 ± 2 4.5 ± 2 1.5 ± 2 1.5 ± 2Pressure Null Shift ± 1± 1± 1< 1< 1.5< 1.5< 1.5Temperature Null ± 0.14± 0.14± 0.140.140.210.210.21 Shift ± 2± 2± 22333C1/C2 Null Pressure at 3.8 ± .34 3.8 ± .34 3.8 ± .34 3.5-4.110.3-11.710.3-11.7 3.5-4.1 Typical Supply Pressure 55 ± 555 ± 555 ± 550-60120-160120-16060-80Internal Leakage < 2.46< 2.46< 2.46< 2.46< 3.44< 3.44< 3.44< 2.5< 2.5< 2.5< 2.5< 3.5< 3.5< 3.5Load Flow > 0.49> 0.49> 0.49> 0.49> 0.49> 0.49> 0.49> 0.5> 0.5> 0.5> 0.5> 0.5> 0.5> 0.5Load Pressure > 0.570> 0.570> 0.570> 0.570> 0.570> 0.570> 0.570 Droop Slope > 0.04> 0.04> 0.04> 0.04> 0.04> 0.04> 0.04Hysteresis < 7< 7< 7< 7< 7< 7< 7Symmetry < 10< 10< 10< 10< 10< 10< 10Linearity < 3 < 3< 3< 3< 3< 3< 3Threshold < 1 < 1< 1< 1< 1< 1< 1Resonant Frequency > 400> 400> 400> 400> 300> 300> 300Frequency Response 150150150150150150150 with Current Driver Maximum Voltage 7.56307.5666Maximum Current 37537546375375375375* Individual coils; **Coils in series; See Pressure Control Pilot Valve (PCP) Part Number Reference Guide, page 6,for difference between F42XX and G42XX.67SPECIFICATIONS (continued)AMBIENT OPERATING TEMPERATURE-40°—93°C (-40°—200°F)OIL TEMPERATURE-29°—107°C (-20°—225°F)OIL VISCOSITY40 SSU—1400 SSULIFE10,000 hours or 10,000,000 cycles minimum WEIGHT0.73 kg (1.6 lb)HYDRAULICOPERATING SUPPLY PRESSURE10.3—68.9 bar (150—1000 psi)OPERATING RETURN PRESSURELess than 13.8 bar (200 psi)BLN 95-9033-5FLUIDThe valve is designed for use with petroleum based hydraulic fluids. Other fluids may be used provided that compatibility with viton and fluorosilicone seals is main-tained.SYSTEM FILTRATIONThe system hydraulics will have a filtration rating of B 10or better.ELECTRICALPULSE WIDTH MODULATIONWhen using a pulse width modulated current input, do not exceed rated currents for single coil devices or the algebraic sum of the rated currents in coils A and B for dual coil devices. Pulse width modulated frequencies of greater than 200 Hz are recommended.WIRINGOptional wiring styles are available: pigtail, MS, Packard Weather Pack, Packard Metri-Pack, and Deutsch DT Series.The pigtail connector is 89 mm (3.5039 in) long and is either two or four wire.As with all PCP connectors, phasing is such that a positive voltage to either red wires causes a pressure rise at the C2 port.The MS connector, MS3102C14S-2P (Sauer-Danfoss part number K01314), has four pins, two of which (A and B) are used on single coil devices. See MS Connector Pin Orien-tation, page 8. For single and dual coil wiring schemes see Connection Diagram, page 8.The mating connector for MS connectors is part number K08106 (right angle).The mating connector for Weather Pack PCPs is part num-ber K03384 (four terminal) or K03383 (two terminal). The mating connector for Metri-Pack PCPs is part number K12812(four terminal) or K10552 (two terminal). For twin two-terminal PCPs, order two K03383 bag assemblies.Included in the Weather Pack and Metri-Pack bag assembly:2 (or 4): 14—16 gauge terminals 2 (or 4): 18—20 gauge terminals1: plastic housing2 (or 4): green cable seals (for small gauge wires)2 (or 4): gray cable seals (for medium gauge wires)2 (or 4): blue cable seals (for large gauge wires)To assemble the Weather Pack and Metri-Pack mating connector:1.Isolate the wires that extend from the command source to the PCP.2.Strip back the insulation 5.5 mm (2.21653 in) on these wires.3.Push a ribbed cable seal over each of the wires with the smaller diameter shoulder of the seals toward the wire tip. Select the seals that fit tightly over the wires. The distance from the tip of the wires of the first (nearest) rib should be 9.5 mm (.37401 in). Thus, the insulation should just protrude beyond the seal.4.Select the appropriate set of terminals for the gauge wire used. Place the wire into the socket so that the seal edge is pushed through and extends slightly beyond the circular tabs that hold it in place. Crimp with a Packard 12014254 crimp tool. See Connector Crimp (Metri-Pack 280 Series), page 8. The distance from the back of the tangs to the furthest rib may not exceed 19.5 mm (.7677 in) on the Weather-Pack connector,18 mm (.7087in) on the Metri-Pack connector.5.Insert the assembled wires into the back end (large hole) of the plastic housing. Push until the wires detent with an audible click, then pull back slightly to ensure proper seating. Observe the proper phasing of the wires when installing: black wire to “A”, red wire to “B”,black to “C” and red to “D” (red to “E” if Metri-Pack).6.Swing the holder down into the detented position to trap the wires in the housing.7.Plug the two connector halves together , see Connector Parts (Metri-Pack 280 Series), page 8.8Crimp location and distance from tang to third rib of Packard Weather-Pack Connector.Packard Weather-Pack interlocked connector halves with parts identified.BLN 95-9033-5CABLE SEALSSIDE "B"R ED B LA C K SHROUDCONNECTORSIDE "A"DOUBLE-PLUG SEAL TOWER CONNECTORPackard Metri-Pack connector halves with parts identi-Crimp location and distance from tang to third rib of Packard Metri-Pack Connector.CONNECTOR CRIMP (METRI-PACK 280 SERIES)CONNECTOR PARTS (METRI-PACK 280 SERIES)CRIMP18 mm MAX.FEMALEASSYSEALSMALECONNECTOR9DEUTSCH ASSEMBLY CONTACT INSERTION AND CONTACT REMOVALCONTACT INSERTION1.Grasp crimped contact approximately 25.4 mm (1 in)behind the contact barrel.2.Hold connector with rear grommet facing you.3.Push contact straight into connector grommet until a click is felt. A slight tug will confirm that it is properly locked in place.4.Once all contacts are in place, insert orange wedge with arrow pointing toward exterior locking mechanism. The orange wedge will snap into place. Rectangular wedges are not oriented. They may go in either way.Note: Use the same procedure for the receptacle and plug.CONTACT REMOVAL1.Remove orange wedge using needlenose pliers or ahook shaped wire to pull wedge straight out.2.To remove the contacts, gently pull wire backwards,while at the same time releasing the locking finger by moving it away from the contact with a screwdriver.3.Hold the rear seal in place, as removing the contact will displace the seal.DT SERIESCONTACT PART NUMBER 0460-202-161410462-201-161410460-215-161410462-209-16141SIZE & TYPE 16 PIN 16 SOC 16 PIN 16 SOCA MAX .821.759.821.757B MIN .066.066.076.076C MAX .103.103.103.103D MIN .250.250.250.250WIRE GAGE RANGE 16 and 1816 and 1814 and 1614 and 16RECOMMENDEDSTRIP LENGTH .250 to .312.250 to .312.250 to .312.250 to .312HAND CRIMP TOOL HDT-48-00HDT-48-00HDT-48-00HDT-48-00BLN 95-9033-510D C B ABLN 95-9033-5PCP MATING CONNECTORS2-pin Packard Weather-Pack Tower Mating Connector Kit: K03383Packard Crimping and Extracting Tools: 12014254and 120140124-pin Packard Weather-pack Tower Mating Connector Kit: K03384Packard Crimping and Extracting tools: 12014254and 12014012B AA DB C4-pin MSMating Connector Kit: K08106Wiring Assembly Tool:Soldering IronA B2-pin Packard Metri-Pack Female 280 Series Mating Connector Kit: K10552Packard Crimping and Extracting tools: (two crimp-ing tools required) 12085271/12085270 and 120944294-pin Packard Metri-Pack Female 150 Series Mating Connector Kit: K26500Packard Crimping and Extracting ToolsA B C D4-pin Deutsch Plug DT Series Mating Connector Kit: K23511Deutsch Crimping and Extracting Tools: HDT-48-00 and DT/RT112434-pin Packard Metri-Pack Female 150 Series Mating Connector Kit: K22254Packard Crimping and Extracting ToolsB A2-pin Packard Metri-Pack Female 150 Series Mating Connector Kit: K22569Packard Crimping and Extracting ToolsA B C D E4-pin Packard Metri-Pack Female 280 Series Mating Connector Kit: K12812Packard Crimping and Extracting toolsD C B AAPPLICATION (continued)Many controllers are set up to drive proportional solenoids through pulse width modulation (PWM). Sometimes the scheme is used with the field effect transistor (FET) outputs of DC2s or SUSMIC controllers. These controls send an oscillating pulse width modulated dc current to the coil. This scheme has the advantages of providing dither to the actua-tor and, in some cases, can simplify the electronics since they operate in a digital mode, potentially reducing heat output from the device.As with most things there are trade offs or unwanted side effects: Items 1 through 3 apply to all electrohydraulic actuators. Items 4 and 5 relate more specifically to PCPs.1.The pulsing current generates unwanted electromag-netic radiation, which can interfere with related devices.2.The actuators are generally responsive to current.PWM valve drivers are generally low impedance volt-age drives. As the coils heat up, the resistance changes (typically by as much as 50%), thus altering the re-sponse of the device. For a given PWM frequency and duty cycle, both peak and average current into the driven coil may strongly affect the coil's L/R (induc-tance/resistance) time constant, potentially reducing both accuracy and linearity. The effects vary consider-ably with valve type and with temperature and are quite different between the Sauer-Danfoss MCV116 and MCV110. PWM drivers often require "current feedback"to maintain sufficient accuracy as the temperature var-ies over the operating range.3.Some controllers are designed to diagnose shorts oropens in the output circuit. The PWM-induced voltage can affect some common detection schemes.4.In the case of the PCP, a PWM signal is like analternating current applied to the primary of a trans-former. A voltage is induced in the secondary coil proportional to the turns ratio of the coils less losses in the magnetic circuit. If the secondary coil is open circuited, there is no effect since no current flows, hence no magnetic field is generated. However, if current is allowed to flow in the secondary coil, it flows in a direction which will reduce the output of the actuator.5.Most electronic drivers will conduct current when backdriven with excessive voltages. One example is a drive that contains non-linear devices such as diodes or zener diodes for re-circulatory currents. The induced voltages may be sufficient to cause these devices to conduct, thereby causing current flow in the non-driven coil.In position control systems where the control drives toward null this generally is not a problem. However, in propel systems, especially dual path propel systems, the change in output velocity could be a severe limita-tion. In some cases filters can be designed to correct the problem. A limitation of filters is this adds a lag in the circuit which will adversely affect high response sys-tems. Also, it is impossible to design one filter to fit all applications.In summary, the ability to drive the Sauer-Danfoss PCP depends on many circumstances which must be understood and accounted for by the user.FREQUENTLY ASKED QUESTIONSThe following questions and answers cover those applica-tions that use the PCP as the pilot stage to a second stage. For example: Electrical Displacement Control (EDC) for Sauer-Danfoss Variable Pumps and Sauer-Danfoss Flow and Pressure Control Servovalves.1.Question: Is the PCP a 12 or 24 volt dc device (i.e.,direct battery voltage)?Answer: Do not apply 12 or 24 volts dc directly to the PCP for several reasons, the most important being the coil will be permanently damaged. And voltage levels beyond 3 volts dc are out of the control range. The exceptions are: (1) the low current (4-20 mA) models, which have a maximum voltage ratting of 36 V DC, and(2) when applying a PWM signal from an amplifier. 2.Question: Why are some PCP configurations singlecoil and some dual coil?Answer: The original design was a single coil, and the dualcoil design followed as the standard configuration.3.Question: When should either a dual coil or single coilbe specified?Answer: When uncertain, specify a dual coil. The second coil does not have to be used to be bi-directional when using a potentiometer type inputs. The dual coil configuration can simplify the switching logic when required. The one exception in which a dual coil is not offered are EDCs and Servovalves that have a current range of 4-20 mA.4.Question: When is it a must to use a dual coil?Answer: When using a Control Handle (MCH) that hasa circuit board built into the housing (e.g., MCHxxxLxxx),because the output is switched forward and reverse between two output terminals. This switched output current is approximately 0—3 volts. With this type of output scheme, use one coil for reverse and the other coil for forward. However, most MCH models have a voltage/current output based on a bridge circuit, which uses approximately a 6 volt reference on each of the two outputs terminals. As the MCH is moved between forward and reverse, the voltage swings up and down from 6 volts. Also, when using either an analog amplifier or a microcontroller both coils would be used to achieve bi-directional control.5.Question: Can the PCP alone be changed on an EDCto achieve 4-20 mA control?Answer: Simply changing the PCP is not a solution, because the second stage (i.e., EDC) is calibrated using different internal spring forces to match a specific high gain (psid/mA) PCP (MCV116A3501).6.Question: What is the purpose of having silicone oilinside the cover?Answer:The original PCP Valves design did not have silicone oil, but shortly thereafter it was added to all PCP models to reduce the effects of the environment. The loss of silicone oil to those PCP's that are used on the Servovalve (KVF models) may cause a loss in valve performance, and therefore it is recommended to re-place the silicone oil in the event it is removed or lost.See item 6 on page 13 for replacement kit.1114Note: The Deutsch electrical connectors are not shown. See Item 4, a change was made in January 2000 that increased the null access opening thread size from 1/4-28 to 3/8-24, therefore part number K00920 only fits those covers with a 1/4-28 thread size. See Item 5, the preferred part number K28475 includes the cover,The following steps are recommended when servicing those parts listed in the Service Parts List, page 13.Preferred service tools are:• Screw driver: TX 15 and TX 10• Solder: SN62• Needle nose pliers, small tip • Solder iron: electronic type • Multimeter• Cleaning solvent: Chemtronics 2000 ES 1601• Torque wrench: 0—25 in .lb (0—33 N .m)REPLACING COVER AND/OR ELECTRICAL CONNECTOR 1.Wipe down external surface to ensure that loose contaminants will not fall inside the housing.2.Place the valve in a firm position at 45° with the electrical connector tilted upwards. Pressure control pilot valves (PCP) built after 1988 are filled with a silicone oil. Locate and remove the four connector screws (see page 13,Item 8 if MS connector, or Item 10 if Packard connector).3.Hold the electrical connector and untwist wires by rotating the connector counterclockwise two turns while gently pulling away from the housing.4.Clean the solder connections inside connection of the electrical connector with degreaser. Unsolder the wires,noting which pin goes to which wire color (e.g., Pin A to black, Pin B to red, Pin C to brown, etc.). With the connector held firmly, place the solder iron against the base solder cup if MS, and pin if Packard, until the wires can be gently pulled away.5.The cover can now be removed and replaced if required.Be sure the PCP cover gasket is firmly seated into the cover base and is in good condition before cover is installed. Torque cover screws to 12—15 in .lb (16—20N .m).6.Verify that wire to pin connections are correct before soldering wires and the connector O-ring (see page 13,Item 7) is in place before soldering.7a.For the MS style connector, ensure that the cups havesufficient solder (approximately level). If additional solder is required, place solder iron against the base of the cup and add solder. While solder is still liquid, place wire in the cup, remove iron and let cool for several seconds while holding wire firmly.7b.For the Packard style connector, the wire should extendaround and contact the terminal post for at least 180° (1/2 wrap to a maximum of 270°). When ready to solder,heat the terminal and add solder, remove iron, and let cool for several seconds while holding wire firmly.8.After soldering, ensure that terminals and wires do not contact one another.SERVICE PARTS (continued)9.If silicone oil is to be added, do so at this step with the connector not yet attached to cover. Tilt cover upward and add 45 cc of oil from container. The container (see page 13, Item 6) holds enough for 3 fills.10. Before attaching the connector to the cover, rotateconnector clockwise two turns. This will bundle the wires together, finishing with the notch up when viewed from the outward side of the MS connector and lead wires down for Packard connector (see MS Connector Pin Orientation, page 8). Insert connector screws and torque to 8—10 in .lb (11—13 N .m).11. With a multimeter, check for proper coil resistancebetween terminals A and B, and between C and D if PCP is a dual coil.CUSTOMER SERVICEWhen ordering a MCV116 Pressure Control Pilot Valve refer to the table MCV116 Pressure Control Pilot (PCP) Valve Part Number Reference Guide, page 6.NORTH AMERICAORDER FROMSauer-Danfoss (US) CompanyCustomer Service Department3500 Annapolis Lane NorthMinneapolis, Minnesota 55447Phone: (763) 509-2084Fax: (763) 559-0108DEVICE REPAIRFor devices in need of repair, include a description of the problem, a copy of the purchase order and your name, address and telephone number.RETURN TOSauer-Danfoss (US) CompanyReturn Goods Department3500 Annapolis Lane NorthMinneapolis, Minnesota 55447EUROPEORDER FROMSauer-Danfoss (Neumünster) GmbH & Co. OHG Order Entry DepartmentPostfach 2460, D-24531 NeumünsterKrokamp 35, D24539 Neumünster, Germany Phone: +49 4321 871-0Fax: +49 4321 871 122。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
减压阀
减压阀是利用液流流过 缝隙产生压力损失,使 其出口压力低于进口压 力的压力控制阀。
按调节要求不同,有定 值减压阀,定差减压阀, 定比减压阀。其中定值 减压阀应用最广,又简 称减压阀。
p2
p1-p2 p1/p2
▪ 定值减压阀的结构原理
▪ 减压阀由压力先导阀和
主阀组成。出口压力油 引至主阀芯上腔和先导 阀前腔,当出口压力大 于减压阀的调定压力时, 先导阀开启,主阀芯上 移,减压缝隙关小,减 压阀才起减压作用且保 证出口压力为定值。
引出方式不同分内泄和外泄。
▪ 内控内泄
▪ 内控外泄
▪ 外控内泄 ▪ 外控外泄
▪ 顺序阀的四种结构形式及其图形符号
▪ 通过改变上盖或底盖的装配位置可得到内控外泄、 内控内泄、外控外泄、外控内泄四种结构类型。
溢流阀
串接在回油路
▪ 顺序阀的功用
▪ 内控外泄顺序阀与溢流阀非常相
象:阀口常闭,进口压力控制, 但是该阀出口油液要去工作,所 以有单独的泄油口。 内控外泄顺序阀用于多个执行元 件顺序动作。其进口压力先要达 到阀的调定压力,而出口压力取 决于负载。当负载压力高于阀的 调定压力时,进口压力几乎等于 出口压力,阀口全开;当负载压 力低于调定压力时,进口压力等 于调定压力,阀的开口一定。
量为额定值时,溢流阀的进口压力。
▪ 卸载压力:主阀上腔经遥控口直接接回油箱时,流经阀
的流量为额定值时,溢流阀的进口压力。
压力损失略高于卸载压力(卸载不经过先导阀口)。
▪ 溢流阀的动态特性
当溢流阀在溢流量发生由零至额定流量的阶 跃变化时,它的进口压力,迅速升高并超过额定 压力的调定值,然后逐步衰减到最终稳定压力, 从而完成其动态过渡过程。
▪ 图形符号
▪ 溢流阀的性能
▪ 与先导型溢流阀比较:
▪ 减压阀是出口压力控制,保证出口压力为定值;溢流阀 是进口压力控制,保证进口压力为定值。
▪ 减压阀阀口常开;溢流阀阀空口载常移闭动。:pa=0.03 pb=0
▪ 减压阀有单独的泄油口;不溢动流未阀夹弹紧簧:p腔a=的p+泄0漏.03油 pb=p 经阀体內流道內泄至出口不。动夹紧: pa=6 pb=3
▪ 压力流量特性: 溢流阀的进口压力随流量变化而波动的
性能;又称为启闭特性。
▪ (ps-pk)、(ps-pb)称为调压偏差,调压偏差小好 pb<pk ▪ nk=pk/ps 称为开启压力比, ▪ nb=pb/ps 称为闭合压力比,nk 、 nb大好。
▪ 压力损失: 当调压弹簧预压缩量等于零时,流经阀的流
93压力控制阀A
溢流阀
按结构形式分
直动型溢流阀 先导型溢流阀
▪ 溢流阀的性能
▪ 调压范围 : 在规定的范围内调节时,阀的输出压力能平
稳的升降,无突跳或迟滞现象。为改善高压溢流阀的调
节性能,往往通过更换四根刚度不同的弹簧0.6~8、 4~16、8~20、16~32MPa实现四级调压。
▪ 减压阀与溢流阀一样有遥控口。
▪ 减压阀用在液压系统中获得
压力低于系统压力的支油路 上,如夹紧回路、润滑回路
6Mp
3Mp
和控制回路。必须说明,减
压阀出口压力还与出口负载
有关,若负载压力低于调定 压力时,出口压力由负载决
0.03Mp
定,此时减压阀不起减压作
用。
顺序阀
▪ 顺序阀是一种利用压力控制阀口通断的压力阀。 ▪ 按控制油来源不同分内控和外控,按弹簧腔泄漏油
▪ 内控内泄顺序阀的图形符号和工作原理与溢流阀相同。多串
联在执行元件的回油路上,使回油具有一定压力,保证执行
元件运动平稳。如图示阀3作背压阀。
▪ 外控内泄顺序阀等同于二位二通阀,可作卸载阀,如双泵供
油回路中阀3是泵1的卸载阀。
▪ 外控外泄顺序阀可作液动开关和限速锁。如远控平衡阀可限
制重物下降的速度。
▪ 压力继电器的功用
▪ 如图所示,压力继电器用在顺
序动作回路中。当执行元件工
作压力达到压力继电器调定压
力时,压力继电器将发出电信
号,使电磁铁得电,换向阀换
向,从而实现两液压缸的顺序
动作。
启动按键
1Y
1K
→
3Y
2K
返回按键 4Y、1Y、3Y → 2Y
结束语
谢谢大家聆听!!!
20
压力继电器
▪ 压力继电器是一种将液压系统的压力
信号转换为电信号输出的元件。
▪ 其作用是实现执行元件的顺序控制或
安全保护。
▪ 按结构特点分为柱塞式、弹簧管式和
膜片式。图示为柱塞式压力继电器。 主要零件包括柱塞1、调节螺帽2和电 气微动开关3。压力油作用在柱塞下端 ,液压力直接与弹簧力比较。当液压 力大于或等于弹簧力时,柱塞向上移 压微动开关触头,接通或断开电气线 路。反之,微动开关触头复位。