巧用数形结合思想解题
巧用数形结合的方法解题

为( 一 1, 1 ) 。
4
=
例 3 设厂 ( ) 、 ( ) 分别是 定义在R上 的奇 函数 和偶 函数 , 当x < 0 时, 厂 ( ) g ( x ) + ) ( ) > 0 , 且 ( 一 3 ) 0 , 则不等式 ) ( ) < 0 的解集 为( )
①
思 路 方 法
巧 用数形 结合 的 去解 题
■ 张 爱 洁
摘 要: 本文阐述 了数形结合思想在 中学数学教 学 中的应用 ,通过实例体会数形结合在 函数 、定积 分、 复数及圆锥 曲线 中的应用 。 关键词 : 数形结合 发散思维 解题 新课程标准指出 : “ 教师应激 发学生学 习的积极 性, 向学 生提供充分从事数学活动的机会 , 帮助他们 在 自主探索和合作交流的过 程中真正理解 和掌握基 本 的数学知识与技能 、 数学思想和方法 , 获得广泛 的 数学活动经验 。 ” 不管是从新课程标准对“ 双基 ” 的要 求、 思维能力的要求及教学 内容 的特点 , 还是从 高考 题设计背景来看 , 数形结合 思想都是不可替代 的。 函 数这 一章 明确提 出 : 通过观察 图像 , 对 函数是否具有 某种性质 , 作 出一种猜想 , 然 后通过推理 的办法 , 证 明这种猜想的正确性 ,并指 出这是发现和解决 问题 的一种常用数 学方法 。 以“ 形” 的直观启迪 思路 , 导致 发现 ; 以“ 数” 的严谨表述来论证发现的正确 , 从而使 新教材把高中数学教学 引导到一个更高的境界 。著 名数学家华罗庚说 : “ 数 与形本是相倚依 ,怎能分做 ●, ● ■, 两边飞 数缺形时少直觉 , 形少数 时难入微 。 ” 他还风 趣地说 : “ 数形结合 百般好 , 割裂分家万事非。” 并亲 切地教导我们不要 得意忘“ 形” 。 数形结合包含“ 以形 助数” 和“ 以数辅形 ” 两个方面 , 其应用大致可 以分为 两种情形 :或者是借助形 的生动 和直观性来 阐明数 之间 的联 系 , 即以形作为手段 , 数 为 目的 , 比如应用 函数 图像来直观地说明函数的性 质 ;或者是借 助于 数 的精 确性和规范严 密性 来 阐明形 的某 些属性 , 即 以数作为手段 , 形作为 目的, 如应 用曲线 的方程来精 确地 阐明曲线 的几何性质。 解题经验告诉我们 , 当寻 找解题思路发生困难的时候 ,不妨从 数形结合 的观 点去探索 ; 当解题过程 的复杂运算使人望而生畏 时, 不妨从数形结合 的观点去开辟新路 ;当需 要经验的 正确性时 , 不妨从数形结合 的观点去验证 。 数形结合 的方法给数学 的解题带来很大的方便 ,下面通 过几 个数学实例来说 明它在教学 中的重要作用。 例1 已知 方程 s 一 3 x 一 1 一 m= 0 有 三个不 等实根 , 求m的取值范围。 分析 : 把方程 3 — 3 x 一 1 一 m= 0 有 三个不等实根铮方 程 , 一 3 一 1 = m有三个不等 实根 。令方程左边 为 ) , 右边为g ( x ) , 方程有 三个不 等实 根等价 于 函数厂 ( ) 与g ( x ) 的图像 有三个 不同交点 , 先用 导数 的知识画 出 函数 ) 的近似 图像 , 然 后平移 直线y = m, 易求 m 的取值范围为[ 一 3 , 1 ] 。 例2 实 系数一元 二次方 程 0 + 似+ 2 6 = 0 的一根 域 中的点 ( a , b ) 与点( 1 , 2 ) 的连线 的斜 率 , 易得结 果
“数形结合”巧计算

“数形结合”巧计算数形结合使“代数问题几何化,几何问题代数化”。
比如列方程解应用题时常画线段图、有理数用数轴上的点来表示等等,都是数形结合的典型例子。
对于一些较难的数学问题,采用由形思数、由数想形,结合具体问题,灵活进行数形转化,往往可使复杂问题简单化、抽象问题具体化。
下面就以举例谈谈“数形结合”解问题。
例如,求1+2+3+4+…+n的值,其中n是正整数.分析:对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对正整数n是奇数,还是偶数进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下.方案一:如图1,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n 个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n 的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为21)(+nn,即1+2+3+4+…+n=21)(+nn.图1方案二:设计图形如图2所示.图2因为组成此正方形的小圆圈共有n行,每行有n个,所以共有(n×n)个,即n2个.∴1+3+5+7+…+(2n-1)=n×n=n2.(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)【分析】这是一道通过材料阅读,从中得出“解题方法型”的试题;试题中渗透了运用“数形结合”的思想。
巧用数形结合解难题

( ,) , 1 2 时 要使 y< , 2只需使 l ≥ ( —1 即 a 2 o &2 2 ) , ≤ .
综上可知 , 当 1 。 2时 , 等 式 ( 一 1。 1 对 l∈ ( , ) < ≤ 不 z )< o & z 12
恒成立 ;
填空 中更显其优势. 下面通过举 例来说 明数形结 合思想
解题 方法 与技巧 HN XE J OU A KO ZO GU I XE CN A A
巧
用
数
形
结
合
解
难
题
青海黄 南 州 中学( 1 3 0 包永海 810 )
数形结合 , 实质是将抽象 的数 学语言 与直观的 图形 结合起来 , 使抽象思维和形象思维 结合起来 , 通过“ 以形 Nhomakorabea一
、
一
解 :‘ 。 . 一厂 z 是定义在 R上 的奇 函数 ,‘ ( , ) () . 点 0 o . 是其对称 中心. 。 f x 2 一 一厂( ) 厂 一 ) 即 又 . (4 ) 。 - z 一-( ,
- 1 z 一厂 1 ) .直 线 z 1 厂 +I ( ) (一z ,‘ . 一 是 一厂 z 的对 称 轴 , ()
z 一- 1 x , ) 厂 - )当一l ≤o时 ,() ( ≤ 厂 一一寺 , (.) 则厂86
( 任编辑 责
金
铃)
3 9
k x 3l c 1 ¨ 。 l
中学 教 学 参 考
解 题方 法与技 巧
x 12时 , E( ,) 不等式 ( 一1 oo z ) ̄lg x恒不成立
( ) . A. . 05 B. 0 5 一 . C. . 15 D. 1 5 一 .
巧用“数形结合”来解题

解析式为 y —x + 2 , 再由一 x + 2 >0解得 X <2 。 由题 意在坐标 系中画出该直线 ( 如 图所示 ) , 观察 图象 , 则“ 当 的 X <2时 Y >0 ” 显得非常直观。 即使 我们把条件 中的 B点坐标改 为( 1 3 3 , 1 3 ) , 其中 , I T I < 2 , n>0同样 可以得到 X <2 。 而如 果利 用 上 面代 数方 法解 不 等式 的 话, 很难想象有多少 同学能求准确 y = — 旦 x 一 — 兰 这个解析式 ,更不用谈 解对
而如果利用上面代数方法解不等式的话很难想象有多少同学能求准确ynm2x2nnm2x2n从这个例子我们可以看出若将数与形割裂开来不能有机结合渗透一味在数上埋头苦干虽有寥寥走到成功彼岸者但更多的是浅尝辄止望洋兴叹者
总第 7 3 0期
教海探航
巧 用“ 数形结合 ” 来解题
缪 亚 军
( L " r - 阴市暨阳中学 , 江 苏省 2 1 4 4 0 0 )
m - m -
—
、 / , 、 / i , 、 / 是 一个 三角形 的三条边 的长 , 求 这个 三角形 面积 。( 用含 m, n 的代 数式表示 ) 。我们 同样可 以 由勾股 定理联 想到利用上面 的构造方法 , 如 图构造 :
所以E F = 、 / m + n , B F = 、 / 4 m 2 + n , A B = 、 / m n
旦 x 一 — 兰 _ > n 0 这个不等式了。
Y J g _ +例子我们可以看 出, 若将 “ 数” 与“ 形” 割裂开来 , 不能有机 结合渗透, 一味在“ 数” 上埋头苦干 , 虽有寥寥“ 走到成功彼岸 ” 者, 但更
拓学生 的思维视野 , 培养他们解决问题的能力 。 位 富翁买进 的湖泊 和土地共有多少亩吗?( 如 图所示 ) 我原来是 利用海伦公式求得三角形面积 的, 因为湖泊都为正方形 , 参考文献 : [ 1 ] 漫谈 一次函数 的教 学, 中学数学教 学参考 , 2 0 0 7 . 1 2 A B = 、 / 1 8, B C = 、 / 2 6, A C = 、 / 2 0, 所以 AAB C周长的一半 [ 2 ] 中学数 学思想方法概论 , 广州暨南大学出版社 , 2 0 0 4 . 4 . s : 堕 0_ _ [ 3 ] 数学课程标 准解读 , 北京师范大学 出版社 , 2 0 0 2 . 5 s 一: 二 : 、 / ;
巧用数形结合思想求函数最值

巧用数形结合思想求函数最值六招破解函数最值及巧用数形结合求参数问题一、六招破解函数最值问题函数最值问题一直是高考的一个重要的热点问题,在高考中占有极其重要的地位.为了让大家能够更加系统、全面地掌握函数最值问题的解决方法,下面就其问题的常用解法,分类浅析如下:1.配方法配方法是求二次函数最值的基本方法,如函数F(x)=6z/(x)2+/7/(x)+c(qHO)的最值问题,可以考虑用配方法.[例 1]已知函数 =(eA—a)2+(e A—tz)2(tzeR, aHO),求函数 y 的最小值.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和-:角换元,我们可以根据具体问题及题目形式灵活选择换元的方法,以便将复杂的函数最值问题转化为简单的函数最值问题.如可用三角换元解决形如/+/=1及部分根式函数形式的最值问题.3・不等式法利用不等式法求解函数最值,主要是指运用基本不等式及其变形公式來解决函数最值问题的一-种方法.常常使用的基本不等式有以下几种:aIb#a|b。
er2ab(a, b 为实数),° ^y[ab(a0, b20), abW。
J 些艺(a, b为实数).14[例3]函数fix) =-+t^(O<x< 1)的最小值为・兀1X4.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种方法在高考屮是必考的,多在解答题中的某一问出现.[例4]已知函数»=xln x,则函数心)在也r+2](r>0)上的最小值为.5.导数法设函数兀Q在区间[a, b]上连续,在区间(a, b)内可导,则的在[a, b]上的最大值和最小值应为兀0在(d, b)内的各极值与», fib) 中的最大值和最小值.利用这种方法求函数最值的方法就是导数法.[例5]函数»=x3-3x+l在闭区间[—3,0]上的最大值,最小值分别是,•6.数形结合法数形结合法是指利用函数所表示的几何意义,借助几何方法及函数的图象求函数最值的…种常用的方法.这种方法借助儿何意义,以形助数,不仅可以简捷地解决问题,还可以避免诸多失误,是我们开阔思路、正确解题、提高能力的-种重要途径.[a,[例 6]对 a, bWR,记 max|d, b\=\i1 函数=max||x+l|, |x—2||(x£R)的最小值是.二、巧用数形结合妙解3类求参数问题通过以下三个方面体会数形结合思想的运用.1.通过基本函数模型及变式的图象求参数的取值范围或值|lg x|, OvxWlO,若a,b,c互不相等,[例1]已知函数fix)=<1—2^+6,兀>10,_!»=»=»,则abc的取值范围是(2•通过函数的零点与方程的解的相互关系求函数零点和方程的解及参数的范围[例2]已知mGR,函数/(x)=x2+2(m2+l)x+7,g(x)=-(2m2—m+2)x+m.(1)设函数p(x)=/U)+g(x)・如果p(x)=0在区间(1,5)内有解但无重根,求实数加的取值范围;d,总存在唯一非零实数b(bHa),使得/2(d)=/z(b)成立?若存在,求加的值;若不存在,请说明理由.3.通过圆或圆锥曲线的部分图形与函数图象的关系来求参数的范围[例3]如果函数y=l+p4—F(|x|W2)的图象与函数2)。
利用数形结合思想方法巧解题

∑ ++2 =_A 。 _ l / 2 =I _ A ' B T .
:
三 :
口2i +2
1
问题是每次延长多长的距离呢?计算发现 :
Q
口2 ‘
¨
34 ‘3 3。 √ ‘ 3
从 AAi 。2 延长到 Am , : 只要 A Am 一 2
J
 ̄-. pI n -
t i t2 +1
2彳l n * 一
使得 B 。 ,o2 ; A = AA =1
延 长 AA 到 A , 得 AA =a ; 02 使 2。 3
延 长 AA 到 A , - 6 ; 04 6/ A A = [  ̄
依 次下去 ,
延 到 2 使 Ⅲ: , , 长 。 1 得 :: 穹 … : + 2
则 /+ 胁. -2 A 2 1
t n/ A2 a i 。= =
= = 音 , 等= , 南
+ _ 2 0 )
延长 AA到 Ai , 厶4B 2 = … , 02 2 2使得 + 2 A 2 …, f 延长 AA 到 A 2使得 厶4 B 2 2 2 1 o 2 , + 2 A = ; + +
延 长 AA o 到 A : 使 得 A :+ :+, :A :=
A0 A + 2=A0 A2 + A2 A4 + A4 A6+ … + 2 2+ + … + ‘ ‘2
, i
A2A2 + 2
= + + … +
a2 - a+ l=
+0 , 3
O' n +1 2
=9 + -9 2 口 2 口 l a 2+.
又 A + 2 是锐角 , 则可记 Af B 2= … 2 2A 2 + ( =12, ,) , … ,. 1
数形结合巧解的有关数学问题

数形结合巧解的有关数学问题数形结合的思想方法是高中教学中最重要的思想方法之一,在每年的高考中必须要涉及的思想方法,它可使数量关系与几何图形巧妙地结合起来,“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,数形结合思想可以帮助我们迅速解决问题。
下面就几个问题巧用数形结合思想的方法来解决的问题供参考。
一、函数的零点问题在最近两年各地高考和模拟考试中,出现的频率很高,特别对于含参数函数的零点问题,转化为曲线图像问题,利用数形结合的方法来解决,显得简洁明了。
例1.(2010南京调研)设函数f(x)=x3-mx2+(m2-4)x,x ∈r,函数f(x)有三个互不相同的零点0,α,β,且α<β,若对任意的x∈[α,β,],都有f(x)≥f(1)恒成立,求实数的取值范围。
解:∵f(x)=x3-mx2+(m2-4)x,x∈r∴f′(x)=x2-2mx+(m2-4),令f′(x)=0,得 x=m-2或x=m+2且m-2<m+2当x∈(-∞,m-2)时,f′(x)>0,f(x)在(-∞,m-2)上是增函数;当x∈(m-2,m+2)时,f′(x)0,f(x)在(m+2,+∞)上是增函数.所以x=m-2,f(x)取极大值,x=m+2,f(x)取极小值.所以根据f(x)的单调性,可以把f(x)图像的趋势画出,有三种情况:(1)当α<β<0时,f(x)图像的趋势为由图像可知:f(α)=f(β)=0,f(1)=f(0)=0所以有f (1)>f(α)>f(β),与已知条件,若对任意的x∈[α,β],都有f(x)≥f(1)恒成立矛盾,此情况舍去;(2)当α<0<β和0<α<β这两种情况时,对于x∈[α,β],由图像可知,f(x)的最小值为f(m+2),已知条件,若对任意的x∈[α,β],都有f(x)≥f(1)恒成立必有α<1<β,所以要想使对任意的x∈[α,β],都有f(x)≥f(1)恒成立,一定有f(m+2)=f(1),即m+2=1,所以m=-1.解后反思:本题借助图像很直观地把函数本质展现出来,通过图像函数的一些特点和性质也暴露无遗,避免讨论很多问题,数形结合是高中四大数学思想方法之一,在每年的高考中必出现的内容,对小题解决起来可能更来得简洁,所以以后在解决数的问题时,不妨用形来解决,可能会带来意想不到的效果。
小学数学论文:巧用“数形结合”解决问题

“学”海无涯“画”作舟——巧用“数形结合”解决问题【内容摘要】 “数形结合”是一种重要的数学思想,在高年级数学教学中更是一种重要的解题策略。
运用“数形结合”有助于把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”使复杂问题简单化,抽象问题具体化,几何问题明显化,从而起到优化解题途径的目的。
“数形结合”不但能提高学生的数学兴趣,又能有效地利用形象化的思维延深学生抽象化的数学思维。
【关键词】 数形结合 小学数学 形象思维 抽象思维 【正文】曾在网上看到老师们在讨论:运用下图来说明“方程和等式”的关系,是不是渗透“数形结合”的思想。
因为我同存疑惑,于是就想对这早已流行的词汇进行进一步的了解。
1、利用“集合图”理解概念之间的关系不是渗透“数形结合”的思想方法。
如上例等式与方程的关系。
数学概念是数学大厦的基石,数学概念之间有着千丝万缕的联系,“画图”是学习数学概念的一种重要方法,这里老师运用“集合图”来帮助学生区分、理解概念之间的关系,类似案例还有“长方形和正方形的关系”、“质数合数及1的集合图”等等。
2、“有余数除法”教学时也不是渗透“数形结合的思想。
例如教学17÷4=4……1, 老师经常让学生用学具先动手操作分一分理解算理,再出示左下图借助“形”来理解算式中每个数字及运算符号的意义,建立“形”与“有余数除法”算式之间的联系,但这也不是真正意义上的“数形结合”。
3、(如右图)这一教学目的渗透的是“符号思想”,也不是“数形结合”的思想。
因为这里并不关注“图形”的几何特征,这里的“小正方形、小三角形、圆形”都只是表示未知量,渗透的是“符号思想”,可以理解为是X 的前身。
以上都不是数学意义上的“数形结合”。
“数的概念”缘于“数”,“数”源于“计数”。
在古代的各种各样的计数法中,都是以具体的“图形”来表示抽象的“数”,直到出现表示“数”的各种抽象符号,“数”才真正脱去了“形”的束缚,从而极大地拓展了人们对“数”的认识和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧用数形结合思想解题
发表时间:2016-11-07T16:03:11.857Z 来源:《教育学》2016年9月总第105期作者:陈永才[导读] 或运用几何知识通过对图形性质的研究,去解决数量关系。
内蒙古包头市六中014000
摘要:数与形巧妙结合,即根据数学问题的题设和结论之间的内在联系,既分析其数量关系又揭示其几何意义。
可运用代数知识、三角知识通过数量关系的讨论,去处理几何图形;或运用几何知识通过对图形性质的研究,去解决数量关系。
关键词:数形结合题设数量关系
数形结合是数学学科的一大基本思想,它与函数思想、方程思想紧密相连,是富有数学特色的信息转换。
它不仅是一种重要的解题方法,也是一种重要的思维方法。
所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系又揭示其几何意义,使数量关系和几何图形巧妙结合起来,并充分地利用这种结合,探求解决问题的思路。
一是运用代数知识、三角知识通过数量关系的讨论,去处理几何图形;二是运用几何知识通过对图形性质的研究,去解决数量关系。
下面通过具体的例子揭示数形结合的运用:例1:已知二次函数y=ax2+bx+c的图象如图所示,在下列结论中:(1)a+b+c<0,(2)a-b+c>0,(3)abc<0,(4)b=2a。
正确的个数是:()
A. 4
B. 3
C. 2
D. 1
解:从图形上看,抛物线开口向下,所以得出a<0;由抛物线与y轴的交点在正半轴,所以得出c>0;由抛物线的顶点的横坐标为-1,即-b/2a=-1,得b=2a,所以得出abc>0。
当x=-1时,y>0,即a-b+c>0;当x=1时,y>0,即a+b+c<0。
例2:点A(a,b)、B(a-1,c)均在函数y=1/x的图象上,若a<0,则b____c。
(添“>”或“=”或“<”)解:如图,函数y=1/x的图象在每一象限内y随x的增大而减小。
∵a-1<a<0,∴b<c。
例3:a为何值时,不等式a≤x2+ax+5≥4恰好有一个解?
分析:此题若采用解一元二次不等式的常规解法相当麻烦,但如果能从y=x2+ax+5的图象入手考虑,问题就简单多了。
解:如图,y=x2+ax+5是开口向上的抛物线,如果抛物线的顶点在直线y=4 的下方,则原不等式有无穷多个解;如果此抛物线的顶点在直线y=4的上方,则原不等式无解;当且仅当抛物线的顶点落在直线y=4上时,则原不等式恰好有一个解。
抛物线的顶点为(- ,5- ),故当5- =4,即a=2或a=-2时,有一解。
例4:不等式log2(-x)<x+1的解集是____。
分析:此不等式没有常规解法,只有把不等式两边看成两个函数,通过图象的比较求解。
解:令y=log2(-x)、y=x+1在同一直角坐标系中,作出这两个函数的图象,我们发现两个图象的交点是(-1,0),在(-1,0)的右侧y=log2(-x)的图象在y=x+1的图象的下方,即log2(-x)<x+1的解是x>-1。
例5:若方程1g(-x2+3x-m,=1g(3-x)在x∈(0,3)内有唯一解,求实数m的取值范围。
分析:将对数方程进行等价变形,转化为一元二次方程在某个范围内有实解的问题,再利用二次函数的图像进行解决。
解:原方程变形为,即:。
设曲线y1=(x-2)2,x∈(0,3)和直线y2=1-m,图像如图所示。
由图可知:①当1-m=0时,有唯一解,m-1。
②当1≤1-m<4时,有唯一解,即-3<m≤0。
∴m=1或-3<m≤0。
此题也可设曲线y1=-(x-2)2+1,x∈(0,3)和直线y2=m后画出图像求解。
一般地,方程的解、不等式的解集、函数的性质等进行讨论时,可以借助于函数的图像直观解决,简单明了。
此题也可用代数方法来讨论方程的解的情况,还可用分离参数法来求(也注意结合图像分析只一个x值)。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
在上面的例子中,我们不难发现,“数”与“形”这两块数学领域的基石巧妙地结合在一起,在解题的同时,又有一种创造性的美感。
在选择题、填空题中运用数形结合往往事半功倍。
当然,在我们的学习中也用这种思想去分析、讨论,会更好地理解、掌握数学教材的知识点,建立形象的知识体系,达到融会贯通的意境。