初二_二次根式计算练习200题

合集下载

【初二数学】二次根式练习题(共4页)

【初二数学】二次根式练习题(共4页)

二次根式练习题(1)____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( ) A .m≤3 B .m <3 C .m≥3 D .m >32.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个 3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个5.化简二次根式352⨯-)(得 ( ) A .35- B .35 C .35± D .306.对于二次根式92+x ,以下说法不正确的是 ( ) A .它是一个正数 B .是一个无理数 C .是最简二次根式 D .它的最小值是3 7.把aba 123分母有理化后得 ( )A .b 4B .b 2C .b 21D . b b 2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:ab ab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义. 13.比较大小:23-______32-.14.=⋅baa b 182____________;=-222425__________. 15.计算:=⋅b a 10253___________.16.计算:2216acb =_________________. 17.当a=3时,则=+215a ___________.18.若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -. 20.(12分)计算:⑴))((36163--⋅-; ⑵63312⋅⋅; ⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-. 21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..;⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式:⑴27121352722-; ⑵ba c abc 4322-.23.(6分)已知:2420-=x ,求221xx +的值.参考答案: 一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A . 二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3. 三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角。

二次根式的计算200 题

二次根式的计算200 题

1
√6
÷
3
√2
.
1
6.计算:√72 ÷ 3√2 × √2 .
7.计算:√18 × √2.
2
8.计算:√ × √12.
3
1
2
9.计算:√45 ÷ √ × √2 .
被开方数中不含能开得尽方的因数或因式)
2.合并
将同类二次根式进行合并
易错总结:
① 不是最简二次根式的要化成最简二次根式
② 去括号时括号外如果是负号括号里的符号要变号
③ 注意同类二次根式要合并
例题解析:
1
1
3
3√18 − √32 + 4√ + √−8.
8
2
1
解:原式= 3 × 3√2 − × 4√2 + 4 ×
4

3
38.计算:(√48 − 4√ ) − (3√ − 2√0.5).
39.计算:√8 + 2√3 − (√27 − √2).
2
1
1
40.计算:√125 + 3√ − √24 + 3√ .
27
5
4
\ 5 /
3
1


41.计算: √4 + 2√ − √ + 2√ .
2

2
9
1
1
1
42.计算:(√48 − 4√8) − (3√3 − 2 √8).
3
\ 4 /
1
1
32.计算:3√5 + 2√ − √20 − √32.
2
2
33.计算:√18 − √50 − √8.
1
34.计算:√ + √24 − √600.

八年级数学二次根式计算题

八年级数学二次根式计算题

八年级数学二次根式计算题
一、简单的二次根式化简计算
1. 计算:公式
解析:
首先将被开方数进行分解因数,公式。

根据二次根式的性质公式,则公式。

因为公式,所以公式。

2. 计算:公式
解析:
先分别化简两个二次根式。

对于公式,公式,所以公式。

对于公式,公式,所以公式。

则公式。

二、二次根式的乘除运算
1. 计算:公式
根据二次根式乘法法则公式。

所以公式。

再进一步化简,公式,则公式。

2. 计算:公式
解析:
根据二次根式除法法则公式。

所以公式。

三、二次根式的混合运算
1. 计算:公式
解析:
这是一个平方差公式的形式公式,这里公式,公式。

所以公式。

2. 计算:公式
先分别化简各项。

公式(前面已计算)。

对于公式,公式,所以公式。

对于公式,根据公式,则公式。

所以原式公式。

二次根式计算专题训练(附答案)

二次根式计算专题训练(附答案)

二次根式计算专题训练一、解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()-2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣| (2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)?(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2?.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==………回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()=;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共30小题)1.计算:(1)+= 2+5= 7;(2)(+)+(﹣= 4+2+2﹣= 6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2 =1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)= 2﹣4×﹣+2= +(3)(x﹣3)(3﹣x)﹣(x﹣2)2 =﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣133.计算化简:(1)++= 2+3+2= 5+2;(2)2﹣6+3= 2×2﹣6×+3×4= 144.计算(1)+﹣= 2+4﹣2= 6﹣2.(2)÷×= 2÷3×3= 2.5.计算:(1)×+3×2= 7+30= 37(2)2﹣6+3= 4﹣2+12= 146.计算:(1)()2﹣20+|﹣| = 3﹣1+=(2)(﹣)×=(3﹣)×= 24(3)2﹣3+= 4﹣12+5=﹣8+5(4)(7+4)(2﹣)2+(2+)(2﹣)=(2+)2(2﹣)2+(2+)(2﹣)= 1+1 = 27.计算(1)?(a≥0)= = 6a(2)÷= =(3)+﹣﹣= 2+3﹣2﹣4= 2﹣3(4)(3+)(﹣)= 3﹣3+2﹣5=﹣2﹣8.计算:(1)+﹣=+3﹣2=2;(2)3+(﹣)+÷=+﹣2+=.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+)+(1+)2 =1﹣5+1+2+5 =2+2.10.计算:(1)﹣4+=3﹣2+=2;(2)+2﹣(﹣)=2+2﹣3+=3﹣;(3)(2+)(2﹣)=12﹣6 =6;(4)+﹣(﹣1)0 =+1+3﹣1 =4.11.计算:(1)(3+﹣4)÷=(9+﹣2)÷4=8÷4=2;(2)+9﹣2x2?=4+3﹣2x2×=7﹣2=5.12.计算:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2 =49﹣48﹣(45+1﹣6)=﹣45+6.13.计算题(1)××===2×3×5 =30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5)=4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.14.已知:a=,b=,求a2+3ab+b2的值.解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab =17.15.已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式性质的应用当a≥0时,=a,当a≤0时,=﹣a.17.计算:(1)9+5﹣3= 9+10﹣12= 7;(2)2= 2×2×2×= ;(3)()2016(﹣)2015.=[(+)(﹣)]2015?(+)=(5﹣6)2015?(+)=﹣(+)=﹣﹣.18.计算:.解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.19.已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知:a、b、c是△ABC的三边长,化简.【解】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣|x﹣5|.解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5| =(x﹣1)﹣(5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;)(2)原式=+++…+=(﹣1).23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)计算:(++…+)×()解:原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12 = 2016﹣1 = 2015.24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()=1;(3)请利用上面的规律及解法计算:(+++…+)().=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1 =2016.25.计算:(1)6﹣2﹣3= 6﹣5= 6﹣;(2)4+﹣+4= 4+3﹣2+4= 7+2.26.计算(1)|﹣2|﹣+2= 2﹣﹣2+2= ;(2)﹣×+= ﹣×5+= ﹣1+=﹣.27.计算.=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.28.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(2﹣1)(2+1)﹣(1﹣2)2 = 12﹣1﹣1+4﹣12 = 4﹣2.29.计算下列各题.(1)(﹣)×+3= ﹣+=6﹣6+=6﹣5;(2)﹣×= +1﹣= 2+1﹣2.30.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

八年级初二数学二次根式练习题及答案

八年级初二数学二次根式练习题及答案

八年级初二数学二次根式练习题及答案一、选择题1.下列计算正确的是()A.1(-5),= - 5 B,历=2yD.2.(若小="历=b,则血石的值用。

、。

可以表示为A.)a + bIo-b-aB. ----10C.ahToD.3.若。

<2, 化简— 3=A.4.a-5B.下列计算正确的为(5-a ).C. \-aD. -\-a A. C.5/6+5/?-2D.V6 2 "V5.若实数m、n满足等式M-2| + QT = O,且m、n恰好是等腰△A5C的两条边的边长,则的周长(A.6.12 B.A.下列计算正确的是(^2+y/3=y/5 B.)10)5/8=472C.C.D.D.7.下列根式中,与J?是同类二次根式的是(A. 712 C. D.8.如图,在矩形488中无重叠放入而积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的而枳为(CBA.C.9.A.(8 -46 ) (16-873 )cmcmB. (4 - 25/3)cm1D. ( - 12+8 书)cm下列计算正确的是(小+立=小 B.)2 + >f2=2y/2 C. 276-75 = 1 D・瓜一五=0A,-305/6 B. C. — 185/6 — 2 D. 011.实数a, b在数轴上的位置如图所示,则化简)2 - Jq.b )2+b的结果是().a , . . b” ......... 1 ■..... . J ----------- ―・1一,-2-10123A. 1B. b+1C. 2aD. 1 -2a12.如果实数x,)‘满足々7=—冲,4,那么点(乂),)在()A.第一象限B.第二象限C.第一象限或坐标轴上D.第二象限或坐标轴上二、填空题13.比较实数的大小乂1)一/,—: (2) =2 114.使函数丁 =2kl + 三二一有意义的自变量x的取值范围为15.观察下列等式:第1 个等式:a!=-j—^ = >/2-1,第2个等式:1 「第3个等式:a3=7『=2-JJ, 第4个等式:按上述规律,回答以下问题:⑴请写出第n个等式:an=.(2)ai+&2+a3+…+an二16.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“「”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:JI京 +疯石=?则图2所示题目(字母代表正数)翻译为,计算结果为.图1 图24036 17 .已知整数x , V 满足一/一 ■…,则),= Jx + 2017 - Jx-201918 .计算:(# + /产】_6产6= .19 .化简:-,A =-20 .已知x = 2-JJ ,则/一4工一3的值为.53 l【答案】去/T【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算 加减法.【详解】内帚-唱-2 + 3宿考唱= 2x/3+(>/3 + l)-->/3-2 + (3x2) 3=2。

8年级二次根式计算题450道

8年级二次根式计算题450道

8年级二次根式计算题450道①5√8-2√32+√50=5*3√2-2*4√2+5√2=√2(15-8+5)=12√2②√6-√3/2-√2/3=√6-√6/2-√6/3=√6/6③(√45+√27)-(√4/3+√125)=(3√5+3√3)-(2√3/3+5√5)=-2√5+7√5/3④(√4a-√50b)-2(√b/2+√9a)=(2√a-5√2b)-2(√2b/2+3√a)=-4√a-6√2b⑤√4x*(√3x/2-√x/6)=2√x(√6x/2-√6x/6)=2√x*(√6x/3)=2/3*|x|*√6⑥(x√y-y√x)÷√xy=x√y÷√xy-y√x÷√xy=√x-√y⑦(3√7+2√3)(2√3-3√7)=(2√3)^2-(3√7)^2=12-63=-51⑧(√32-3√3)(4√2+√27)=(4√2-3√3)(4√2+3√3)=(4√2)^2-(3√3)^2=32-27=5⑨(3√6-√4)²=(3√6)^2-2*3√6*√4+(√4)^2=54-12√6+4=58-12√6⑩(1+√2-√3)(1-√2+√3)=[1+(√2-√3)][1-(√2-√3)]=1-(√2-√3)^2=1-(2+3+2√6)=-4-2√6①5√8-2√32+√50 =5*3√2-2*4√2+5√2 =√2(15-8+5) =12√2 ②√6-√3/2-√2/3 =√6-√6/2-√6/3 =√6/6 ③(√45+√27)-(√4/3+√125) =(3√5+3√3)-(2√3/3+5√5)=-2√5+7√5/3 ④(√4a-√50b)-2(√b/2+√9a) =(2√a-5√2b)-2(√2b/2+3√a) =-4√a-6√2b⑤√4x*(√3x/2-√x/6) =2√x(√6x/2-√6x/6) =2√x*(√6x/3) =2/3*|x|*√6 ⑥(x√y-y√x)÷√xy =x√y÷√xy-y√x÷√xy =√x-√y ⑦(3√7+2√3)(2√3-3√7) =(2√3)^2-(3√7)^2 =12-63 =-51⑧(√32-3√3)(4√2+√27) =(4√2-3√3)(4√2+3√3) =(4√2)^2-(3√3)^2 =32-27 =5⑨(3√6-√4)2 =(3√6)^2-2*3√6*√4+(√4)^2 =54-12√6+4 =58-12√6 ⑩(1+√2-√3)(1-√2+√3)=[1+(√2-√3)][1-(√2-√3)] =1-(√2-√3)^2 =1-(2+3+2√6) =-4-2√6二次根式计算题30道带答案1/6√1又3/5×(-5√3又√3/5)=1/6√(8/5)×(-5/3√(3/5)=-5/18√(24/25)=-5/18×2/5√6=-1/9√6(2)√8/a×√2a/b=√(8/a×2a/b)=√(16/b)=4/b(√b)(3)√2x乘以√2y乘以√x=√(2x*2y*x)=2x√y(4)2√a÷4√b=√a/2√b=1/2b√ab(5)5√xy÷√5x^3=5√(xy/5x³)=1/x√5y(6)√x-y÷√x+y=1/(x+y)√(x²-y²)(7)√x(x+y)÷√xy^2/x+y(x>0,y>0)=√[x(x+y)÷xy²/(x+y)]=(x+y)/y(8)√xy乘以√6x÷√3y=√6x²y÷√3y=x√2(9)(√mn-√m/n)÷√m/n(n>0)=√mn÷m/n-√m/n÷m/n=n-1(10)√3/8-(-3/4√27/2+3√1/6)=1/4√6+3/8√6-1/2√6=1/8√6(11)2/3√9x+6√x/4-2x√1/x=2√3x+3/2√x-2√x=5/2√x(12)2/a√4a+√1/a-2a√1/a^3=1/a√a+1/a√a-2/a√a=0(13)√0.2m+1/m√5m^3-m√125/m=1/5√5m+√5m-5√5m=-19/5√5m(14)√a+b/a-b-√a-b/a+b-√1/a^2-b^2(a>b>0)=1/(a-b)√(a²-b²)-1/(a+b)√(a²-b²)-1/(a²-b²)√(a²-b²) =(a+b-a+b-1)/(a²-b²)√(a²-b²)=(2b+1)/(a²-b²)√(a²-b²)解不等式(15)2x+√32<x+√22x-x<√2-4√2x<-3√216)√3/8-(-3/4√27/2+3√1/6)=1/2√3/2 + 9/4√3/2 - 1/2√6=1/4√6 + 9/8√6 - 1/2√6=7/8√6(17)√0.2m+1/m√5m^3-m√125/m=√1/5*m + 1/m√5m*m^2 - m√25*5m/m^2=1/5√5m+√5m-5√5m=-19/5√5m(18)(√45+√27)+(√1又1/3-√125)=3√5+3√3 + √4/3-5√5=3√3 + 2/3√3 + 3√5 - 5√5=5√3 -2√5(19)2/3√9x+6√x/4-2x√1/x=2√x+3√x-2√x=3√x20 √40÷√5=√8*√5÷√5=√8=2√221 √32/√2=√16*√2/√2=√16=422 √4/5÷√2/15=√4/5*√15/2=√(4/5*15/2)=√623 2√a^3b/√ab=2√a²√ab/√ab=2√a²=2|a|(24)√18-√32+√2=√2×9-√4×4×2+√2=3√2-4√2+√2=0(25)√75-√54+√96-√108=√5×5×3-√6×3×3+√6×4×4-√3×6×6=5√3-3√6+4√6-6√3=√6-√3=√3(√2-1)(26)(√45+√18)-(√8-√125)=√5×3×3+√2×3×3-√2×2×2+√5×5×5=3√5+3√2-3√2+5√5=8√5(27)½(√2+√3)-¾(√2+√27)=¼(2√2+2√3-√2-√27)此处通分,分子不变,分母都分别乘进去了,因为不好写就省略了=¼(2√2+2√3-√2-√3×3×3)=¼(√2-√3)(28)¼根号下18ab×(-2/b根号下6a²/a)=1/4×(-2/b)×√(18ab×6a²/a)=-1/(2b)×3a√(2b)=-3a/(2b) √(2b)(29)根号下50a²b(a<0,b>0)=√(25a²×2b)=-5a√(2b)(30)根号18×3/2根号20×(-1/3根号15)=-1/3×3/2×√(18×20×15)=-1/2×√5400=-1/2×30√6=-15√6帮我找50道一元二次方程计算题和50道二次根式计算题(带答案过程哦)。

初二二次根式计算题

初二二次根式计算题

初二二次根式计算题
那咱就开始做初二的二次根式计算题吧。

比如说计算√(8) + √(18)。

首先呢,咱得把这两个二次根式化成最简二次根式。

对于√(8),8可以写成2×2×2,那√(8)=√(2×2×2)=2√(2)。

再看√(18),18可以写成2×3×3,所以√(18)=√(2×3×3)=3√(2)。

现在再把化简后的式子相加,2√(2)+3√(2),这就好比是2个苹果加上3个苹果,那就是5个苹果,这里就是5√(2)。

再给你来一道,计算√(27)-√(12)。

先化简,27可以写成3×3×3,所以√(27)=√(3×3×3)=3√(3)。

12呢,可以写成2×2×3,那√(12)=√(2×2×3)=2√(3)。

然后相减,3√(3)-2√(3),就像3个香蕉减去2个香蕉,就剩下1个香蕉啦,这里就是√(3)。

还有像计算(√(3)+2)(√(3)-2)这种的。

这就可以用平方差公式(a + b)(a - b)=a² - b²,这里a=√(3),b = 2。

所以就等于(√(3))²-2²=3 - 4=-1。

你要是还有啥不懂的二次根式计算题,随时跟我说哈。

(完整版)二次根式专题练习(含答案).doc

(完整版)二次根式专题练习(含答案).doc

初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为() A . 0 B. 2 C .﹣ 2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12 .化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2,第 4 个等式: a 4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+⋯+a n =.15.已知 a 、b 有理数,m 、n 分表示16.已知: a <0,化17.,的整数部分和小数部分,且 amn+bn 2=1 , 2a+b=.=.,,⋯,., S=(用含n的代数式表示,其中n 正整数).三.解答18.算或化:(3+);19.算:( 3)(3+)+(2)20.先化,再求:,其中x=3(π 3)0.21.算:(+ )× .22.算:×() +| 2 |+ ()﹣3.23.算:(+1 )(1)+ ()0.24.如,数 a 、b 在数上的位置,化:.25.材料,解答下列.例:当 a >0 ,如 a=6|a|=|6|=6,故此a的是它本身;当a=0 , |a|=0 ,故此 a 的是零;当a <0 ,如 a= 6 |a|=|6|= ( 6),故此 a 的是它的相反数.∴ 合起来一个数的要分三种情况,即,种分析方法渗透了数学的分思想.:( 1)仿照例中的分的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.28.化求:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C .【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A ..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A .【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A . 0 B.2 C .﹣ 2D. 2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A .B. C .D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C 、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A .B. C .D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C .【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3..【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.( 2016? 聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 ..【点】本考了二次根式的算:先把各二次根式化最二次根式,再行二次根式的乘除运算,然后合并同二次根式.在二次根式的混合运算中,如能合目特点,灵活运用二次根式的性,恰当的解途径,往往能事半功倍.14.( 2016? 黄石)察下列等式:第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2,第 4 个等式: a 4= = 2,按上述律,回答以下:( 1)写出第 n 个等式: a n= = ;;( 2) a 1+a 2+a 3+⋯+a n = 1 .【分析】( 1)根据意可知,a 1= = 1,a 2 = = ,a 3= =2,a4==2,⋯由此得出第 n 个等式: a n = = ;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2 ,第 4 个等式: a 4= =2,∴第 n 个等式: a n= = ;(2) a 1+a 2+a 3+⋯+a n=(1)+()+(2)+(2) +⋯ +()故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a=0∴a=1 或 1∵a <0∴a= 1∴原式 =0 2= 2.【点】解决本的关是根据二次根式内的数非数得到 a 的.17.,,,⋯,., S=(用含n的代数式表示,其中n 正整数).【分析】由 S n =1++===,求,得出一般律.【解答】解:∵ S n =1++===,∴==1+=1+,∴S=1+1+1++⋯ +1+=n+1==.故答案:.【点】本考了二次根式的化求.关是由S n形,得出一般律,找抵消律.三.解答(共11 小)18.( 2016? 泰州)算或化:( 3+);【解答】解:(1)﹣( 3 + )=﹣( + )=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:( 3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=× 4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当a=0 时, |a|=0 ,故此时 a 的绝对值是零;当a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点】本关是先求出a+b 、ab 的,再将被开方数形,整体代.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.【分析】(1 )中,通察,:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到分的目的;( 2)中,注意找律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出抵消的情况.【解答】解:(1)=,=;.(2)原式 =+⋯+=++⋯+=.【点】学会分母有理化的两种方法.28.化求:,其中.【分析】由 a=2+,b=2,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,分后得+,接着分母有理化和通分得到原式=,然后根据整体思想行算.【解答】解:∵ a=2+>0,b=2>0,∴a+b=4 ,ab=1 ,∴原式 =+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点】本考了二次根式的化求:先把各二次根式化最二次根式,再合并同二次根式,然后把字母的代入(或整体代入)行算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年1月22日数学期末考试试卷一、选择题1.要使有意义,则的取值围是i. D.2.已知i.3.i. D.4.当的取值为i.5.下列各式①②③④为常数)中,是分式的有i. A. ①② B. ③④ C. ①③ D.①②③④6.若二次根式有意义,则的取值围是i. D.7.将分式中分子与分母的各项系数都化成整数,正确的是i. D.8.下列各式中,是二次根式的有a)①;②;③;④;⑤i.个个个个9.不论的值均为i. A. 正数 B. 零 C. 负数 D. 非负数10.把进行因式分解,结果正确的是i.ii.11.把多项式分解因式,下列结果正确的是i.ii.12.计算的结果是i.13.用配方法将二次三项式变形,结果为i.ii.14.若的值为i.15.若等于i.16.i.17.已知与的关系是i. D.18.当i.19.若的值为i.或20.若的值是i.21.计算的结果为i.22.下列约分正确的是i. B.ii..23.不论为何值,代数式的值i. A. 总小于 B. 总不小于 C. 总小于 D. 总不小于24.下列代数式符合表中运算关系的是i. D.25.若在实数围有意义,则满足的条件是i. D.26.多项式是完全平方式,那么的值是i.27.一个长方形的长是则该长方形的面积增加了i.ii.28.已知的值是i.29.下列各式能用完全平方公式分解因式的有a)①b)②c)③d)④e)⑤f)⑥i. A. ①②③⑥ B. ①③④⑥ C. ①③⑤⑥ D.①②③④⑤⑥30.化简i.ii.31.计算结果正确的是i.ii.32.的化简结果是i.33.计算的结果为i. D.34.如果在实数围有意义,那么的取值围是i. D.35.若的值是i. D. 不存在36.i. D.37.若用简便方法计算i. B.ii. D.38.化简的结果是i. D.39.的运算结果是i. D.40.计算的结果是i.41.的值为i. D.42.当i.43.已知i.44.已知的值为i. D.45.的结果是i. D.46.已知与的关系是i. D.47.若与的关系为i.ii.与的大小由的取值而定48.把分解因式,结果正确的是i.ii.49.下列各式中,不能用平方差公式分解因式的是i.50.若i.ii.51.把分解因式,下列的分组方法不正确的是i. B.ii.52.把多项式分解因式,下列结果正确的是i.ii.53.已知的值为i.54.在下列分解因式的过程中,分解因式正确的是a)b)c)d)55.若是完全平方式,则的值等于i.或或56.计算的结果为i.57.不论为何值,代数式的值i. A. 总小于 B. 总不小于 C. 总小于 D. 总不小于58.若把代数式化为的形式,其中为常数,结果为i.59.下列各式不能分解因式的是i.60.若,则下列各式没有意义的是i. A. B. C.D.ii. C. D.二、填空题61. 分解因式:();().62. 若,则.63. 计算:.64. 若有意义,则的取值围是.65. .66. 因式分解:把一个多项式化成几个的积的形式,这种变形叫做因式分解.67. 一种细菌的半径是,则用小数可表示为.68. 计算:.69. 计算:.70. 如图,长方形有两个相邻的正方形,面积分别为和,那么阴影部分的面积为.71. 已知,,则的值为.72. 分解因式:.73. 一个矩形的面积为,若一边长为,则另一边长为.74. 如图,在边长为的正方形中剪去一个边长为的小正方形(),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.75. 若,则.76. 当时,分式没有意义.77. 计算.78. 分解因式.79. ,则.80. 已知:(为多项式),则.81. 化简:.82. 计算.83. 若,则.84. 计算:();().85. 若有意义,则的取值围为.86. ,,.87. 如果,,那么.88. 要使为完全平方式,则常数的值为.89. 已知,,用“”来比较,的大小:.90. 在、、、这个数中,不能表示成两个平方数差的数有个.91. 计算:.92. 代数式有意义的条件是.93. 计算:.94. 二次根式(),(),(),(),(),其中最简二次根式有(填序号).95. 当满足时,.96. 计算:,.97. 下列个分式:;;;,中最简分式有个.98. 计算:.99. ()填空:,;()填空:,;()由()和(),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.100. 计算:.101. 计算:.102. 如图,在矩形有两个相邻的正方形,面积分别为和,则图中阴影部分的面积是.103. 分解因式:.104. 是一个完全平方式,则.105. 在实数围分解因式:.106. 计算:.107. 若,则,.108. 若分式的值为,则.109. 计算的结果是.110. 计算.111. 已知多项式的值是,则多项式的值是.112. 如图,从边长为的正方形纸片中剪去一个边长为的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是.113. 分解因式:.114. 计算:.115. 分解因式:.116. 函数中自变量的取值围是.117. 计算:.118. 下图中的四边形均是矩形,根据图形,写出一个正确的等式:.119. 比较大小:.120. 已知,,用“”来比较,的大小:.三、解答题121.求下列二次根式中字母的取值围..122.计算:i.(1);ii.(2123.已知最简二次根式能够合并,求的值.124.125.请说明对于任意正整数的值必定能被整除.126.计算:i.(1ii.(2127.若的大小.128.129.化简:i.(1ii.(2iii.(3iv.(4130.化简:i.(1ii.(2iii.(3131.已知的值.132.133.当为何值时,分式的值为134.计算:i.(1ii.(2iii.(3).135.计算:i.(1);ii.(2);iii.(3).136.先阅读下列材料,再解决问题:a)阅读材料:数学上有一种根号又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.b)例如:c)d)解决问题:1.模仿上例的过程填空:ii.;iii.(2)根据上述思路,试将下列各式化简.iv.();().137.如图所示,有一个狡猾的地主,把一块边长为米的正方形土地租给老汉种植.今年,他对老汉说:“我把这块地的一边减少米,另一边增加米,继续租给你,你也没有吃亏,你看如何?”老汉一听,觉得好像没有吃亏,就答应了.同学们,你们觉得老汉有没有吃亏?138.如果为有理数,那么的值与的值有关吗?139.计算:140.分解因式:i.(1);ii.(2141.数学课堂上,王老师给同学们出了道题:若中不含项,请同学们探究一下与的关系.请你根据所学知识帮助同学们解决一下.142.已知式子有意义,求的值.143.144.小刚同学编了如下一道题:对于分式时,分式无意义,当时,分式的值为的值.请你帮小刚同学求出答案.145.阅读下列材料:a)因为;;b)所以d)解答下列问题:i.(1;ii.(2;iii.(3)计算:.146.比较与的大小.147.如果是长方形的长和宽,求这个长方形的面积.148.分解因式:149.已知的值.150.化简151.分解因式:.152.分解因式:.153.利用乘法公式计算:i.(1);ii.(2).154.若,,试比较与的大小.155.分解因式:.156.证明:四个连续整数的乘积加是整数的平方.157.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.1.如图,是将几个面积不等的小正方形与小长方形拼成一个边长为的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.ii.iii.(2)如图,是将两个边长分别为和的正方形拼在一起,,,三点在同一直线上,连接和,若两正方形的边长满足,,你能求出阴影部分的面积吗?iv.158.已知,求代数式的值.159.已知是的三边的长,且满足三角形的形状,并说明你的理由.160.161. 求分式的最简公分母.162. 计算:(1(2163. 下列各式中,哪些是二次根式,哪些不是二次根式?164. 若成立,求的取值围.165.166.167.168. 计算:(1(2(3169. 化简:(1(2(3170.171.172.173. 有这样一道题:已知的值.小玲做这道题时,把错抄成了,但她的计算结果却是正确的.请你解释一下这是怎么回事.174.175. 数学课堂上,王老师给同学们出了道题:若中不含项,请同学们探究一下与的关系.请你根据所学知识帮助同学们解决一下.176.177. 阅读下列材料:因为;;所以解答下列问题:(1;(2;(3)计算:.178. 求下列各式中的(1(2179. 如图,有三种卡片是边长为是长为宽为的长方是边长为的大正方形.(1)小明用卡片,卡片,卡片拼出了一个新的正方形,那么这个正方形的边长是;(2)如果要拼成一个长为宽为的大长方形,需要卡片,卡片,卡片.180. 试说明对于任意正整数,式子都能被整除.181. 已知,,为三角形的三边,化简:.182. 已知最简二次根式能够合并,求的值.183. 计算184. 先化简,再求值:,其中.185. 计算:.186. 设,是否存在有理数,使得代数式能化简为?若能,请求出所有满足条件的值;若不能,请说明理由.187. 已知式子有意义,求的值.188. 计算:(1);(2);(3)189. 我们知道,假分数可以化为整数与真分数的和的形式.例如:.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,,,这样的分式是假分式;像,,,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式.例如:;.将分式化为整式与真分式的和的形式;如果分式的值为整数,求的整数值.190. 已知三角形底边的边长是,面积是,则此边的高线长.191. 计算:(1);(2)192. 小明在解决问题:已知,求的值,他是这样分析与解答的:,.,...请你根据小明的分析过程,解决如下问题:若,求的值.193. 在整式乘法的学习中,我们采用了构造几何图形的方法研究代数式的变形问题,借助直观、形象的几何图形,加深对整式乘法的认识和理解,感悟代数与几何的在联系,现有边长分别为,的正方形Ⅰ号和Ⅱ号,以及长为,宽为的长方形Ⅲ号,卡片足够多,我们可以选取适量的卡片拼接成几何图形.(卡片间不重叠、无缝隙)根据已有的学习经验,解决下列问题:(1)图是由Ⅰ号卡片、Ⅱ号卡片、Ⅲ号卡片拼接成的正方形,那么这个几何图形表示的等式是;(2)小聪想用几何图形表示等式,图给出了他所拼接的几何图形的一部分,请你补全图形;(3)小聪选取Ⅰ号卡片、Ⅱ号卡片、Ⅲ号卡片拼接成一个长方形,请你画出拼接后的长方形,并直接写出几何图形表示的等式.194. 已知,求.195. 当为何值时,下列各式有意义?(1);(2);(3);(4) .196. 已知,求.197. 已知,,求下列代数式的值:(1);(2).198. 已知,,是的三边的长,且满足,试判断此三角形的形状,并说明你的理由.199. 阅读材料后解决问题:小明遇到下面一个问题:计算.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:请你根据小明解决问题的方法,试着解决以下的问题:(1).(2).(3)化简:.120分解因式:答案第一部分1. D2. C3. C4. C5. C6. A7. A8. A9. A 10. C11. A 12. D 13. C 14. A 【解析】由因为所以15. B16. D 17. A 18. C当时,原式19. A 20. D21. D 22. D 23. D 24. B 25. C26. D 27. D 【解析】28. A 29. C 30. B31. C 32. B 33. C 34. D 35. B36. A 37. A 38. B 39. B 40. C411. D42. C当时,原式43. A 44. A 45. D46. A 47. B 48. D 【解析】答案:D49. C 50. C51. C 52. A 53. B 54. C 55. D 56. A 57. D 58. B 59. C 60. D第二部分61.且66. 整式【解析】根据题意得【解析】∵∴原式【解析】84.且【解析】则【解析】对为整数)因为与同奇同偶,所以是奇数或是的倍数,在、、、这个数中,奇数有个,能被整除的数有个,所以能表示成两个平方数差的数有个,则不能表示成两个平方数差的数有个.94.【解析】第一空利用了“”,第二空利用了“”.母的符号任意改变其中两个,分式的值不变.或都对)第三部分121. 由所以字母的取值围是小于或等于的实数.122. (1)(2)最简二次根式与能够合并,解得124.125. .为任意正整数,式子的值必定能被整除.126. (1)(2)且129. (1)(2)(3)(4)130. (1)(2).(3)131. 由已知得所以所以134. (1)(2)(3)135. (1)(2)(3)136. (1)(2)137. 正方形土地的面积为平方米,更改后的土地面积为平方米.老汉吃亏了.138.所以原式的值与的值无关.139.140. (1)(2)由结果不含项,得到则与的关系为142. 由题意知,144. 由题意可知解得所以145. (1)(2)(3)146.而又148. 本题有理根只可能为当然不可能为根(因为多项式的系数全是正的),经检验是根,所以原式有因式原式容易验证也是的根,所以.149.将代入得:的值为151. 设152.153. (1)(2)154. 设155. .156. 、、、原式157. (1).(2)158.所以是等边三角形.160.162. (1)(2)都是二次根式,都不是二次根式.164. 等号的左边可变形为从左边到右边是利用分式的基本性质,分子和分母同时除以所以要保证当时,168. (1)(2)(3)169. (1).(2).(3).172.该式的值与的取值无关,小玲把错抄成时,她的计算结果仍然是正确的.174.由结果不含项,得到则与的关系为177. (1)(2)(3)178. (1)由,所以(2)由得179. (1)(2)因为为正整数)必是的倍数,所以必是的倍数,即必能被整除.为三角形的三边,最简二次根式与能够合并,解得183.当186. 存在有理数能化简为又依题意,得或或187. 由题意知,188. (1)(2)(3)189. (1)(2)分式的值为整数,且为整数,.190. 三角形的面积,,,答:三角形此边的高线长为.191. (1);(2)192. ,,,.,的值是.193. (1)(2)(3).(拼图答案不唯一)194.【解析】,,195. (1)由有意义.(2)由且时,有意义.(3)因为取任意实数.(4)根据二次根式被开方数大于或等于和分母不为应满足解得有意义.197. (1)把将(2)或则或所以是等边三角形.199. (1)【解析】(2)【解析】(3)当时,原式当时,原式200. 原式的有理数根只可能为:经检验是一个根,所以是原式的因式,进而可得:【答案】。

相关文档
最新文档