中北大学概率统计习题册第五章完整答案(详解)

合集下载

概率论与数理统计习题册 第五章 答案

概率论与数理统计习题册 第五章  答案

P{X
>
4500}
=1−
P{X

4500}
= 1 − Φ⎜⎜⎝⎛
4500 − 4475 612.5
⎟⎟⎠⎞
≈ 1− Φ(1.01) = 1− 0.8413 = 0.1587
(2) P{4400
<
X
<
4500} = Φ⎜⎜⎝⎛
4500 − 4475 612.5
⎟⎟⎠⎞

Φ⎜⎜⎝⎛
4400 − 4475 612.5
E( Xi ) = 10× 0.4 + 9× 0.3 + 8× 0.2 + 7 × 0.05 + 6× 0.05 = 8.95 ,
D( Xi
)
=
E
(
X
2 i
)

( EX i
)2
=1.225 ,
设总分为 X ,则 X ~ N (500 × 8.95, 500 ×1.225) ,即 X ~ N (4475, 612.5) . 因此
n
∑ 解 设有 n 个数相加,X i 分别为每个数的舍入误差。记 X = Xi ,E( Xi ) = 0 , i =1
16
∑ D( Xi )
=
1 12
由定理一知,随机变量 Z
=
k =1
Xi − n⋅0 n / 12
近似地服从正态分布 N (0,1)
(1) 所求概率
P{ X ≤ 15} = P{−15 ≤ X ≤ 15} = P{ −15 < X < 15 } 55 55 55
P{| Xn − a |< 0.1} ≥ 0.95 的 n 的最小值应不小于自然数

概率论与数理统计》课后习题习题详解第五章

概率论与数理统计》课后习题习题详解第五章

习题解答习题5.11.设样本值如下:15, 20, 32, 26, 37, 18, 19, 43计算样本均值、样本方差、2阶样本矩及2阶样本中心矩.解 由样本均值的计算公式,有()8111152032263718194326.2588i i x x ===⨯+++++++=∑由样本方差的计算公式,有()28211102.2181i i s x x==-=-∑由2阶样本矩的计算公式,有82211778.58i i a x ===∑由2阶样本中心矩的计算公式,有()2821189.448i i b x x==-=∑2. 设总体~(12,4)X N ,125(,,,)X X X 是来自总体X 的样本,求概率12345{m a x (,,,,)12}P X X X X X >. 解 12345{m a x (,,,,)12}P X X X X X > []551311(0) 1()232=-Φ=-=3. 设总体X ~ P (λ),X 是容量为n 的样本的均值,求 ()E X 和 ()D X . 解 因总体X ~ P (λ),故有(),()E X D X λλ==,于是()()E X E X λ==()()D X D X n nλ== 4. 某保险公司记录的6n =起火灾事故的损失数据如下(单位:万元):1.86, 0.75, 3.21,2.45, 1.98, 4.12. 求该样本的经验分布函数.解 将样本观测值排序可得:0.751.86 1.982.453.21<<<<< 则经验分布函数为60, 0.751, 0.75 1.8661, 1.86 1.9831(), 1.98 2.4522, 2.45 3.2135, 3.21 4.1261, 4.12x x x F x x x x x <⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩5.求标准正态分布的上侧0.01分位数和上侧0.48分位数 .解 由题知,X ~ (0,1)N ,求X 的上侧α分位数. 即求u α使满足{}P X u αα>=得{}1P X u αα≤=-即()1u ααΦ=-取0.01α=,查标准正态分布表得上侧0.01分位数为0.012.33u u α==取0.48α=,查标准正态分布表得上侧0.48分位数为0.480.05u u α==习题5.21.设总体~(8,36)X N ,129(,,,)X X X 是取自总体X 的样本,X 是样本均值,求{|7|2}P X -< .解 因~(8,36)X N ,且样本容量9n =,故36~(8,), ~(8,4)9X N X N 即 ,于是 9858{|7|2}{59}()()22P X P X ---<=<<=Φ-Φ (0.5)( 1.5)(0.5)(1.5)10.69150.933210.6247=Φ-Φ-=Φ+Φ-=+-=2.设 2~(9)X χ ,求λ使其满足()0.95P X λ<=解 由()0.95P X λ<=,得()0.05P X λ≥=,因为2~(9)X χ,所以查表可得20.05(9)16.919λχ==3. 设总体~(0,1X N ,1210(,,,)X X X 是取自总体X 的样本,求2221210()E X X X +++ 及2221210()D X X X +++ .解 由总体~(0,1)X N 可知~(0,1) (1,2,,10)i X N i = ,且1210,,,X X X 相互独立,于是22221210()~(10)X X X χ+++故有2221210()10E X X X +++= 2221210()21020D X X X +++=⨯=4. 设总体X ~ N (20 ,3),从中独立地抽取容量分别为10和15的两个样本,求它们的样本均值之差的绝对值大于0.3的概率.解 设这两个样本分别为1210,,,X X X 和1215,,,Y Y Y , 则对样本均值有101110i i X X ==∑ ~15131(20,),1015i i N Y Y ==∑~3(20,)15N依定理 X Y -~1(0,)2N ,所以{}0.3P X Y P ⎫->=>1P ⎫=-≤1=-ΦΦ(1210.6744⎡⎤=-Φ-=⎢⎥⎣⎦(查标准正态分布表可得)5.设X ~ t (12) ,(1) 求 a 使得()0.05P X a <=;(2)求 b 使得()0.99P X b >= 解 (1)由()0.05P X a <=利用t 分布的对称性可得()0.05P X a >-=,查表可得0.05(12) 1.7823 1.7823a t a -==⇒=-(2)由()0.99P X b >=得()0.01P X b ≤=,又由t 分布的对称性可得()0.01P X b >-=于是0.01(12) 2.6810 2.6810b t b -==⇒=-6.设~(8,12)X F ,求 λ 使得()0.01P X λ<=.解 由()0.01P X λ<= 得 ()0.99P X λ>=,于是查表可得0.990.0111(8,12)0.176(12,8) 5.67f f λ====习题5.31.设总体X ~ N (μ ,4),(X 1 ,X 2 ,… ,X 16)为其样本,2S 为样本方差,求: (1) P ()666.62<S ; (2) P ()865.4279.22<<S . 解 因为()221n S σ-~()21n χ-所以本题中2154S ~()215χ 则 (1) {}(){}22215156.666 6.6661524.997544P S P S P χ⎧⎫<=<⨯=<⎨⎬⎩⎭(){}211524.997510.050.95P χ=-≥=-=(2) {}221515152.279 4.865 2.279 4.865444P S P S ⎧⎫<<=⨯<<⨯⎨⎬⎩⎭(){}28.546251518.24375P χ=<<(){}(){}22158.546251518.24375P P χχ=>-≥0.900.250.6=-= 2. 总体2~(0,)X N σ,1225(,,,)X X X 是总体X 的样本,2X S 和分别是样本均值和样本方差,求λ,使5()0.99XP Sλ<=. 解 根据抽样分布定理知5~(24)X Xt S = 又由5()0.99XP Sλ<=得 5()0.01XP Sλ>= 故查表可得0.01(24) 2.4922t λ==3.设总体X ~ N (30 ,64),为使样本均值大于28的概率不小于0.9 ,样本容量n 至少应是多少?解 因为X ~(30,64)N , 所以样本均值X .~64(30,)N n因此X ()0,1N , 故{}{}28128P X P X >=-≤1X P ⎧⎫=-≤1⎛=-Φ ⎝0.9=Φ≥1.29≥,解得 27n ≥,所以n 至少应取27.*4.设总体X ~ N )16(1,μ 与总体Y ~ N )36(2,μ 相互独立,(X 1 ,X 2 ,… ,X 13)和(Y 1 ,Y 2 ,… ,Y 10)分别为来自总体X 和总体Y 的样本.试求两总体样本方差之比落入区间(0.159 ,1.058)内的概率.解 因为()221n S σ-~()21n χ-,所以本题中211216S ~()222912,36S χ~()29χ又因为21212222121291694936S S F S S ==~()12,9F从而221122229990.159 1.0580.159 1.058444S S P P S S ⎧⎫⎧⎫<<=⨯<<⨯⎨⎬⎨⎬⎩⎭⎩⎭(){}0.3577512,92.3805P F =<< 0.85=(查F 分布表*5. 设从两个正态总体~(4,1)~(6,1)X N Y N 和中分别独立地抽取两个样本1219(,,,)X X X 和1216(,,,)Y Y Y ,样本方差分别为2212S S 和.求λ,使2122()0.05S P S λ<=.解 根据抽样分布定理可知2122~(18,15)S F S 又由2122()0.05S P S λ<=可得2122()0.95S P S λ>=,于是查表可得0.950.0511(18,15)0.44(15,18) 2.27f f λ====*6.设总体X 与总体Y 相互独立,且都服从正态分布N (0 ,9),(X 1 ,X 2 ,… ,X 9)和(Y 1 ,Y 2 ,… ,Y 9)分别为来自总体X 和Y 的样本.试证明统计量T =∑∑==91291i ii iYX服从自由度为9的t 分布.证明 由正态分布的性质及样本的独立性知91ii X=∑~2(0,9)N得9119i i X =∑~(0,1)N 又因为i Y ~(0,9) (1,2,,9)N i =所以()22222291212913339Y Y Y Y Y Y ⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ~()29χ 由于两个总体X 和Y 是相互独立的,所以其相应的样本也是相互独立的,故 9119i i X =∑与92119i i Y =∑也相互独立,于是由t 分布的定义知991ii XX T ==∑∑ ~ ()9t综合练习五一、填空题1.设总体X 的一组样本观测值为1.4 ,2.3 ,1.8 ,3.4 ,2.7则样本均值 x= ( 2.32 ) ,样本方差 2s = ( 0.607 ) .2.设总体X 服从正态分布N (2 ,5),(X 1 ,X 2 ,… ,X 10)为其样本,则样本均值X 的分布为 ( 122N ⎛⎫⎪⎝⎭, ).3.设总体X 服从具有n 个自由度的2χ 分布,(X 1 ,X 2 ,… ,X n )为其样本,X为样本均值,则有 ()( )E X n = ,()( 2 )D X = .4.设总体X ~ N (μ ,2σ),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别为样本均值和样本方差,则有 X ~( 2N n σμ⎛⎫ ⎪⎝⎭, ),22)1(σS n - ~( 2(1)n χ- ),nSX μ- ~( t (n - 1) ).5.设总体X ~ N (1 ,4),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)2()(X X X b X X a --+-则当a = (81 ) 、1()24b =时有T ~ 2χ(2) . 二、选择题1.设总体X ~ N (μ ,1),其中 μ 为未知参数,若(X 1 ,X 2 ,… ,X n )为来自总体X 的样本,则下列样本函数中( (b ) ) 不是统计量.(a )∑=ni i X1;(b )∑=-ni iX12)(μ ;(c) X 1 X 2 … X n ; (d )∑=ni i X12.2.设总体X ~ N (2 ,4),(X 1 ,X 2 ,… ,X 9)为其样本,X 为样本均值,则下列统计量中服从标准正态分布的是( (c ) ).(a ) X ; (b))2(43-X ; (c ))2(23-X ; (d ) )2(29-X . 3.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)(2)(3X X X X X +++则有T ~ ( (b ) ) .(a ) t (5) ; (b ) F (1 ,1) ; (c ) F (2 ,3) ; (d ) F (3 ,2) . 4.设总体X ~ N ⎪⎪⎭⎫ ⎝⎛410,,(X 1 ,X 2 ,… ,X 5)为其样本,令T=则有T ~( (d ) ).(a ) t (1) ; (b ) t (2) ; (c ) t (3) ; (d ) t (4) . 5.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别是样本均值和样本标准差,则 ( (c ) ) .(a ) n X ~ N (0 ,1): (b ) X ~ N (0 ,1); (c )∑=ni i X 12 ~ 2χ(n ) ; (d )SX~ t (n - 1) . 6.设随机变量X 和Y 都服从标准正态分布,则 ( (c ) ) .(a ) Y X + 服从正态分布; (b ) 22Y X + 服从 2χ 分布;(c ) 2X 和 2Y 都服从 2χ 分布; (d )22Y X 服从F 分布.三、解答题1.设总体~(2,16)X N ,12(,,,)n X X X 是总体X 的样本,令2211ni i A X n ==∑,求2A 的数学期望2()E A .解 因为~(2,16)X N ,所以~(2,16) (1,2,,)i X N i n = ,则有 22()()()16420i i i E X D X E X =+=+= 于是22111()()2020n i i E A E X n n n===⨯⨯=∑2.设总体~(15,9),X N ,129(,,,)X X X 是总体X 的样本,X 是样本均值,.求常数c ,使()0.95.P X c ≤=解 根据抽样分布定理可知~(15,1)X N 又由()0.95P X c ≤=可得15()()0.951c P X c -≤=Φ= 查表可得15 1.645c -=,于是得16.645c =3.设一组数据20.5,15.5,30.2,20.5,18.6, 21.3,18.6,23.4来自于总体,X 求经验分布函数.解 将样本观测值排序可得:15.518.618.620.520.521.32<=<=<<< 则由定义可得经验分布函数为80, 15.51, 15.518.683, 18.620.585(), 20.521.386, 21.323.487, 23.430.081, 30.2x x x F x x x x x ≤⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩4.设总体X ~ N (0 ,4),(X 1 ,X 2 ,… ,X 9)为其样本.求系数a 、b 、c ,使得T = 298762543221)()()(X X X X c X X X b X X a ++++++++服从 2χ 分布,并求其自由度.解 由于129,,,X X X 相互独立且来自总体X ~(0,4)N ,则由正态分布的线性运算性质有12X X +~(0,8)N ,345X X X ++~(0,12)N ,6789X X X X +++~(0,16)N于是,由2χ分布与正态分布的关系,有()()()22212345678981216X X X X X X X X X T ++++++=++ 服从2χ(3)分布,因此111,,81216a b c ===,自由度为3。

概率论与数理统计第五章重点习题和答案

概率论与数理统计第五章重点习题和答案

1.设有30个电子器件1230,,,D D D ,
它们的使用情况如下:1D 损坏,2D 立即使用;2D 损坏,3D 立即使用等等,设器件i D 的寿命服从参数为0.1λ=(小时1)-的指数分布的随机变量,令T 为30个器件使用的总时间,求T 超过350小时的概率。

解 设i D 为器件i D 的寿命,则301i i T D
==∑,所求概率为
30301300(350)(350)i i i D P T P D P =⎧⎫-⎪⎪≥=≥=≥⎪⎪⎩⎭
∑∑
11(0.91)10.81860.1814≈-Φ=-Φ=-=.
2.某计算机系统有100个终端,每个终端有20%的时间在使用,若各个终端使用与否相互独立,试求有10个或更多个终端在使用的概率。

解 设1,,1,2,0,.
i i X i i ⎧==⎨
⎩第个终端在使用第个终端不在用 则同时使用的终端数
1001~(100,0.2)i i X X B ==

所求概率为
(10)11( 2.5)(2.5)0.9938P X ≥≈-Φ=-Φ-=Φ=.
3.某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤.

20(14
30)))P X ≤≤≈Φ-Φ (2.5)( 1.5)=Φ-Φ- 0.9938(1.5)10.99380.93321=+Φ-=+-
0.927=.。

概率论与数理统计第五章习题参考答案

概率论与数理统计第五章习题参考答案

F = S甲2 ~ F (4,4) S乙2

P⎪⎨⎧ ⎪⎩
S甲2 S乙2
<
F 1−
0.05
(4,4)
U
2
S甲2 S乙2
>
F0.05
2
(4,4)⎪⎬⎫ ⎪⎭
=
0.05
查表得: F0.05 (4,4) = 9.6,
2
F 1−
0.05
2
(4,4)
=
1 F0.025 (4,4)
=
0.1042

故拒绝域为 (0, 0.142) U (9.6, + ∞) .
54 67 68 78 70 66 67 70 65 69 问患者与正常人的脉搏有无显著差异(患者的脉搏可视为服从正态分布。α = 0.05 ) 解:设患者的脉搏为 X , 计算其样本均值与样本方差分别为 x = 67.4, s = 5.93
在检验水平α = 0.05 下,检验假设 H 0 : µ = µ0 = 72 H1 : µ ≠ µ0 = 72
问两台机器的加工精度是否有显著差异(α = 0.05 )?
解:在检验水平α = 0.05 下,检验假设 H 0 : µ1 = µ 2
H1 : µ1 ≠ µ2
因为
µ1,µ
2,σ
12,σ
2 2
均未知,且不知
σ
12与σ
2 2
是否相等,
故先检验假设 H 0′
:
σ
2 1
=
σ
2 2
,
H
1′
:
σ
2 1

σ
2 2

H1 : µ1 ≠ µ2
当假设 H 0 为真时,取检验统计量

概率论第五章习题解答(全)

概率论第五章习题解答(全)

10 ) 1 0.90 n 12

(
10 ) 0.95 ,查表得 (1.64) 0.95 n 12
n 443 。

10 1.64 ,解得 n 12
即最多可有 443 个数相加,可使得误差总和的绝对值小于 10 的概率不小于 0.90。 4、 设各零件的重量都是随机变量, 它们相互独立, 且服从相同的分布, 其数学期望为 0.5kg, 圴方为 0.1kg,问 5000 只零件的总重量超过 2510kg 的概率是多少? 解 设每只零件的重量为 X i , i 1, 2, ,5000 ,由独立同分布的中心极限定理知
100
i
, 则 X b(100, 0.9) 。 由德莫弗――拉普拉斯定理知,
X 100 0.9 近 100 0.9 0.1
2 10000 i 1
X
i
索赔总金额不超过 2700000 美元的概率
P{ X 2700000} 1` P{ X 270000}
10000
1 P{
X
i 1
i
280 10000
800 100
2700000 2800000 } 80000
10000
1 P{
2 2
X
i 1
16
i

于是随机变量
Z
Xi n
i 1
16
2 n

X
i 1
16
i
1600
10000 16
X 1600 近似的服从 N (0,1) 400
P{ X 1920} P{
X 1600 1920 1600 X 1600 } P{ 0.8} 400 400 400 X 1600 1 P{ 0.8} 1 (0.8) = 1 0.7881 0.2119 . 400

概率论与数理统计第五章练习答案郝志峰,谢国瑞

概率论与数理统计第五章练习答案郝志峰,谢国瑞

概率论与数理统计第五章习题的联合概率分布列为即。

对应的概率为:的所有可能取值对是。

于是二维随机变量服从二项分布并的所有可能取值也是则是乙击中目标的次数,。

设分布;并服从二项的所有可能取值是则是甲击中目标的次数解:设),(.2304.06.0*8.0)2,2(P ;3072.06.0*)6.01(*8.0)1,2(P ;1024.0)6.01(*8.0)0,2(P ;1152.06.0*8.0*)8.01()2,1(P ;1536.06.0*)6.01(*8.0*)8.01()1,1(P ;0512.0)6.01(*8.0*)8.01()0,1(P ;0144.06.0*)8.01()2,0(P ;0192.06.0*)6.01(*)8.01()1,0(P ;0064.0)6.01(*)8.01()0,0(P )2,2(),1,2(),0,2(),2,1(),1,1(),0,1(),2,0(),1,0(),0,0(),().60,2(B ;,1,20).80,2(B ,1,20,.1221222221212122122212222ηξηξηξηξηξηξηξηξηξηξηξηηξξ=====-====-====-====--====--====-====--====--===C C C C C C的联合概率分布列为:即。

事件等品和二等品,不可能即抽到的产品同时是一即抽到一等品即抽到二等品即抽到三等品。

对应的概率分别为:所有可能取值对是解:),()(0)1,1();(;8.0)0,1()(;1.0)1,0();(;1.0)0,0()1,1(),0,1(),1,0(),0,0(),(.2212121212121ξξξξξξξξξξξξ============P P P P的联合概率分布列为:的边缘分布可以得到和又利用。

,得到:非负,并且和等于有可能取值对应的概率利用离散型随机变量所。

可知:解:根据),(0)1,1()1,1()1,1()1,1(11)0,1()0,1()1,0()0,0()1,0(1)0(.3212121212121212121212121ξξξξξξξξξξξξξξξξξξξξξξξξ====-====-==-=-===-=+==+==+==+-====P P P P P P P P P P的联合分布列为:所以对应的概率为:的所有可能取值为有:从而对于是的概率密度可知:解:根据),()arctan 2()1()1(P )1,1(P )1,1()arctan 21(arctan 2)1()1(P )1,1(P )0,1(arctan 2)arctan 21()1()1(P )1,1(P )1,0()arctan 21()1()1(P )1,1(P )0,0(),1,1(),0,1(),1,0(),0,0(),(.arctan 2)1(P ,arctan 21)1(P ,2,1,arctan 21)1(P arctan 2112)(2)1(P .4212212121212121212121221212121121ηηπξξξξηηππξξξξηηππξξξξηηπξξξξηηηηπξπξπξπππξξe P P e e P P ee P P e P P e e k e e de e dx e e k k xx x x =≤≤=≤≤===-=>≤=>≤===-=≤>=≤>===-=>>=>>====≤-=>=-=>=+=+=≤⎰⎰∞-∞--).1)(1()0,0()0,3()4,0()4,3()40,30()3(0y 0,00,0),1)(1(),().1)(1(12),(.12),(0,0.0),(,0),(0y 0)2(.12A 12),(1)1(.516943430)43()43(04030)43(--=+--=≤<≤<⎪⎩⎪⎨⎧≤≤>>--=--===>>==≤≤=====------+-+-∞+-∞+-∞+∞++-∞+∞-∞+∞-⎰⎰⎰⎰⎰⎰⎰⎰e e F F F F P x y x e ey x F e e dxdy e y x F e y x f y x y x F y x f x Ady e dx eA dxdy Aedxdy y x f y x y x x yy x y x y xy x ηξ时或者当时当因此:于是对应的分布函数:时,当于是对应的分布函数时,联合密度函数或者当所以解:⎪⎩⎪⎨⎧≤≤-≤≤-+=-===+-≤≤+-≤≤+===+≤≤--≤≤-==>-<⎪⎩⎪⎨⎧≤-≤-≤+≤-=⎰⎰-+-+--其他因此:于是对应的概率密度是时,)当(于是对应的概率密度是时,)当(于是对应的边缘分布时,或者)当(其他对应的概率密度是:,所以的面积为解:由于,010,101,1)(;121)(,21),(,1110iii ;121)(,21),(,1101ii ;0)(,0),(11i ,011,11,21),(),(2.61111x x x x x f x dy x f y x f x y x x x dy x f y x f x y x x x f y x f x x y x y x y x f D xx xx ξξξξηξ.48251611218141)4,4()3,3()2,2()1,1()()3(.161487481348254321;414141414321)2(.41,1161*4121*381*2)1(.7=+++===+==+==+====⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==+++ηξηξηξηξηξηξP P P P P a a 的边缘分布为:的边缘分布为:可得:根据解:.913)3(1311)()(),3arctan 2(1)3arctan 2)(22(1),()(.412)2(1211)()(),2arctan 2(1)22)(2arctan 2(1),()()3(.91416)3(131)2(1211),(),()2(.1,2,)2)(2arctan (),(0)3arctan )(2(),(0)2)(2(),(1,.822'222'222222222yy y F y f yy y F y F xx x F x f x x x F x F yx y x y x F y x y x f A C B y x C x B A x F y C B A y F C B A F y x +=+==+=++=+∞=+=+==+=++=+∞=++=++=∂∂∂====⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-∞=+-=-∞=++=+∞+∞=ππππππππππππππππππππππππηηηξξξ边缘密度函数所以边缘分布函数边缘密度函数所以边缘分布函数从而的任意性可知:利用,满足:解:对任意的.)(.1445.0)5.08413.0(21))0()1((212121)1()21()(.91212122222函数为标准正态分布的分布其中解:x dxe dx e dxdy e P x x xy Φ=--=Φ-Φ-=-=-==<⎰⎰⎰⎰---ππππξη⎪⎩⎪⎨⎧≤≤+=+==⎪⎩⎪⎨⎧≤≤+=+==⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧>>≤≤>+>≤≤+≤≤≤≤+<<=+==≤≤>+==>≤≤+=+=⎥⎦⎤⎢⎣⎡+==≤≤≤≤==>>==<<==+=+=⎥⎦⎤⎢⎣⎡+==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-∞-∞-∞+∞-∞+∞-∞-∞-∞+∞-∞+∞-其他的边缘密度函数为:其他的边缘密度函数为:并且并且并且并且或者因此:时并且当时并且当时并且当时并且当于是概率密度时或者当的范围分情况进行讨论下面我们对利用所以解:,020,6131)31(),()(,010,322)31(),()()3(21,1201,12131210,31322010,1213100,0),(;12131),1(),(,201)v (;3132)2,(),(,210)iv (;12131)61()31(),(),(,2010)iii (;1),(),(,21)ii (;0),(,0),(,00)i (.,,),(),()2(.31,32)22()(),(1)1(.10102220222322322322302200210210202y y dx xy x dx y x f y f x x x dy xy x dy y x f x f y x y x y y y x x x y x y x y x y x y x F y y y F y x F y x x x x F y x F y x y x y x dx xy y x dx dy xy x dxdyy x f y x F y x dxdy y x f y x F y x y x F y x f y x y x dxdy y x f y x F c c dx cx x dx dy cxy x dxdy y x f x x y x yxyηξηξ⎪⎪⎩⎪⎪⎨⎧≤≤++=++==+=≤≤==<>⎪⎪⎩⎪⎪⎨⎧≤≤++=++==+=≤≤==<>其他于是时,当没有定义;于是时或者同样,当其他于是时,当没有定义;于是时或者当,020,62332231)(),()|(,322)(10)(),()|(,0)(,01,010,226613131)(),()|(,6131)(20)(),()|(,0)(,02)4(22222y x yx x x xy x x f y x f x y f x x x f x x f y x f x y f x f x x x y xyx y xy x y f y x f y x f y y f y y f y x f y x f y f y y ξξξξηηηη⎪⎩⎪⎨⎧<≥===≥==<⎪⎩⎪⎨⎧<≥===⎪⎩⎪⎨⎧<≥===≥==<⎪⎩⎪⎨⎧<≥===--+--∞++-∞+∞---+--∞++-∞+∞-⎰⎰⎰⎰0,00,22)(),()|(0)(),()|(,0)(00,00,)2(),()(0,00,22)(),()|(0)(),()|(,0)(00,00,2)2(),()()1(.112)2(0)2(2)2(20)2(x x e e e y f y x f y x f y y f y x f y x f y f y y y e dx e dx y x f y f y y e e e x f y x f x y f x x f y x f x y f x f x x x e dy e dy y x f x f x y y x y y x yxy x x y x ηηηηξξξξηξ时,当没有定义;所以时,于是当的边缘密度函数为:时,当没有定义;所以时,于是当的边缘密度函数为:解:.12)1()1,2()1|2()2(410201)2(--+--=⎥⎦⎤⎢⎣⎡=≤≤≤=≤≤⎰⎰⎰e dyedxdy e P P P yy x ηηξηξ.2ln 11)1()3(,010),1(111),()()2(,010,11)|()(),(),(,,01,11)|(:)1,(,)10(,010,1)(:)1,0()1(:.1212110=⎥⎦⎤⎢⎣⎡-=>+⎪⎩⎪⎨⎧<<--=-==⎪⎩⎪⎨⎧<<<-==⎪⎩⎪⎨⎧<<-=<<=⎩⎨⎧<<=⎰⎰⎰⎰-∞+∞-dy dx x P y y n dx xdx y x f y f y x xx y f x f y x f y x xx y f x x x x x f y y y ηξηηξηξξηξξ其他的边缘密度为:其他的联合密度函数为:因此其他上的均匀分布,可得服从区间时又根据其他上的均匀分布,所以服从区间由于解.,:.91B ,92A )A 91(319131B A )A 91)(1819161(911B A 311819161,.13的确是独立的随机变量知代入联合分布列验证可解得::是独立的随机变量可得性质及解:根据联合分布列的ηξηξ==⎪⎪⎩⎪⎪⎨⎧+==+⇒⎪⎪⎩⎪⎪⎨⎧+++==+++++表:因此,联合分布列如下是独立随机变量:于是根据边缘分布以及的概率分布为解:设.4112131;31216111;838121;214181;1218124141;43681;416241;2418161,.3,2,1;2,1,),(),(.141332321312222112212111131212111111=-=-==--=--==-=-=====--=--========-======∙∙∙∙∙∙∙∙∙∙∙∙p p p p p p p p p p p p p p p p p p p p p p p j i p y x P ij j i ηξηξηξ.0,41,41,2121214341)0()1(.1,0;1,0,),(),(.2121*43*332143),()(.41,163;21,43,1021,43,.15010010111110001110010000011011联合分布列为解得:得:。

概率论与数理统计第五章习题解答.dot

概率论与数理统计第五章习题解答.dot

当零假设H o 成立时,变量:汕 X32.0. 6~N(0, 1)1.10.89 1.9632.0,所以可以认为这批机制砖的平均抗断强度 显着为32.0kg/cm 2。

解:这是检验正态总体数学期望是否大于10提出假设:H 。

:10, H 1 : 10 即:H 0 :10,H 1 :10由题设,样本容量n5,20.12,0.120.1,检验解:这是检验正态总体数学期望提出假设:H 。

:32.0, 由题设,样本容量n 6,是否为H 1 : 32.01.21,1.21 1.1,所以用 U因检验水平 0.05,由 P{| U|0.05,查表得1.96得到拒绝域: |u |1.96计算得:1(32.6 30.0 31.6632.0 31.8 31.6) 31.600-壮叫0.89它没有落入拒绝域,于是不能拒绝H 。

,而接受H 0,即可以认为X 10.1万 km ,所以用U 检验当零假设H o 成立时, 变量: X10一5~N(0,1)0.1因检验水平 0.05,由P{U} 0.05,查表得'1.64得到拒绝域: 1.64计算得:ux 0 斤 10.1n0.110” 52.242.24 1.64它落入拒绝域, 于是拒绝零假设 H 0,而接受备择假设H 1,即可认为 10所以可以认为这批新摩托车的平均寿命 有显者提高。

解:这是检验正态总体数学期望是否小于240提出假设:H 。

:即:H 。

:由题设,样本容量n240, H 1 : 240 240,H 1 : 2402625,、625 25, x 220,所6 以用U 检验当零假设H o 成立时, 变量:因检验水平 0.05, 由P{U得到拒绝域: u1.64计算得:u Xn220U 02406 25”nX 2406 ~ N(0,1)250.05,查表得'1.641.959它落入拒绝域,于是拒绝H o,而接受H i,即可以认为240所以可以认为今年果园每株梨树的平均产量显着减少。

大学概率论——第五章 习题解 ppt课件

大学概率论——第五章 习题解 ppt课件

大学概率论——第五章 习题解
8、有一批建筑房屋用的木柱,其中80%的长度
不小于3m,现在从这批木柱中随机地取出100根, 问其中至少有30根短于3m的概率是多少? 解:利用拉普拉斯中心极限定理
从一批木柱中随机地取出100根,不放回抽样 近似的看作放回抽样。对100根母猪长度测量
看成进行100次贝努里试验,设随机变量
X={6000粒种子中的良种数}
大学概率论——第五章 习题解
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
10.9214 0.0786
大学概率论——第五章 习题解
7、计算机在进行加法时,将每个加数舍入最靠近
它的整数,设所有舍入误差是独立的,且在(-0.5,0.5) 上服从均匀分布,1)若将1500个数相加,问误差总
和的绝对值超过15的概率是多少?2)最多可有多少 个数相加使得误差总和的绝对值小于10的概率不小于
大学概率论——第五章 习题解
P159 3、某计算机系统有120个终端,每个终端 有5%的时间在使用,若各个终端使用与否是相互 独立的,试求有10个或更多终端在使用的概率。
解:设 X i 1 2 0 个 终 端 中 第 i 个 终 端 在 使 用
则 Xi ~B120,0.05 EX1200.05 0 .6 D X 1 2 00 .0 50 .9 5 5 .7
n 12
Pn 10 P( n 10 )
n/12 n/12
P( 10 n 10 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 设随机变量X 的数学期望()E X μ=,方差2
()D X σ=,则由契比雪夫不等式
{}≤
≥-σμ3X P 1
9。

2. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,相关系数为0.5,则根据契比雪夫不等式{}

≥-6Y X P 1
12。

3. 在一次试验中,事件A 发生的概率为2
1

利用契比雪夫不等式估计是否可以用大于0.97的概率确信,在1000次独立重复试验中,事件A 发生的次数在400~600的范围内? 解: X 表示在1000次重复独立试验中事件A 发
生的次数,则1~1000,2X B ⎛
⎫ ⎪⎝
⎭.于是:
1
()1000500,
2E X np ==⨯=11
()100025022
D X =⨯⨯=
(400600)(500100)P X P X <<=-<
2
250
(100)10.975100
P X EX =-<≥-=.因此可以用大于0.97的概率确信,在1000次独立重复试验中,事件A 发生的次数在400~600的范围内.
4.用契比雪夫不等式确定当掷一均匀铜币时,需投多少次,才能保证使得正面出现的频率在0.4和0.6 之间的概率不小于90%? 解:设n μ表示掷n 次铜币正面出现的次数,则1(,)2n
B n μ,1()2n E n μ=,1()4
n D n μ=
{0.40.6}{
0.50.1}n
n
P P n
n
μμ≤
≤=-≤
2()
25110.90.1n
D n n
μ≥-
=-≥250n ⇒≥ 注:事实上,由中心极限定理
{0.40.6}{0.40.6}n
n P
P n n n
μμ

≤=≤≤≈
Φ-Φ
(210.9=Φ-≥
(()0.95 1.96Φ≥=Φ 1.96≥
解之得 96.0365n ≥,所以,至少需投掷97次,才能保证使得正面出现的频率在0.4和0.6 之间的概率不小于90%。

5.一个复杂的系统,由100个相互独立起作用的部件所组成,在整个运行期间,每个部件损坏的概率为0.1,为了使整个系统起作用,至少需85个部件工作,求整个系统工作的概率。

解:设整个系统中有X 个部件能正常工作,
则()~100,0.9X B ,系统工作的概率为
()()85
184P X P X ≥=-≤ 1≈-Φ
()()1220.9772=-Φ-=Φ=
6.设 ,,,,21n X X X 为独立随机变量序列,且(1,2,
)i X i =服从参数为λ的指数分
布,试求:⎪⎪⎭

⎪⎬⎫
⎪⎪⎩⎪⎪⎨⎧≤-∑=∞
→x n n X P n i i n 1lim λ。

解:因i X 服从参数为λ的指数分布,故:
211,.i i EX DX λλ==
2
11
(),().
n
n
i i i i n
n
E X D X λ
λ
===
=
∑∑
⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞
→x n n
X P n i i n 1lim λ lim n i n n
X P x →∞⎧⎫-⎪⎪⎪
=
≤⎬⎪
⎪⎭∑ lim n n i i n X E X P x →∞⎧⎫⎛⎫⎪⎪- ⎪⎪=≤⎬⎪
⎪⎭
∑∑
2
2
d ()t x t x -==Φ⎰
.。

相关文档
最新文档