理论力学 10 质点运动微分方程

合集下载

理论力学 第11章 质点运动微分方程

理论力学  第11章  质点运动微分方程
必须指出,牛顿定律中涉及到物体的运动与作用在 物体上的力。显然,物体及其所受的力不因参考系的选 择而改变,但同一物体的运动在不同的参考系中的描述 可能是完全不同的,这就存在着根本性的矛盾。这决定 了牛顿定律不可能适用于一切参考系,而只能适用于某 些参考系。凡牛顿定律成立的参考系,称为惯性参考系。 凡牛顿定律成立的参考系,称为惯性参考系 凡牛顿定律成立的参考系
2 d 2ρ dϕ m 2 −ρ = Fρ dt dt 2 d ρ dϕ d ϕ m 2 + ρ 2 = Fϕ dt dt dt
(11.6)
这就是极坐标形式的质点运动微分方程。
11.3 质点动力学的两类基本问题
应用质点运动微分方程,可以求解质点动力学的两 类基本问题。 第一类基本问题 已知质点的运动规律,即已知质点 的运动方程或质点在任意瞬时的速度或加速度,求作用 在质点上的未知力。这一类问题可归结为数学中的微分 问题。 求解该问题比较简单。若已知质点的运动方程,则 只须将它对时间求两次导数即可得到质点的加速度,代 入适当形式的质点运动微分方程,得到一个代数方程组, 求解这个方程组即可得到所求的未知力。
11.1 动力学基本定律
质点动力学的基本定律是牛顿在总结前人特别是伽 利略的研究成果的基础上,1687年在其著作《自然哲学 的数学原理》中提出来的,通常称为牛顿三定律 牛顿三定律。这些 牛顿三定律 定律是动力学的基础。
11.1 动力学基本定律
第一定律 任何质点都保持其静止的或作匀速直线运 动的状态, 动的状态,直到它受到其他物体的作用而被迫改变这 种状态为止。 种状态为止 质点保持静止或匀速直线运动状态的属性称为惯性 惯性, 惯性 质点作匀速直线运动称为惯性运动,因此第一定律又称 惯性运动, 惯性运动 惯性定律。此定律表明:质点必须受到其他物体的作用 惯性定律 时,也就是受到外力的作用时,才会改变其运动状态, 即外力是改变质点运动状态的原因 外力是改变质点运动状态的原因。 外力是改变质点运动状态的原因

理论力学第10章 质点动力学

理论力学第10章 质点动力学
4 4
y
ω O φ
A β
B
如滑块的质量为m,忽略摩擦及连 杆AB的质量,试求当 t 0 和 时,连杆AB所受的力。
π 2
§10.3 质点动力学的两类基本问题 例 题 10-1
运 动 演 示
§10.3 质点动力学的两类基本问题 例 题 10-1
y
解:
ω O φ
A
β B
以滑块B为研究对象,当φ=ωt 时,受力 如图。连杆应受平衡力系作用,由于不计连 杆质量,AB 为二力杆,它对滑块B的拉力F沿 AB方向。 写出滑块沿x轴的运动微分方程
§10.3 质点动力学的两类基本问题 例 题 10-3
解: 以弹簧未变形处为坐标原点O,物块
在任意坐标x处弹簧变形量为│x│ ,弹簧 力大小为 F k x ,并指向点O,如图所 示。 则此物块沿x轴的运动微分方程为
F O x
m
x
d2 x m 2 Fx kx dt
或 令
d2 x m 2 kx 0 dt
mg
绳的张力与拉力F的大小相等。
§10.3 质点动力学的两类基本问题 例 题 10-3
物块在光滑水平面上与弹簧相连,如图所示。物块
质量为 m ,弹簧刚度系数为 k 。在弹簧拉长变形量为 a 时, 释放物块。求物块的运动规律。
F
O x
m
x
§10.3 质点动力学的两类基本问题 例 题 10-3
运 动 演 示
应用质点运动微分方程,可以求解质点动力学的两类问题。
§10.3 质点动力学的两类基本问题
第一类基本问题:已知质点的运动,求作用于质点上的力。 也就是已知质点的运动方程,通过其对时间微分两次得到质 点的加速度,代入质点运动微分方程,就可得到作用在质点 上的力。

《理论力学》第10章 质心运动定理

《理论力学》第10章 质心运动定理

第10章 质心运动定理
26
3、求质心加速度
aC
aB
aCt B
aCnB
4、质心运动定理求约束力,受力分析
ma Cx FixE FA sin450 maCy FiyE FB mg FA cos 450
O
450
1m
A
C
vB
aB
450
B
FA
A
mg
x
FB
C
450
B
★理论力学电子教案
0
px const
★理论力学电子教案
第10章 质心运动定理
18
例题 图示机构,均质杆OA长l,质量为m1,滑块A的质量为m2, 滑道CD的质量为m3。OA杆在一力偶(图中未画出)作用下作 匀角度ω转动。试求O处的水平约束反力(机构位于铅直平面
内,各处摩擦不计)。 C
A
O
E
D
★理论力学电子教案
第10章 质心运动定理
第10章 质心运动定理
27
ma A
第10章 质心运动定理
14
M
C aC mg
FN
F
★理论力学电子教案
第10章 质心运动定理
§2 质点系动量、冲量
质点动量: 质点系动量:
p mv
P mivi mvC
问:刚体系动量?
元冲量:
dI F dt
冲量:
t2 t2
I dI F dt
t1
t1
15
p mv
★理论力学电子教案
第10章 质心运动定理
1
第十章 质心运动定理&动量定理
★理论力学电子教案
第10章 质心运动定理

质点力学习题与参考解答

质点力学习题与参考解答

【郑重说明】《理论力学》课程的习题及解答方面的参考书很多,学习者可以通过各种形式阅读与学习,按照学院对教学工作的要求,为了满足学习者使用不同媒体学习的实际需要,通过各种渠道收集、整理了部分习题及参考解答,仅供学习者学习时参考。

由于理论力学的题目解答比较灵活,技巧性也比较强,下面这些解答不一定是最好的方法,也可能会存在不够完善的地方,希望阅读时注意之。

学习理论力学课程更重要的是对物理概念的掌握与理解,学习处理问题的思想与方法,仅盲目的做题目或者阅读现成的答案,很难达到理想的结果。

质点动力学思考题与习题及参考解答思考题(1) 有一质量为m 的珠子, 沿一根置于水平面内的铁丝滑动, 采用自然坐标法描述. 珠子受重力g m W=, 铁丝施与的约束力b Nb n Nn t Nt Ne F e F e F F ++=.t Nt e F 即为滑动摩擦力f F, 设动摩擦因数为μ. 试判断下列各式正误: (1) mg F f μ=; (2) Nb f F F μ= (3)Nn f F F μ=;(4) 22Nb Nnf F F F +=μ(2) 用极坐标系描述单摆的运动. 某甲如思考题(2图(a)规定θ角正向, 得到动力学方程θθsin mg ml -= ; 某乙如思考题(2图(b)规定θ角正向, 则得到θθsin mg ml += . 你认为谁的做法正确?(a) (b)思考题(2图(3) 质量为m 的质点, 由静止开始自高处自由落下. 设空气阻力f F与速度成正比, 比例系数为k . 某甲建立竖直向上的坐标如思考题(3图(a), 得到方程为y k mg y m+-=. 某乙建立竖直向下的坐标如思考题(3图(b), 得到方程为y k mg y m-=.他们列出的方程对吗?(a) (b)思考题(3(4)有人认为: 用极坐标系讨论质点的平面运动时, 如果0≡r F , 则沿径向动量守恒,==rm p r 常量;若0≡θF , 则沿横向动量守恒. 这种看法对吗? (5) 试判断以下二论断是否正确:(1) 若质点对固定点O 的角动量守恒, 则对过O 点的任意固定轴的角动量守恒. (2) 若质点对固定轴的角动量守恒, 则对该轴上任一固定点的角动量守恒.(6) 一质点动量守恒, 它对空间任一固定点的角动量是否守恒? 如质点对空间某一固定点角动量守恒, 该质点动量是否守恒?(7) 当质点做匀速直线运动时, 其动量是否守恒? 角动量是否守恒?(8) 在固定的直角坐标系Oxyz 中, 质量为m 的质点的速度k v j v i v v z y x++=, 所受合力为k F j F i F F z y x ++=. 能否将质点的动能定理r F mv d )21(d 2⋅=向x 轴方向投影而得出分量方程x F mv x x d )21(d 2= 该方程是否正确?思考题解答(1) 仅(4)式正确.(2) 甲正确. 乙错在角度不可以定义为从动线指向定线.(3) 乙的方程正确. 甲错在空气阻力亦应为yk -,y 取负值,y k -取正值. (4) 仅对固定方向才有动量守恒的分量形式. 径向和横向均不是空间固定方向. (5) (1)对;(2)错. (6) 一质点动量守恒,则对空间任一固定点角动量守恒. 质点对空间某一固定点角动量守恒,其动量不一定守恒.(7) 质点作匀速直线运动时,其动量和角动量均守恒.(8) 动能定理是标量方程,不可能投影而得出分量方程. 但xF mv x d )21(d 2=是正确的. 仿照动能定理的导出,用x t v x d d =乘牛顿第二定律的x 分量方程x xF t v m=d d 即可证明.质点动力学习题及参考解答【1】研究自由电子在沿x 轴的振荡电场中的运动. 已知电场强度i t E E)cos(0ϕω+=,ϕω,,0E 为常量. 电子电量为e -, 质量为m . 初始时, 即当0=t 时i x r00=, i v v 00=. 忽略重力及阻力, 求电子的运动学方程.【解】力为时间的函数,积分两次可得)cos(200ϕωω+++=t m eE t V X x ,其中ϕωcos 2000m eE x X -=,ϕωsin 00m eE v V +=.【2】 以很大的初速度0v自地球表面竖直上抛一质点, 设地球无自转并忽略空气阻力, 求质点能达到的最大高度. 已知地球半径为R , 地球表面处重力加速度为g .【解】以地心O 为原点,建立x 轴经抛出点竖直向上. 质点受万有引力沿x 轴负方向. 所以2x GMm xm -= . 因为2R GMmmg =,故g R GM 2=. 故有22x g R x -= . 做变换)2(d d d d d d d d 2x x x x x t x x x x ===,则x x g R x d )2(d 222-= . 积分并用0=t 时R x =,0v x = 定积分常数,得到 )11()(212202R x g R v x -=- . 质点达最大高度时H R x +=,0=x,可求出 1220)21(2--=Rg v g v H .三点讨论:(1)令∞=H ,对应Rg v 20=为第二宇宙速度.(2)若Rg v 220<<,则回到重力场模型所得结果. (3)题中不考虑地球自转及空气阻力,均不大合理,试进一步讨论之.【3】 将质量为m 的质点竖直上抛, 设空气阻力与速度平方成正比, 其大小22gv mk F R =.如上抛初速度为0v , 试证该质点落回抛出点时的速率2201v k v v +=.【解】质点运动微分方程为(Oy 轴竖直向上);上升阶段22y g mk mg y m--=,下降阶段22y g mk mg ym +-=. 【4】向电场强度为E 、磁感应强度为B 的均匀稳定电磁场中入射一电子. 已知B E⊥, 电子初速0v 与E 和B 均垂直, 如题4图所示. 试求电子的运动规律. 设电子电量为e -.题4图【解】令m eB=ω,电子运动微分方程为y xω-=, (1) m eEx y-= ω, (2)0=z . (3)对(2)式求导,利用(1)式得02=+y yω,解出)sin(αω+=t A y . 0=t 时0=y 故0=α,由t A y ωωcos = ,且0=t 时m eBv Ee y0+-= ,故B Bv E A 0+-=,则t B Bv E y ωsin 0+-= . 积分得)cos 1()(20t m eB eB Bv E m y -+-=. 代入(1)式积分可得t m eB eB Bv E m t B E x sin )(20--=.【5】 旋轮线如题5图所示, 可理解为一半径为a 的圆轮在直线上做无滑滚动时轮缘上一点P 的轨迹, 其参数方程为)sin (ϕϕ+=a x , )cos 1(ϕ-=a y . 在重力场中, 设y 轴竖直向上, 一质点沿光滑旋轮线滑动, 试证质点运动具有等时性(绕O 点运动周期与振幅无关).题5图【解】(旋轮线是如图圆轮在直线AB 上作无滑滚动时P 点的轨迹,曲线上P 点切线方向即为轮上P 点速度方向. 因无滑,0P 为瞬心,故P 点切线与P P 0垂直,因此可知P 点切线与x 轴夹角为2ϕ. )以曲线最低点(0=ϕ)为自然坐标原点,弧长正方向与t e 一致. 质点运动微分方程为2sinϕmg s m -= .对曲线参数方程求微分,得ϕϕd )cos 1(d +=a x 和ϕϕd sin d a y =,所以ϕϕd 2cos 2d d d 22a y x s =+=,积分并用0=ϕ时0=s 定积分常数,得2sin 4ϕa s =. 代入质点运动微分方程消去ϕ,得到4=+s a gs ,s 作简谐振动而具有等时性. 其解为)cos(0αω+=t A s ,a g40=ω与振幅无关.【6】 一小球质量为m , 系在不可伸长的轻绳之一端, 可在光滑水平桌面上滑动. 绳的另一端穿过桌面上的小孔, 握在一个人的手中使它向下做匀速运动, 速率为a , 如题【6图所示. 设初始时绳是拉直的, 小球与小孔的距离为R , 其初速度在垂直绳方向上的投影为0v . 试求小球的运动规律及绳的张力.题6图【解】小球运动微分方程为T F r r m -=-)(2θ , (1) 0)2(=+θθr r m , (2)a r-= . (3) 由(3)式求出at R r -=,代入(2)式求出)/(0at R t v -=θ,再由(1)式求出3220)(at R R mv F T -=.【7】 一质量为m 的珠子串在一半径为R 的铁丝做成的圆环上, 圆环水平放置. 设珠子的初始速率为0v , 珠子与圆环间动摩擦因数为μ, 求珠子经过多少弧长后停止运动 (根据牛顿第二定律求解).【解】珠子的运动微分方程为2b 2n d d N N F F t v m+-=μ, (1)n 2/N F mv =ρ, (2)mg F N -=b 0, (3)R =ρ(约束方程). (4)把(2)、(3)、(4)式代入(1)式,作变换sv t v d /)21(d d d 2=,可求出]/)ln[()2/(224020Rg g R v v R s ++=μ.【8】 质量为m 的小球沿光滑的、半长轴为a 、半短轴为b 的椭圆弧滑下, 此椭圆弧在竖直平面内且短轴沿竖直方向. 设小球自长轴端点开始运动时其初速度为零. 求小球达到椭圆弧最低点时对椭圆弧的压力 (根据牛顿第二定律求解). 【解】以椭圆最低点为自然坐标原点O ,弧长正方向指向小球初始位置,θ为切向与水平方向的夹角,小球的运动微分方程为θsin mg vm -= , (1) θρcos /2mg F mv N -=. (2)Oy 竖直向上,将s y d /d sin =θ代入(1)式得s y g s v v d /d d /d -=,积分可求出小球达最低点时gb v 22=. 由轨道方程22x a a by --=求出当0=x 时0='y ,2/a b y ='',由公式可求出22/32)1(1a b y y ='+''=ρ. 再由(2)式求出0=θ时)/21(/cos 22a b mg mv mg F N +=+=ρθ.【9】 力1F 和2F分别作用在长方体的顶角A 和B 上, 长方体的尺寸和坐标系如题【9图所示. 试计算1F 和2F对原点O 及3个坐标轴的力矩.题9图【解】11bF M x =,11aF M y -=,01=z M ,2222/b a bcF M x +=,2222/b a acF M y +-=,02=z M .【10】 已知质量为0m 的质点做螺旋运动, 其运动学方程为t r x ωcos 0=, t r y ωsin 0=,kt z =,k r ,,0ω为常量. 试求: (1)t 时刻质点对坐标原点的角动量;(2) t 时刻质点对过),,(c b a P 点, 方向余弦为),,(n m l 的轴的角动量.【解】由运动学方程求出→v ,根据定义即可求出→→→→→→++--=⨯=k r m j t t t r km i t t t r km v r m L ωωωωωωω200000000)sin (cos )cos (sin ,)]cos ()sin )([(]cos )()sin ([000000),,(a t r k t r c kt m m t r c kt b t r k l m L n m l -+-----=ωωωωωω)sin cos (00200t br t ar r n m ωωωωω--+.【11】 如题【11图所示, 质量为m 的小球安装在长为l 的细轻杆的A 端, 杆的B 端与轴21O O 垂直地固连. 小球在液体中可绕21O O 轴做定轴转动, 轴承1O 和2O 是光滑的. 转动中小球所受液体阻力与角速度成正比, ωαm F R =,α为常量. 设初始角速度为0ω,试求经多少时间后, 角速度减小为初始值的一半,以及在这段时间内小球所转圈数.(忽略杆的质量及所受阻力.)题 11图【解】由对21O O 轴的角动量定理ωαωm l ml t -=)(d d2,积分可得lt /0e αωω-=,求出α/)2ln (l t =. 将角动量定理化为l /d d θαω-=,积分可以求得αωαωθπ4/)r a d (2/00l l ==(圈)【12】 质量为m 的质点沿椭圆轨道运动, 其运动学方程为kt a x cos =, kt b y sin = (k b a ,,为常量). 用两种方法计算质点所受合力在0=t 到k t 4π=时间内所做的功.【解】(1)由动能定理)(4121212222122b a mk mv mv W -=-=.(2)用曲线积分算⎰⎰+=⋅=→→2121)d d (y ym x x m r d F W ,把轨道参数方程kt b y kt a x sin ,cos ==代入,则曲线积分化为对t 的积分,可得同样结果.【13】 试用动能定理求解7题.【解】珠子的动能定理为sF F mv N N d )21(d 2b 2n 2--=μ,参见3.7提示【14】 有一小球质量为m , 沿如题【14图所示的光滑的水平的对数螺旋线轨道滑动. 螺旋线轨道方程为θa e r r -=0, a 为常数. 已知当极角0=θ时,小球初速为0v . 求轨道对小球的水平约束力N F 的大小. (用角动量及动能定理求解, 图中δ为θe 与v 方向间夹角,a =δtg.)题14图【解】因机械能守恒,小球动能不变,因此0v v =.过O 点作z 轴竖直向上(垂直纸面向外),质点对z 轴的角动量δcos rmv L z =. 质点所受对z 轴力矩δsin N z rF M -=. 由对z 轴的角动量定理得δδsin )cos (d d0N rF rmv t -=.由于θθθθθ ar ar t r r v a r -=-===-e d d d d 0,θθ r v =. 故a v v r =-=θδtan . 将它代入角动量定理方程,得到N N arF rF rmv -=-=δtan 0 . 而δδsin sin 0v v v r r -=-== ,所以θδδδa N a r mv a r mv ar mv ar mv F e 11tan 1tan sin 2020220222020+=+=+==.【15】 已知质点所受力F 的3个分量为z a y a x a F x 131211++=,z a y a x a F y232221++=, z a y a x a F z 333231++=,系数)3,2,1,(=j i a ij 都是常量. 这些ij a 满足什么条件时与力F相关的势能存在? 在这些条件被满足的条件下, 计算其势能.【解】当0=⨯∇→F 时势能存在,要求311332232112,,a a a a a a ===. 以原点为势能零点,则)222(21132312233222211xz a zy a xy a z a y a x a V +++++-=.【16】 一带有电荷q 的质点在电偶极子的场中所受的力为3c o s 2r pq F r θ=,3sin r pq F θθ=,p 为偶极距, r 为质点到偶极子中心的距离.试证此力场为有势场.【解】)/cos (d d d )d d (d 2r pq r F r F e r e r F r F r r θθθθθ-=+=+⋅=⋅→→→→→,故为有势场 【17】 如题17图所示, 自由质点在Oxy 平面内运动, 静止中心A 和B 均以与距离成正比的力吸引质点M , 比例系数为k . 试证明势能存在并求出质点的势能.v题【17图【解】y ky x kx y ky ky x b x k b x k r F d 2d 2d )(d )]()([d --=--+--+-=⋅→→)](d [22y x k +-=.故势能存在. 以O 为势能零点,则)(22y x k V +=.【18】 试用机械能守恒定律求解8题.【解】根据机械能守恒定律,以椭圆弧最低点为势能零点,mgbmv =221,可知gb v 2=,参见3.8提示.【20】 将质量为m 的质点竖直抛上于有阻力的媒质中。

质点动力学的基本方程

质点动力学的基本方程

y aC x ar
FS
maa Fi m(ae ar aC ) Fi
φ
F
a
n e
φ FN
mg
沿x方 向 投 影: m (a r aen ) F mg sin Fs 2 ( 0.2) F 2 9.8 sin57.3o Fs (1) 沿y方 向 投 影: maC FN mg cos
t m m y D2 e g ( 6) m m m C1 v 0 C 2 v0 0 可得 m2 m2 0 D1 2 g D2 2 g
t m 代入( 3) , (5) 式整理可得: x v0 (1 e m )

t m2 m m y 2 g(e 1) gt
k cos v x 1 0
例三
质量为m 的小球以水平速度vo 射入静水中. 水对小球的阻力F与 小球的速度方向相反, 而大小为F = μv , μ 为阻尼系数. 忽略水对 小球的浮力. 求小球在重力和阻力作用下的运动方程.
解:
O vo F M v mg x
y
取质点分析其受力及运动: 0 m x 0 C x Ct D x x eA cos kt m y
m x
0
vo
F
v
e A cos kt y m e y A sin kt E km e y 2 A cos kt Et F k m
0 (1) x m g ( 2) m y mg y y y m 先求二阶常系数齐次的 通解 x m x x (特征根法) 0 m 1 0 2 m

(完整版)理论力学_动力学课件

(完整版)理论力学_动力学课件

dpx
/
dt


F (e) x
dp y
/
dt


F (e) y
微 分 形
dpz
/
dt


F (e) z

px

p0 x


I
(e) x
py

p0 y


I
(e y
)
积 分 形
pz

p0 z


I
( z
e
)

12 动量矩定理 12.1 质点和质点系的动量矩
理论力学 (运动学)
教 材:《理论力学》 陈国平 罗高作 主编 武汉理工大学出版社
参考书: 《建筑力学》 钟光珞 张为民 编著 中国建材工业出版社
《建筑力学》 周国瑾等 编著 同济大学出版社
《理论力学》 范钦珊 主编 清华大学出版社
10 质点动力学
第10章 质点动力学的基本方程
§10-1 动力学的基本定律
画受力图
(2) 研究对象运动分析
(3) 列方程求解求知量
Fx

F

P sin


P g
a
Fy FN P cos 0

y
x
a
F
F
P(sin
a g ), FN

P cos
P
FN
F f FN
f min

a
g cos
tan
11 动量定理 §11-1 动量与冲量
§11-2 动量定理
1. 质点的动量定理
dp d(mv) ma F dt dt

第4章理论力学习题解

第4章理论力学习题解

4.1一质点受一与距离成反比的引力作用在一直线上运动,质点的质量为m ,比例系数为k ,如此质点从距原点O 为a 的地方由静止开始运动,求其到达O 点所需的时间。

解:质点受引力为:xk F -=,其运动微分方程为:xk tm-=d d v (1)即: x k xm -=d d v v分离变量积分:⎰⎰-=x axx k m d d 0v v vxa k m ln212=v)ln(2d d xa mk tx -==v (2)(v 与x 反向,取负值) )ln00ln ),0((∞→→>∴∈xa x xa a x令:y ayex aex xa y yyd 2d )ln(22---===,代入(2)式得;mk ty aey2d d 22-=-分离变量积分:)0:0:(∞→→y a x⎰⎰=-∞t yt mk y ea 0d 2d 22t mk a22π2=故到达O 点所需的时间为: km a t 2π=4.2一质点受力3K xa x F +-=作用,求势能)(x V 与运动微分方程的解。

解:C x a x x xa x x F x V ++=+--=-=⎰⎰2232K 21d )K (d )(适当选取势能零点,使0=C ,则222K 21)(xa x x V +=机械能 =++=2222K 2121xa x xm E 常量 (1)将(1)改写成2222K 242xa x E xm --= (2)质点运动微分方程:32K xa x xm +-= 22K 22xa x xmx +-=⇒ (3)(3)+(2)得22K 44)(2x E xx x m -=+ 即0)K(K 4d d 2222=-+E x mtx (4)(4)式通解:⎪⎪⎭⎫⎝⎛++=02 K2cos K θt m A Ex当0=x时,222K 21xa x E += 解得KK K)(2max 2a EE x -+=,KK 2aEA -=所以 ⎪⎪⎭⎫⎝⎛+-+=022K2cos KK Kθt m aE E x4.3若质点受有心力作用而在圆θcos 2a r =上运动时,则5228rh ma F -=,式中m 为质量,h 为速度矩。

第十二章 动能定理

第十二章 动能定理


2. 受力分析 只有重力做功。
3. 建立动力学方程 用动能定理。
v C
A
c
θ
R
★理论力学电子教案
vC (R r) vC / r (R r)/ r
第12章 动能定理
T1 0
T2

1 2
m vC2

1 2
JC2

3 4
m(R

r )22
W12 mg (R r)(1 cos )
力功之和可以不为零。如引力。
2. 刚体间的理想约束做功之和为零。
为什么?
★理论力学电子教案
第12章 动能定理
12
五、功率
单位时间内力(或力偶)所做的功。
P

W

F
dr
F
v
dt dt
力做功之功率
或P W M d M 力偶(力矩)做功之功率
dt
dt
功率的单位:瓦(W)
1.重力功


F FW k
W12

M 2 F
dr
z2
FW
dz FW
z1 z2
M1
z1
2.弹F性力k功r l0 r0
其中r0为r方向的单位矢量,l0为原长
W

F
dr
kr
l0 r0 dr
kr l0 r dr kr l0 dr r
1W 1N 1m / s
★理论力学电子教案
第12章 动能定理
13
例题 鼓轮内半径为r,外半径为R,在常力F作用下作 纯滚动。试求F在s上所作的功。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例10-1 小球质量为m,悬挂于长为l的细绳上。小 球在铅垂面内摆动时,在最低处时速度的大小为v ;摆 到最高处时,绳与铅垂线夹角为j ,如图10-4所示,此 时小球速度为零。试计算小球在最低与最高位置时绳的 拉力。 解:小球作圆周运动,受有重力 G = m g和线的拉力 F 作用,在最低处 有法向加速度为: an v2 / l 由质点运动微分方程沿法向投影式:
10.2 质点运动微分方程 牛顿第二定律,建立了质点的加速度与作用力的 关系。当质点受到n个力 F1,… , Fn 。作用时,式 (10-1)写成 m a F (10-3) 将式(10-3)中的加速度表示为位置参数的导数形式, 就得到各种形式质点运动微分方程。
10.2.1 矢量形式 设质点M的质量为m,作用于其上的合力为:F F 矢径为r,加速度为a ,如图10-2所示。 z 由运动学知:
令:
g
m
x x 0 y y g
解:这是二个自由度的平面曲线运动。求质点的 运动方程,属于第二类问题。应用直角坐标形式的质 v y 点运动微分方程进行求解。 θ F (1)以质点作为研究对象。 v G (2)受力分析:质点在任意 a x 位置处受重力G和阻力F作用。 图 10-7 (3)列运动方程求解:
0
mx F cos g v cos g x my F sin G g v sin mg g y mg
直线运动。
首先,定律指出不受力作用的质点(包括受平
衡力系作用的质点),不是处于静止状态,就是保 持匀速直线运动。这种性质称为惯性(Inertia)。 第一定律阐述了物体作惯性运动的条件,故又称为 惯性定律。
其次,定律还指出,若质点的运动状态发生改
变,必定是受到其他物体的作用,这种机械作用就 是力。
第二定律(力与加速度关系定律) 质点的质量与加速度的乘积,等于作用于质点的 力的大小,加速度的方向与力的方向相同。 设质点M的质量为m,所受的力为F,由于力F的 作用所产生的加速度为a,如图10-1所示。则此定律 可表示为 (10-1) ma F vLeabharlann 0 v0v dv
R H R
dx g R 2 x
2
火箭能达到的高度H
H
1 2 1 2 1 v0 g R 2 R RH 2 v0 R
2 0
2g R v
(e)
讨论:欲使火箭脱离地球引力,所需初速度 v0 应 多大? 欲使火箭不受地球引力作用,必须要求 x = R +H → ∞,由于R为常量,由式(e)知,即要求
2 2 x a cos t x 2 2 y b sin t y
由式(10-5)求得作用力F在坐标轴上的投影:
Fx m x 2m x
Fy m y 2m y
故力F 的大小为:F
Fx2 Fy2 2 m x 2 y 2 2 m r
式(10-1)称为质点动力学基本方程。当 质点同时受多个力作用时,式(10-1)右 端的F应理解为是这些力的合力,即
M a F
由该定律可知,以同样的力作用在不同质量的质 点上,质量愈大的质点获得的加速度愈小,也就不易 改变它的运动状态。这就说明了较大的质量具有较大 的惯性。因此,质量是质点惯性的度量。
系,是指由有限个或无限个有一定联系的质点所组成
的系统。这样,任何物体(包括固体、液体、气体) 都可以看作是某个质点系。刚体则是各质点之间距离 保持不变的特殊质点系。 动力学可分为质点动力学和质点系动力学。前者 是后者的基础。
10.1 动力学基本定律 第一定律(惯性定律) 不受任何力作用的质点,将保持静止或作匀速
a d r dt2
o
2
M(x,y,z)
v
r F
y
代入式(10-3)得
d2 r m 2 F dt
(10-4)
x
图10-2
式(10-4)即为质点运动微分方程的矢量形式。
10.2.2 直角坐标形式
把式(10-4)投影到直角坐标系oxyz的三个坐标 轴上(见图10-2),并注意到
d2 x a x 2 x dt
m
分离变量积分式(c)
dt
2

x
2
(c)
d2 x dv dv d x dv 因为 v 2 dt dt d x dt dx dv mg R2 2 dx mv v dv g R 2 2 dx x x
(d)
初始条件为:当 t = 0 时,x = R ,v = v 0 ;当火箭到最大 高度 H 时,x m a x = R + H,v = 0;对式 (d) 积分得:
例10-3 以初速v0自地球表面竖直向上发射一质量 为 m 的火箭,如图10-6所示。若不计空气阻力,火箭所 受引力 F 之大小与它到地心距离的平方成反比,求火箭 所能到达的最大高度。 x 解:(1)取火箭为对象,视为质点。 (2)受力分析,火箭在任意位置 x 处,仅受地球引力F 作用。由题意知, F 的大小与 x2 成反比,设 u 为比例系数, 则有:
(10-6)
式(10-6)称为质点运动微分方程的自然坐标形式。在 运动轨迹己知的情况下,宜采用自然形式的方程。
10.3 质点动力学的两类基本问 题 第一类问题——己知质点的运动,求作用于质点 上的。 若己知质点的运动轨迹,选择相应坐标系,列出 质点的运动方程,运用微分运算,便可求得加速度在 坐标轴上的投影,由质点运动微分方程求出要求的力。 因此,求解第一类问题归结为微分问题。 第二类问题——己知作用在质点上的力,求质点 的运动。 这类问题的求解归结为质点运动微分方程的积分。 如作用于质点上的力是常力,或力为时间、位置坐标、 速度的简单函数,积分一般不会有困难;如果该函数关 系比般复杂,会使积分计算遇到困难,甚至有时只能求 得近似解。此外,要确定积分常数,还需给出质点运动 的初始条件,即质点t = 0时的初始位置,初始速度等。
d2 y a y 2 y dt
d2 z az 2 z dt
Fx F x
Fy F y
Fz Fz
得质点运动微分方程的直角坐标形式:
mx Fx my Fy mz Fz
(10-5)
10.2.3 自然坐标形式 设已知质点M的轨迹曲线如图10-3 所示。以轨迹曲线上质点所在处为坐标 原点,取自然轴系,并把式(10-3)向 各轴投影,由运动学知:
r 是质点 M 到原点O 的距离(称为极距),F 的余弦方向是
Fy Fx x y cos( F , i ) cos( F , j) F r F r 作用力 F Fx i Fy j 2m ( x i y j ) 2m r
可见,力F 与 M点的矢径 r 的方向相反,也就是说 F 指向原点O。这种作用线恒通过固定点的力称为有心 力。而这个固定点则称为力心。 以上两例都是动力学的第一类基本问题,由此可 归纳出求解第一类问题的步骤如下: (1) 取研究对象并视为质点; (2)分析质点在任一瞬时的受力,并画出受力图; (3) 分析质点的运动,求质点的加速度; (4) 列质点的运动微分方程并求解。
a d s v ; a n d t2
2 2
(+) b τ M 图 10-3
n
(-)
; ab 0 ; F F
; Fn F n ; Fb F b
分别表示加速度a和力F在自然轴轴上的投影,则
d 2s ma m 2 F dt 2 v man m Fn mab 0 Fb
例10-2 设质点M在固定平面内运动,如图10-5所 x a cos t , 示。己知质点的质量是m,运动方程是: y b sin t ,其中,a,b和都是常量。求作用于质点 y 的力F。 v M x 解:本题属于第一类基本问 F y x O 题,采用直角坐标形式的质点运动 微分方程进行求解。 小球在任一瞬时所受主动力未知, 图 10-5 可假设它在坐标轴上的投影为F x和F y,对小球的运动 方程求导,求出M点的加速度在固定坐标轴上的投影:
F F

10-1
在第二定律中,力与加速度是瞬时关系,即只要某 瞬时作用在质点上的合力不为零,则在该瞬时必有确定 的加速度;没有力作用或作用的合力为零,则加速度为 零。 在地球表面,物体受重力G作用而产生的自由落体 加速度 g称为重力加速度。设物体的质量为m ,根据第 二定律则有: G G mg ; m (10-2)
2 2gR v0 0

v0 2gR
v0 = 11.2 km / s
(f )
将 g 9.8 103 km / s 2 及 R 6370 km 代入式(f)得
这就是火箭脱离地球引力所需的最小发射速度,称为 第二宇宙速度或逃逸速度。
例10-4 在重力作用下以仰角a初速 v0 抛射一质 点(见图10-7)。假设空气阻力与速度一次方成正比, 与速度方向相反( F = -gv) , g为阻力系数。求抛射体 的运动方程。
动力学研究的两类力学模型是:质点(Particle)
和质点系(System of particles)。所谓质点,是指具
有一定质量而几何形状和尺寸大小可以忽略不计的物 体。例如,在研究地球环绕太阳的运行规律时,就可 以不考虑地球的形状和大小尺寸,而把它抽象为一个 质量集中于质心(Center of mass)的质点;所谓质点
M F H x R O
当火箭处于地面时,即 x = R 时 F = m g ,由式(a)可得 u = mgR 2,于是火箭在任意位置 x 处所受地球引力 F 的大 2 m g R 小为 (b)
u F 2 x
(a)
图 10-6
F=
相关文档
最新文档