空间向量求距离PPT课件

合集下载

用空间向量求点到面的距离 PPT

用空间向量求点到面的距离 PPT

2、求向量—求点到平面内任一点对应的向量AP
3、求法向量—求出平面的一个uuu法r 向r 量
4、代入公式—通过公式 d
|
A
P r
n
|
代入求解.
n
练考题、验能力、轻巧夺冠
[题后感悟] 用向量法求点面距的方法与步骤,n
O
为法向量。
练习.已知平面α的一个法向量n=(-2,-2,1), 点A(-1,3,0)在α内,则P(-2,1,4)到α的距离为________. 解析: d=|P→|An·|n|=|1×-2-+222×+--22+2+-124×1| =130.
答案:
10 3
变式练习:已知正方形ABCD的边长为1,PD⊥平面ABCD, 且PD=1,E,F分别为AB,BC的中点.求点D到平面PEF的距 离;
解析:建立以D为坐标原点,DA,DC,DP分别为x轴, y轴,z轴的空间直角坐标系,如图所示.
则P(0,0,1),A(1,0,0),C(0,1,0), E1,12,0,F12,1,0, E→F=-12,12,0,P→E=1,12,-1, 设平面PEF的法向量n=(x,y,z), 则n·E→F=0,且n·P→E=0, 所以-12x+12y=0, x+12y-z=0.
[例1] 正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别 是C1C,D1A1,AB的中点,求点A到平面EFG的距离.
解: 建系 如图,建立空间直角坐标系,
求向量 求法向量
则 A(2,0,0),E(0,2,1),F(1,0,2),G(2,1,0),
uuur
uuur
∴ EF =(1,-2,1), EG =(2,-1,-1),
uur GA=(0,-1,0).设 n=(x,y,z)是平面 EFG 的法向量,

1.4.2 用空间向量研究距离、夹角问题(课件)

1.4.2 用空间向量研究距离、夹角问题(课件)

二面角的大小为
.
π4或34π 解析: cos〈m,n〉=|mm|·|nn|= 22,∴〈m,n〉=π4. ∴两平面所成二面角的大小为π4或34π.
经典例题
角度1:点线距
题型一 利用空间向量求距离
用向量法求点到直线的距离时需注意以下几点: (1)不必找点在直线上的垂足以及垂线段. (2)在直线上可以任意选点,但一般选较易求得坐标的特殊点. (3)直线的方向向量可以任取,但必须保证计算正确.
则 在法向量 n 上的投影向量的长度即为异面直线 a,b 的距离,所以距离为
.
自主学习
二.空间角的向量求法 空间角包括线线角、线面角、二面角,这三种角的定义确定了它
们相应的取值范围,结合它们的取值范围可以用向量法进行求解.
自主学习
角的分类
向量求法
范围
两异面直线 l1 与 l2 所成的角为 θ
设 l1 与 l2 的方向向量分别为 u,v,
经典例题
题型一 利用空间向量求距离
例 2 在三棱锥 S-ABC 中,△ABC 是边长为 4 的正三角形,平面 SAC⊥平面 ABC,
SA=SC=2 3,M,N 分别为 AB,SB 的中点,如图所示.求点 B 到平面 CMN 的 距离.
取 AC 的中点 O,连接 OS,OB. ∵SA=SC,AB=BC,∴AC⊥SO,AC⊥BO. ∵平面 SAC⊥平面 ABC,平面 SAC∩平面 ABC=AC, ∴SO⊥平面 ABC. 又 BO⊂平面 ABC,∴SO⊥BO. 又∵△ABC 为正三角形,O 为 AC 的中点,∴AO⊥BO. 如图所示,分别以 OA,OB,OS 所在直线为 x 轴,y 轴,z 轴, 建立空v>|
则 cosθ=
|u·v| = |u||v|

向量法求空间点到平面的距离课件

向量法求空间点到平面的距离课件
2、向量数量积公式
a•b abcos(为a与b的夹角)
学习交流PPT
2
二、新课
向量法求点到平面的距离
B
n
A
O
1 、剖析 B O : 平 , 如 面垂 图 O ,则 足 , B 到 点 为 平 的面 距离就是
线 B段 的 O 长度。
学习交流PPT
3
例 2、如图,已知正方形 ABCD 的边长为 4,E、F
AB ( 2,1, 0), CB ( 2, 0, 0), CP (0, 1,1) ,
设平面 PBC 的法向量为 n ( x, y, z) ,

n
CB
0
z
n CP 0
(x, y, z)( 2,0,0) 0
(
x,
y,
z)
(0,
1,1)
0

x y
0 z
x
令 y 1, n (0, 1, 1) ,d= 2
向量法求空间点到平面的距离
B
n
A
O
学习交流PPT
1
新课导入: 我们在路上行走时遇到障碍一般会绕过它,在生活中我们知道转弯,那 么在学习上也一样,要想求空间一点到平面距离,就必须找到或间接找 到它,而这样做恰恰是一个比较困难的问题,今天我们就让思维转个弯, 用向量法解决这个难题。
一、复习引入: 1、空间中如何求点到距面离? 方法1、直接做或找距离; 方法2、等体积法; 方法3、空间向量。
2
学习交流PPT
y
7
BE(2,0,0)
设平面 EFG 的一个法向量A
为 n (x, y, z)
E
B
y
学习交流PPT
4
练习1

高中数学第一章空间向量与立体几何2.5空间中的距离课件新人教B版选择性必修第一册

高中数学第一章空间向量与立体几何2.5空间中的距离课件新人教B版选择性必修第一册

=|-1| 3

3 3
.
即点A到平面EFG的距离为
3 3
.
直线到平面、平面到平面的距离 [例4] 如图,矩形ADFE和梯形ABCD所在平面互相垂直,AB∥CD,∠ABC =∠ADB=90°,CD=1,BC=2,DF=1.
(1)求证:BE∥平面DCF; (2)求BE到平面DCF的距离.
[解] (1)证明:∵四边形ADFE为矩形, ∴AE∥DF.又∵梯形ABCD中AB∥CD,AE∩AB=A,DF∩DC=D, AE,AB⊂平面ABE,DF,DC⊂平面DFC,∴平面ABE∥平面DFC, ∵BE⊂平面ABE,∴BE∥平面DCF. (2)如图,以D为原点,建立空间直角坐标系. ∵AB∥CD,∠ABC=∠ADB=90°, 则△ADB∽△BCD⇒ABDC =DCDB , ∵CD=1,BC=2.∴BD= 5 , ∴AD=2 5 ,AB=5,∴F(0,0,1),
―AM→=(4,0,0)+λ(-4,3,1)=(4-4λ,3λ,λ).
又―BM→·―AC→1 =0,∴(4-4λ,3λ,λ)·(-4,3,1)=0,
∴λ=183 ,∴―BM→=4-8× 134,8× 133,183 =2103,2143,183 ,
∴|―BM→|=
21032+21432+1832
=4
设 E 满足―A1→E =λA―1→C1且 BE⊥A1C1,
―B→E =―BA→1 +―A1→E =(2,0,2)+λ(-1, 3 ,0)=(2-λ, 3 λ,2), 又―B→E ⊥A―1→C1,∴(2-λ, 3 λ,2)·(-1, 3 ,0)=0, ∴λ-2+3λ=0,∴λ=12 ,∴―B→E =32, 23,2 .
.
|n |
4.相互平行的直线与平面之间、相互平行的平面与平面之间的距离 (1)当直线与平面平行时,直线上 任意一点到平面的距离 称为这条直线与这个平面

第1课时 用空间向量研究距离问题 高中数学人教A版选择性必修第一册课件

第1课时 用空间向量研究距离问题 高中数学人教A版选择性必修第一册课件
A(0,0,0),C(1,1,0),N 1,0,
所以=
1
,0,1
2
1
2
1
,0,1
2
1
0,-1,
2
,M
,=
,
, =(1,1,0).
设 n=(x,y,z),且 n⊥,n⊥,
1

2
+ = 0,
· = 0,
所以

1
· = 0,
- + = 0,
2
= -2,
1

取 z=2,则 x=-4,y=1,
情境:在平面内任取一点 O,作=a,=b,过点 A 作直线
OB 的垂线,垂足为 A1,则1 就是 a 在 b 上的投影向量.
【思考】
已知两个非零向量 a,b,a 和 b 的夹角为 θ,那么 a 在 b 上
的投影是什么?a 在 b 上的投影向量是什么?
提示:a 在 b 上的投影为|a|cos θ,a 在 b 上的投影向量
5 5
ABC 的一个法向量.
由题意,知 =(-7,-7,7),
所以点 D 到平面 ABC
84
5
|·|
42 2
的距离为
= =
.
||
2
5
4.同类练如图,已知正方体 ABCDA1B1C1D1 的棱长为 1,则点 A 到平面 BDC1 的
3 .
距离为
3
解析:以 D 为坐标原点,DA,DC,DD1 所在直线分别为 x 轴、
.
【思考】
(1)若“单位方向向量 u”变为“方向向量 s”,投影向量
,PQ 分别如何表示?

||
· ·
·

用空间向量研究距离、夹角问题(第1课时+用空间向量研究距离问题)课件

用空间向量研究距离、夹角问题(第1课时+用空间向量研究距离问题)课件
= -,
·1 = 2 + 2 = 0,
所以
所以 = -.
· = 2 + 2 = 0.
取x=1,则y=-1,z=-1.
所以,n=(1,-1,-1)是平面A1BD的一个法向量.
所以点 D1 到平面 A1BD 的距离
|1 1 ·|
d= ||
=
2
3
=
2 3
.
3
(2)根据题意,知A1D1
, ,
2 6 3
,
3
=4,a·u= 3 .
所以点 C 到直线 AB1 的距离为
2
2
-(·)
=
33
.
3
探究二
点到平面的距离
【例2】 设正方体ABCD-A1B1C1D1的棱长为2,求:
(1)点D1到平面A1BD的距离;
(2)平面A1BD与平面B1CD1间的距离.
分析:(1)由平面 A1BD 的法向量和向量1 1 可求出点 D1 到平面 A1BD 的
|1 |
= -
2
2
,0,
2
2
.
所以,点 M 到直线 AD1 的距离
d=
2 -(·)2
当 m=-
-
3

2
=
=
2
+
2 1
(-) - 2 (-)2
=
3 2
-
2

1 2
时,根式内的二次函数取得最小值3a .
3
故 d 的最小值为
3
a.
3
+
1 2
.
2
反思感悟 用向量方法求直线外一点N到直线的距离的步骤
人教A版 数学 选择性必修

向量法的三类求角公式和距离公式PPT课件

向量法的三类求角公式和距离公式PPT课件

•线线角 - •线面角
•二面角
•小结 3
题型一:线线角
异面直线所成角的范围:
0,
2
C
D
思考:
A
D1
B
C D ,A B 与 的 关 系 ?
D C ,A B 与 的 关 系 ?
结论: cos | cosCD ,AB|
•线线角 - •线面角
•二面角
•小结 5
题题型型二二::线线面面角角
空间向量
高二数学备课组
•线线角
•线面角 -
•二面角
•小结
1
专题一:
利用向量解决 空间角问题
•线线角 - •线面角
•二面角
•小结 2
空间向量的引入为代数方法处理立体几 何问题提供了一种重要的工具和方法,解题 时,可用定量的计算代替定性的分析,从而 避免了一些繁琐的推理论证。求空间角与距 离是立体几何的一类重要的问题,也是高考 的热点之一。本节课主要是讨论怎么样用向 量的办法解决空间角问题。
10
二、直线到平面的距离
l
d | AP n |
n
P
n
d
O A
其中 A P 为斜向量,n 为法向量。
-
11
三、平面到平面的距离
d | AP n |
n
A
-
n
P
d
O
12
四、异面直线的距离
n
d | AP n | a
P
n
AP ?
b
n?
A
n 是与 a , b 都垂直的向量
-
13
方法指导:
①作直线a、b的方向向量a、b,求a、b的法向量 n,即此异面直线a、b的公垂线的方向向量;

用向量法求空间距离课件

用向量法求空间距离课件
奇异点
在某些情况下,向量法求空间距离可 能会遇到奇异点,即某些点的坐标值 可能为无穷大或不确定。对于这些点 ,应采取适当的处理方式,如排除或 进行特殊处理。
实际应用中的考虑因素
坐标系选择
在实际应用中,应根据问题的具体情 况选择合适的坐标系,如笛卡尔坐标 系、极坐标系等。不同的坐标系可能 会影响向量法求空间距离的结果。
03
向量法求空间距离的实例解析
点到直线的距离实例
总结词
利用向量法求点到直线的最短距离
详细描述
首先,我们需要确定直线和点在三维空间中的坐标。然后,通过向量的点积和向量的模长,我们可以计算出点到 直线的向量。最后,利用向量法公式,我们可以求出点到直线的最短距离。
点到平面的距离实例
总结词
利用向量法求点到平面的最短距离
未来研究的方向与展望
1 2
深入研究向量法的理论基础
进一步探讨向量法的数学基础和原理,提高其理 论水平。
拓展向量法的应用领域
发掘向量法在其他领域的应用价值,如机器学习 、数据分析和人工智能等。
3
开发向量法的算法优化
针对向量法的计算过程进行优化,提高其计算效 率和精度。
THANKS
感谢观看
用向量法求空间距离课件
目 录
• 向量法求空间距离的基本概念 • 向量法求空间距离的公式推导 • 向量法求空间距离的实例解析 • 向量法求空间距离的注意事项 • 总结与展望
01
向量法求空间距离的基本概念
向量的概念
向量
既有大小又有方向的量。
向量的表示
用有方向的线段表示向量,线段的长度表示向量 的大小,箭头表示向量的方向。
向量法求空间距离的优势与局限性
• 适用范围广:向量法不仅可以用于求解空间距离,还可以 用于解决其他几何问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P r

d=|
uuur PO
|= |
uuur PA
|
cos
APO.
n

uuur PO

,
r n
,

uuur PO

r n
.
∴cos∠APO=|cos
uuur PA,
r n
|.
A O
∴d=|
uuur PA
||cos
uuur PA,
r n
|=
|
uuur PuAur
r n
|
.
|n|
这个结论说明,平面外一点到平面的距离等于连结此点与平面
x
11
四、求异面直线的距离
A a M
n
a
N Bb
uuur r AB n d r
n
12
方法指导:①作直线a、b的方向向量a、b,求a、 b的法向量n,即此异面直线a、b的公垂线的方 向向量;②在直线a、b上各取一点A、B,作向
量AB;③求向量AB在n上的射影d,则异面直线 a、b间的距离为
B
b
na
SA AB BC a,AD 2a, 求
C
x
5
练习2:
练习(用向量法求距离): 如图, ABCD 是矩形, PD 平面 ABCD ,PD DC a , AD 2a , M 、N 分别是 AD 、PB 的中点,求点 A 到平面 MNC 的距离.
P
N
D
(
x,
y,
z
).则A1
C1
z
n CE 0 即 x y 0
B1
n AB1 0
2x 2 y 4z 0
C
取x=1,z则y=-1,z=1,所以 n (1,1,1)
A
B
在两直线上各取点C, A, CA (1,0,0).
E
x
y
CE与 AB1的距离d
|
n CA |n|
|
2
3 3
.
15
练习5
上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的
绝对值.
2
例1、已知正方形ABCD的边长为4, CG⊥平面ABCD,CG=2,E、F分别是AB、 AD的中点,求点B到平面GEF的距离。z
G
xD F
A
E
C
B
y
3
例:1 如图,已知正方形 ABCD 的边长为 4,E、F 分别是
AB、AD 的中点,GC⊥平面 ABCD,且 GC=2,求点
C
M
A
B
6
:如图,以 D 为原点建立空间直角坐标系 D-xyz
则 D(0,0,0),A( 2 a ,0,0),B( 2 a ,a ,0),C(0,a ,0),P(0,0,a )
∵ M 、N 分别是 AD 、PB 的中点,∴ M ( 2 a , 0, 0) N ( 2 a , 1 a, 1 a)
2
2 22
△ABC 中, AC BC 2 , BCA 90o , E 是 AB 的中点,
求异面直线CE 与 AB1 的距离.
解:如图建立坐标系C xyz,则C(0,0,0), E(1,1,0), A(2,0,0), B1(0,2,4).
CE
设CE,
AB(11的,1,公0)垂, A线B1的方(2向,2,向4),量为n
空间向量与距离
西宁市沈那中学 段义善
1
一、求点到平面的距离
如何利用空间向量求点到平面的距离:
如图 A, 空间一点 P 到平面 的距离为 d,已知平面 的
r uuur r
uuur r
一个法向量为 n ,且 AP 与 n 不共线,能否用 AP 与 n 表示 d ?
分析:过 P 作 PO⊥ 于 O,连结 OA.
uuuur ∴ MC (
2
a,
a,
0)
,
uuuur MN
(0,
1
a,
1
a)
,
z
uuur MA (
2 a, 0, 0)
r
2
22
P
r uuuu2r r uuuur
设 n ( x, y, z) 为平面 MNC 的一个法向量, ∴ n MN , n MC
r uuuur ∴ n MC
2 ax ay 0 且
2
N D
C
y
r n
uuuur MN
a
y
a
z
0
M
22
解得 2 x y z ,
A
2 ur
x
B
∴可取 m ( 2,1, 1) uuur r
uuur r ∴ MA 在 n 上的射影长 d
MA n r
a 即点 A 到平面 MNC 的距离为 a .
n2
27
二、求直线与平面间距离
例2、已知正方形ABCD的边长为4,CG⊥平面ABCD,
CG=2,E、F分别是AB、AD的中点,求直线BD到平
面GEF的距离。
z
G
r uuur
d
|
n BE| r
2
11 .
n
11
xD
C
F
A
E
B
y
8
练习3:
正方体AC1棱长为1,求BD与平面GB1D1的距

D1 Z
DD1 n C1 d
A1
B1
n
GD
C
A
Y
X
B
9
三、求平面与平面间距离
例3、正方体AC1棱长为1,求平面AB1C与
y,
z
)x
D
C
Q r uuur r n EF,n
r n
(
1
,
1
uuur EG
uuur22xx24y
0 y2
,1) ,BE (2, 0, 0)
0
F A
3 3 r uuur
E
| n BE| 2 11
B
y
d r
.
n
11
答:点 B 到平面 EFG 的距离为 2
11 .
4
11
练习1: SA 平面ABCD,DAB ABC 90,
B 到平面 EFG 的距离. 解:如图,建立空间直角坐标系 C-xyz.
z
G
由题设 C(0,0,0),A(4,4,0),B(0,4,0),
Duu(u4r,0,0),E(2,u4uu,r0),F(4,2,0),G(0,0,2).
EF
设平面
(2, 2, 0), EG (2, r4, 2), EFG 的一个法向量为 n ( x,
A 13
例4
. 已 知 直 三 棱 柱 ABC─A1B1C1 的 侧 棱 AA1 4 , 底 面
△ABC 中, AC BC 2, BCA 90o , E 是 AB 的中点,
求异面直线CE 与 AB1 的距离.
z
C1
A1
B1
C
A
B
E
x
y
14
例4
. 已 知 直 三 棱 柱 ABC ─A1B1C1 的 侧 棱 AA1 4 , 底 面
已知正方体ABCD-A1B1C1D1的棱长为1,求异面
直线DA1与AC的距离。
z
D1
C1
A1
B1
D A x
C y
B
16
练习6:如图, ABCD是正方形,SB 面ABCD,且SA与 面ABCD所成的角为45,点S到面ABCD的 距离为1,求AC与SD的距离。
平面A1DC1的距离
Z D1
A1
AD n
B1
C1 d
n
D
A X
C
Y
B
10
练习4、在边长为1的正方体ABCD-A1B1C1D1中, M、N、E、F分别是棱A1B1、A1D1、B1C1、 C1D1的中点,求平面AMN与平面EFDB的距离。
z
AB n d
n
N D1 F
C1
A1
E M B1
D
Cy
A
B
相关文档
最新文档