分式经典例题及答案(20200514101831)
分式的典型练习题(打印版)

分式的典型练习题1、若分式4242--x x 的值为零,则x 等于 。
若分式961|2|2+---x x x 的值为0,则x = 。
2、若分式231-+x x 的值为负数,则x 的取值范围是 ;分式512++x x 的值为负,则x 应满足 。
3、分式方程3-x x +1=3-x m有增根,则m= ;4、若关于x 的分式方程3232-=--x m x x 无解,则m 的值为 。
5、已知a=25,25-=+b ,求2++b aa b 得值为_________。
6、若将分式a+b ab (a 、b 均为正数)中的字母a 、b 的值分别扩大为原来的2倍,则分式的值为() A .扩大为原来的2倍 B .缩小为原来的12 C .不变 D .缩小为原来的147、把分式0.1220.30.25x x -+的x 系数化为整数,那么0.1220.30.25x x -+= .8、不改变分式的值,使23172x x x -+-+-的分子和分母中x 的最高次项的系数都是正数,应该是( ) A. 23172x x x ++- B. 23172x x x --- C. 23172x x x +-+ D. 23172x x x --+9、若分式212()()x x x +--的值为0,则x 的取值范围为 ( )(A) 21x x =-=或 (B) 1x = (C) 2x ≠± (D) 2x ≠10、▲不论x 取何值,分式m x x +-212总有意义,求m 的取值范围。
11、(1)已知0132=+-x x ,求① 221x x +的值。
② 求441x x +的值(2)已知31=+x x ,求1242++x x x 的值。
12、▲若112323,2x xy yx y x xy y +--=--则分式=___13、已知21)2)(1(43-+-=---x Bx Ax x x 是恒等式,求A 和B 的值。
14、试证明代数式12211222+-÷-+-x x x x x 的值与x 无关,写出证明过程。
分式的运算练习题及答案

分式的运算练习题及答案分式的运算是数学中的基本内容之一,掌握好分式的运算方法对于提高数学水平具有重要的作用。
本文将为您提供一些分式的运算练习题及答案,帮助您巩固分式运算的知识。
一、基础练习题1. 计算:$\frac{1}{2} + \frac{3}{4}$答案:$\frac{5}{4}$2. 计算:$\frac{2}{3} \times \frac{3}{5}$答案:$\frac{2}{5}$3. 计算:$\frac{5}{6} \div \frac{1}{2}$答案:$\frac{5}{3}$4. 计算:$\frac{3}{4} + \frac{2}{9} - \frac{1}{3}$答案:$\frac{1}{36}$5. 计算:$(\frac{2}{3} + \frac{1}{4}) \times \frac{3}{5}$答案:$\frac{13}{30}$二、复杂练习题1. 计算:$\frac{3}{4} \div \frac{2}{5} \times \frac{1}{3}$答案:$\frac{15}{8}$2. 计算:$(\frac{7}{8} - \frac{3}{4}) \div (\frac{2}{3} \times\frac{5}{6})$答案:$\frac{7}{20}$3. 计算:$\frac{1}{2} + \frac{1}{3} - \frac{1}{4} \times \frac{1}{5}$答案:$\frac{2}{15}$4. 计算:$\frac{2}{3} \div \frac{3}{4} + \frac{4}{5} - \frac{5}{6}$答案:$\frac{7}{6}$5. 计算:$(\frac{3}{4} + \frac{1}{5}) \div \frac{2}{3} - \frac{5}{6}$答案:$-\frac{17}{36}$三、应用题1. 甲、乙两人一起做数学题,甲做的时间是乙的$\frac{2}{3}$,若乙做完题所需时间为1小时,问甲需要多长时间做完这些题?答案:$\frac{4}{3}$小时解析:设甲需要x小时做完这些题,则根据题意可得$\frac{x}{1}=\frac{2}{3}$,解得x=$\frac{4}{3}$。
分式(含答案)

分式【回顾与思考】1.形如 的式子,叫做分式,其中A 叫做 ,B 叫做 。
2.分式的基本性质:分式的分子、分母都 的整式,分式的值 。
3.分式的值为零的条件是 ,分式有意义的条件是 。
4.分式的混合运算:分式的加、减、乘、除、乘方混合运算是先算 ,再算 ,遇到括号,先算括号内的【例题经典】1.熟练掌握分式的概念:性质及运算例1 (12x=______. 【点评】分式值为0的条件是:有意义且分子为0.(2)同时使分式2568x x x -++有意义,又使分式223(1)9x x x ++-无意义的x 的取值范围是( )A .x ≠-4且x ≠-2B .x=-4或x=2C .x=-4D .x=2(3)如果把分式2x y x+中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .缩小10倍 C .不变 D .扩大2倍2. 分式的加、减、乘、除混合运算(1)221211221++--÷++-x x x x x x (2)2232214()2442x x x x x x x x x+---÷--+- 【点评】注意分式混和运算的顺序。
【基础训练】1.某玩具厂要加工x 只“福娃”,原计划每天生产y 只,实际每天生产(y+z)只,(1)该厂原计划 天完成任务(2)该厂实际用 天完成任务2.若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.23.计算22142a a a -=-- . 4.函数1x y x =-自变量x 的取值范围是5.将分式12 x-y x 5 +y 3 的分子和分母中的各项系数都化为整数,应为 ( ) A .x-2y 3x+5y B .15x-15y 3x+5y C . 15x-30y 6x+10y D .x-2y 5x+3y6.若分式xyy x +(x 、y 为正数)中, x 、y 的值分别扩大为原来的2倍,则分式的值( ) A .扩大为原来的2倍 B .缩小为原来的 12C .不变D .缩小为原来的14 7.若代数式21x x -+的值是零,则x = . 8.已知113x y -=,则代数式21422x xy y x xy y----的值为 【能力提升】9.化简:2113()1244x x x x x x x -++-÷++++.10.课堂上,李老师出了这样一道题: 已知352017-=x ,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-的值。
分式练习题及答案

分式练习题及答案分式是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。
在学习分式的过程中,练习题是不可或缺的一部分。
通过练习题,我们可以巩固对分式的理解,提高解题能力。
本文将给大家介绍一些常见的分式练习题及其答案,希望对大家的学习有所帮助。
一、基础练习题1. 计算:$\frac{3}{4}+\frac{2}{5}$解答:首先找到两个分式的公共分母,这里是20。
然后将两个分式的分子相加,保持分母不变。
计算得到:$\frac{15}{20}+\frac{8}{20}=\frac{23}{20}$2. 计算:$\frac{5}{6}-\frac{1}{3}$解答:同样地,找到两个分式的公共分母,这里是6。
然后将两个分式的分子相减,保持分母不变。
计算得到:$\frac{5}{6}-\frac{2}{6}=\frac{3}{6}=\frac{1}{2}$3. 计算:$\frac{2}{3}\times\frac{3}{4}$解答:将两个分式的分子相乘,分母相乘,得到:$\frac{2}{3}\times\frac{3}{4}=\frac{6}{12}=\frac{1}{2}$4. 计算:$\frac{2}{3}\div\frac{5}{6}$解答:将除法转化为乘法,即将第二个分式的分子与分母互换位置,然后进行乘法运算。
得到:$\frac{2}{3}\div\frac{5}{6}=\frac{2}{3}\times\frac{6}{5}=\frac{12}{15}=\frac{4}{5}$二、应用练习题1. 甲、乙两个水管一起工作可以在3小时内将一个水池填满。
如果甲单独工作需要4小时,乙单独工作需要多少小时?解答:设乙单独工作需要x小时。
根据工作时间和工作效率的关系,可以得到以下分式:$\frac{1}{4}+\frac{1}{x}=\frac{1}{3}$。
将分式转化为方程,解方程得到:$x=12$。
分式专题(含答案)

.分式专题一、分式定义,注意:判别分式的依据是分母中还有字母,分母不等于零。
1、在式子y x y x x c ab y a 109,87,65,43,20,13+++π中,分式的个数是( )个2.下列式子:x y a y x ab x 73),(51,89,97222++-,yx 2915-中,是分式的有( )个 二、分式基本性质1、填空:()yx xy ba -=---..............;2.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y; 322()x xy x y --=()x x y -. 3、把分式xyyx -中的x 、y 的值都扩大2倍,则分式的值( )A 不变B 扩大2倍C 扩大4倍D 缩小一半4、已知31=b a ,分式ba ba 52-+的值为 ;5、若32,234a b c a b ca b c-+==++则=_______. 6、不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) 三、分式无意义与有意义,1、当x 时,分式3213+-x x 无意义;2.在分式2242x x x ---中,当x ______时有意义.3.当x____时,分式||2x x -有意义.4.2(3)--x 的取值范围是_______.5. 当x_____________时,式子23+x x ÷322--x x 有意义 四、分式值为零,1、当x 时,分式392--x x 的值为0;2.使分式234x ax +-的值等于零的条件是x____.3.在分式2242x x x ---中,当x ____时分式值为零..__01||87.42=---x x x x ,则的值为若分式五、分式约分1.约分:34522748a bx a b x , 532164abc bc a - 22923a a a ---, xx x 52522--2.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( )个六、通分 1、分式222439xx x x --与的最简公分母是___ ___________. 2、分式yx 21,323x y,232xy x +的最简公分母是( ) 3、把下列各组分式通分 (1)243,2bac bd c (2),412-a 21-a七、分式运算 1、化简xy x x 1⋅÷的结果是( ) 2、22332p mn p n nm÷⎪⎪⎭⎫ ⎝⎛⋅; 3、aa a -+-21422; 4、112---x x x ; 5、⎪⎪⎭⎫ ⎝⎛--÷-x y xy x x y x 2222, 6.339322++--m m m m7 、先化简,再对a 取一个你喜欢的数,代入求值.221369324a a a a a a a +--+-÷-+-.8、先化简:⎪⎭⎫ ⎝⎛--÷-aa a aa 121 并任选一个你喜欢的数a 代入求值.9、先化简,再求值:1312-÷+x xx x ,其中31+=x .10、已知220x -=,求代数式222(1)11x x x x -+-+的值.11、 先化简,再求值: 3x +3 x ·⎝ ⎛⎭⎪⎫ 1 x -1 + 1 x +1 ÷ 6x ,其中x =1.12、先化简,再求值:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.八、分式方程,易错点:分式方程检验 1、解方程: (1)256x x x x -=--. (2)21411x x x +---=1. (3)12212+=++-x xxx x ,(4)6122x x x +=-+. (5)14143=-+--x x x ,(6)22333x x x -+=--,2、已知23(1)(2)12x A Bx x x x -=+-+-+,求A ,B 的值.3、已知分式方程21x ax +-=1的解为非负数,求a 的范围.4、已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围。
分式方程经典习题(含答案)汇编

分式方程经典习题(含答案)一、选择题:1.以下是方程121x =--xx 去分母的结果,其中正确的是 A . x-2(x-1)=1 B .x 2-2x-2=1 C .x 2-2x-2=x 2-x D .x 2-2x+2=x 2-x 2.在下列方程中,关于x 的分式方程的个数有 .①0432221=+-x x ②. 4=a x , ③4=x a ④. 1392=+-x x ⑤621=+x ⑥.211=-+-a x a x A.2个 B.3个 C.4个 D.5个 3.分式5m 2+的值为1时,m 的值是 . A .2 B .-2 C .-3 D .3 4.不解下列方程,判断下列哪个数是方程32133112--++=+x x x x 的解 . A .x=1 B .x=-1 C .x=3 D .x=-3 6.若分式x 2-12(x+1) 的值等于0,则x 的值为 .A 、1B 、±1C 、12 D 、-18.关于x 的方程4532=-+x a ax 的根为x=2,则a 应取值 . A.1B. 3C.-2D.-37.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 . A 、1421140140=-+x x B 、 1421280280=++x xC 、1211010=++x x D 、1421140140=++x x 8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1B.3C.-2D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则x ☆23)1(=+x 的解为 . A .32=x B .1=xC .32-=x 或1D .32=x 或1- 10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A . 32180180=+-x xB . 31802180=-+x xC . 32180180=--x xD . 31802180=--xx11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x 人挖土,其它人运土,列方程:①3x -72=x ②372x x =- ③x-3x=72 ④372=-xx上述所列方程,正确的有 .A .1个B .2个C .3个D .4个二、填空题:13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xmx x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天. 16.阅读材料:方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2, 方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 . 三、 解答题: 17.解方程)2)(1(311+-=--x x x x 18.先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x ax 的解是正数,求a 的取值范围。
分式练习题(附答案)

分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+-10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x= 2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34. 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,时,代数式的值都是12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
分式经典题型分类例题及练习题

分式的运算(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的 有:.题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x -84为正; (2)当x 为何值时,分式2)1(35-+-x x为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义:(1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式 (1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:M B M A M B M A B A ÷÷=⨯⨯= 2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x yxy x +++-2232的值.【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx y x 5.008.02.003.0+-(2)b a ba 10141534.0-+2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分.(1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分:(1)322016xy y x -; (2)n m m n --22; (3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+;(3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--;(6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ;(7))12()21444(222+-⋅--+--x xx x x x x题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xz yz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值.题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值.练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ;(2)ab abb b a a ----222;(3)ba c cb ac b c b a c b a c b a ---++-+---++-232;(4)ba b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-; (6)2121111x x x ++++-;(7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x .2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a .(2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值.4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.(四)、整数指数幂与科学记数法 题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a (2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯.练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅--(2)322231)()3(-----⋅n m n m (3) (4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.第二讲 分式方程(一)分式方程题型分析(提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.) 题型一:用常规方法解分式方程【例1】解下列分式方程(1)xx 311=-; (2)0132=--xx ; (3)114112=---+x x x ; (4)x x x x -+=++4535题型二:特殊方法解分式方程【例2】解下列方程(1)4441=+++xx x x ; (2)569108967+++++=+++++x x x x x x x x【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值.【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围.题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x题型五:列分式方程解应用题练习:1.解下列方程:(1)021211=-++-xxx x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x xx(5)2123524245--+=--x x x x (6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程: (1)bx a 211+=)2(a b ≠; (2))(11b a xb b x a a ≠+=+.3.如果解关于x 的方程222-=+-x xx k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数.5.已知关于x 的分式方程a x a =++112无解,试求a 的值.(二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:一、交叉相乘法例1.解方程:231+=x x二、化归法例2.解方程:012112=---x x三、左边通分法例3:解方程:87178=----x x x四、分子对等法例4.解方程:)(11b a x b b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程x m x x -=--221无解,求m 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的性质
一、知识回顾
1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。
2、分式有意义、无意义的条件:
? ?? ?①分式有意义的条件:分式的分母不等于0;
? ?? ?②分式无意义的条件:分式的分母等于0。
3、分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。
4、分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
5、分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,
不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
6、分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因
式,不改变分式的值,这样的分式变形叫做分式的约分。
约分后分式的分子、分母中不再
含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
二、典型例题
? ???
A.x=-2 B.x=0
C.x=1或2 D.x=1
分析:先根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.这种题一定要考虑到分母不为0.
解答:
∴{ x-1=0 ①
{ x+2≠0②,解得x=1.
故选D.
_______________________________________________________________________________ ______
A.x=1 B.x=-1
C.x=±1
D.x≠1
分析:要使分式的值为0,一定要分子的值为0并且分母的值不为0.
解答:由x2-1=0解得:x=±1,
又∵x-1≠0即x≠1,
∴x=-1,
故选B.
_______________________________________________________________________________ ______
A.x≠5 B.x≠-5 C.x>5 D.x>-5 分析:要使分式有意义,分式的分母不能为0.
解答:∵x-5≠0,∴x≠5;
故选A.
_______________________________________________________________________________ ______
A.x<2 B.x<2且x≠-1 C.-1<x<2 D.x>2 分析:易得分母为非负数,要使分式为正数,则应让分子大于0,分母不为0.
解答:根据题意得:2-x>0,且(x+1)2≠0,
∴x<2且x≠-1,
故选B.
_______________________________________________________________________________ ______
A.x>0 B.x≥0 C.x≥0且x≠1 D.无法确定
分析:分母x2-2x+1=(x-1)2,为完全平方式,分母不为0,则:x-1≠0时,要使分式的值为非负数,则3x≥0,由此列不等式组求解.
解答:依题意,得
{ 3x≥0①
{ x-1≠0②,
解得x≥0且x≠1,
故选C.
_______________________________________________________________________________ ______
例6:下列说法正确的是()
A.只要分式的分子为零,则分式的值为零
B.分子、分母乘以同一个代数式,分式的值不变
C.分式的分子、分母同时变号,其值不变
分析:根据分式的值为0的条件是:(1)分子为0;(2)分母不为0.
分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
解答:A、分式的分子为零,分母不为0,则分式的值为零,故错误;
B、分子、分母乘以同一个不等于0的代数式,分式的值不变,故错误;
C、正确;
D、当x取任意实数时,分式(|2-x|+x)/2 有意义,故错误.
故选C.
_______________________________________________________________________________ ______
A.-7/2 B.7/2 C.2/7 D.-2/7
分析:先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把1/x-1/y=3代入就可以进行计算.
解答:根据分式的基本性质,分子分母都除以xy得,
故选B.
_______________________________________________________________________________ ______
分析:根据已知条件求出(a-b)与ab的关系,再代入所求的分式进行求值.
_______________________________________________________________________________ ______
分析:设恒等式等于一个常数,求出x,y,z与这个常数的关系式,再进行证明.
解答:解:
则x=ka-kb,y=kb-kc,z=kc-ka,
x+y+z=ka-kb+kb-kc+kc-ka=0,
∴x+y+z=0.
三、解题经验
本节题目变化多端,我们要多做练习以积累经验,牢记分式有无意义的条件。
分式的性质是分式变化的依据,要灵活运用。
对于例8、9两个例子,都采用的整体带入得方法,很
常见。