第三章 应变状态分析

第三章 应变状态分析
第三章 应变状态分析

第三章应变状态分析

内容介绍

知识点

位移与变形

正应变

纯变形位移与刚性转动位移应变分量坐标转轴公式

主应变齐次方程组

体积应变

变形协调方程

变形协调方程证明

多连域的变形协调变形与应变分量

切应变

几何方程与应变张量

位移增量的分解

应变张量

应变状态特征方程

变形协调的物理意义

变形协调方程的数学意义

由于载荷作用或者温度变化等外界因素等影响,物体内各点在空间的位置将发生变化,即产生位移。这个移动过程,弹性体将可能同时发生两种位移变化。

第一种位移是位置的改变,但是物体内部各个点仍然保持初始状态的相对位置不变,这种位移是物体在空间做刚体运动引起的,因此称为刚体位移。

第二种位移是弹性体形状的变化,位移发生时不仅改变物体的绝对位置,

而且改变了物体内部各个点的相对位置,这是物体形状变化引起的位移,称为变形。

一般来说,刚体位移和变形是同时出现的。当然,对于弹性力学,主要是研究变形,因为变形和弹性体的应力有着直接的关系。

根据连续性假设,弹性体在变形前和变形后仍保持为连续体。那么弹性体中某点在变形过程中由M(x,y,z)移动至M'(x',y',z'),这一过程也将是连续的,

如图所示。在数学上,x',y',z'必为x,y,z的单值连续函数。设MM'=S为位移矢量,其三个分量u,v,w为位移分量。

u=x'(x,y,z)-x=u(x,y,z)

v=y'(x,y,z)-y=v(x,y,z)

w=z'(x,y,z)-z=w(x,y,z)

显然,位移分量u,v,w也是x,y,z的单值连续函数。以后的分析将进一步假定位移函数具有三阶连续导数。

为进一步研究弹性体的变形情况,假设从弹性体中分割出一个微分六面体单元,其六个面分别与三个坐标轴垂直。

对于微分单元体的变形,将分为两个部分讨论。一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化。弹性力学分别使用正应变和切应变表示这两种变形的。

对于微分平行六面体单元,设其变形前与x,y,z坐标轴平行的棱边分别为MA,MB,MC,变形后分别变为M'A',M'B',M'C'。

假设分别用εx, εy, εz表示x,y,z轴方向棱边的相对伸长度,即正应变;

分别用γxy, γyz, γzx表示x和y,y和z,z和x轴之间的夹角变化,即切应变。则

对于小变形问题,为了简化分析,将微分单元体分别投影到Oxy,Oyz,Ozx

平面来讨论。

显然,单元体变形前各棱边是与坐标面平行的,变形后棱边将有相应的转动,但我们讨论的是小变形问题,这种转动所带来的影响较小。特别是物体位移中不影响变形的计算,假设各点的位移仅为自身的大小和形状的变化所确定,则这种微分线段的转动的误差是十分微小的,不会导致微分单元体的变形有明显的变化。

首先讨论Oxy面上投影的变形。

设ma,mb分别为MA,MB的投影,m'a',m'b'分别为M'A',M'B',即变形后的MA,MB的投影。

微分单元体的棱边长为d x,d y,d z,M点的坐标为(x,y,z),u(x,y,z),v(x, y, z)分别表示M点x,y方向的位移分量。

则A点的位移为u(x+d x,y,z),v(x+d x,y,z),B点的位移为u(x,y+d y,z),v(x,y+d y,z)。按泰勒级数将A,B两点的位移展开,并且略去二阶以上的小量,则A,B点的位移分别为

因为

所以

同理可得

由此可以得到弹性体内任意一点微分线段的相对伸长度,即正应变。

显然微分线段伸长,则正应变εx, εy, εz大于零,反之则小于零。

以下讨论切应变表达关系。

假设βyx为与x轴平行的微分线段ma向y轴转过的角度,βxy为与y轴平行的mb向x轴转过的角度。则切应变

因为

上式的推导中,利用了小变形条件下位移的导数是高阶小量的结论。同理可得

βyx和βxy可为正或为负,其正负号的几何意义为:βyx大于零,表示位 ???????

移v随坐标x而增加,即x方向的微分线段正向向y轴旋转。将上述两式代入切应变表达式,则

同理可得

切应变分量大于零,表示微分线段的夹角缩小,反之则增大。

应变可以描述一点的变形,即对微分平行六面体单元棱边的伸长以及棱边之间夹角的改变做出定义。但是这还不足以完全描述弹性体的变形,原因是应变分析仅仅讨论了棱边伸长和夹角变化,而没有考虑微分单元体位置的改变,即单元体的刚体转动。

通过分析弹性体内无限邻近两点的位置变化,则可得出刚体的转动位移与纯变形位移之间的关系。

设P点无限邻近O点,P点及其附近区域绕O作刚性转动,转过微小角度。

设转动矢量为ω,OP之间的距离矢量为 ,如图所示

。则

引入拉普拉斯算符矢量

综上所述,应变分量与位移分量之间的关系为

上述公式称为几何方程,又称柯西方程。

柯西方程给出了位移分量和应变分量之间的关系。如果已知位移,由位移函数的偏导数即可求得应变;但是如果已知应变,由于六个应变分量对应三个位移分量,则其求解将相对复杂。这个问题以后作专门讨论。

几何方程给出的应变通常称为工程应变。

如果使用张量符号,则几何方程可以表达为

上式表明应变分量εij将满足二阶张量的坐标变换关系,应变张量分量与工程应变分量的关系可表示为

设P点的位移矢量为U,有

U =u i +u j +u k

由于位移矢量可以表示为U =ω×ρ ,

所以

其中

ωx, ωy, ωz为转动分量,是坐标的函数,表示了弹性体内微分单元体的刚性转动。

设M点的坐标为(x,y,z),位移(u,v,w)。与M点邻近的N点,坐标为(x+d x,y+d y,z+d z),位移为(u+d u,v+d v,w+d w)。

则MN两点的相对位移为(d u,d v,d w)。因为位移为坐标的函数,所以

同理可得

以上位移增量公式中,前三项为产生变形的纯变形位移,后两项是某点邻近区域的材料绕该点像刚体一样转动的刚性转动位移。

刚性转动位移的物理意义为,如果弹性体中某点及邻近区域没有变形,则与某点无限邻近这一点的位移,根据刚体动力学可知,是由两部分组成。分别是

随这点的平动位移和绕这点的转动位移。对于弹性体中某一点,一般还要发生变形,因此位移中还包括纯变形位移。

根据公式

即d u等于纯变形位移与刚性转动位移在x方向的分量之和。根据上述公式,可得

或者写作

同理可得

上述公式是关于l,m,n的齐次线性方程组。

如果以n ij(i,j=1,2,3)表示新旧坐标系之间的夹角的方向余弦,并注意到应变张量表达式,则上述应变分量变换公式可以写作

εij=n ii' n jj' εij

因此,如果将应变分量写作下列形式

则应变分量满足张量变换关系。

与应力张量相同,应变张量也是二阶对称张量。

由公式可知,一点的六个独立的应变分量一旦确定,则任意坐标系下的应变分量均可确定,即一点的应变状态就完全确定了。不难理解,坐标变换后各应变分量均发生改变,但它们作为一个整体,所描述的一点的应变状态是不会改变的。

若用V'表示变形后的微分单元体体积,则

将行列式展开并忽略二阶以上的高阶小量,则

若用θ表示单位体积的变化即体积应变,则由上式可得

显然体积应变θ就是应变张量的第一不变量J1。因此θ常写作

体积应变θ大于零表示微分单元体膨胀,小于零则表示单元体受压缩。若弹性体内θ处处为零,则物体变形后的体积是不变的。

对于l,m,n的齐次线性方程组,其非零解的条件为其系数行列式的值为零。即

将上式展开,可得主应变特征方程,

其中

显然与应力不变量相同,J1,J2,J3为应变不变量,分别称为第一,第二和第三应变不变量。

根据特征方程,可以求解得到三个主应变。将求解后的主应变代入公式,并注意到任意一点三个方向余弦的平方和等于1,则可解应变主轴的方向余弦。

由应力张量和应变张量,应力不变量和应变不变量之间的公式的比较可知,主应变和应变主轴的特性与主应力和应力主轴是类似的。

首先从几何方程中消去位移分量,把几何方程的第一式和第二式

分别对x和y求二阶偏导数,然后相加,并利用第四式,可得

若将几何方程的第四,五,六式分别对z,x,y求一阶偏导数,然后四和六两式相加并减去第五式,则

将上式对x求一阶偏导数,则

分别轮换x,y,z,则可得如下六个关系式,

上述方程称为应变协调方程或者变形协调方程,又称圣维南(Saint Venant)方程。

几何方程表明,六个应变分量是通过三个位移分量表示的,因此六个应变分量将不可能是互不相关的,应变分量之间必然存在某种联系。

这个问题对于弹性力学分析是非常重要的。因为如果已知位移分量,容易通过几何方程的求导过程获得应变分量;但是反之,如果已知应变分量,则几何方程的六个方程将仅面对三个未知的位移函数,方程数显然超过未知函数的个数,方程组将可能是矛盾的。

随意给出六个应变分量,不一定能求出对应的位移。例如:

例1设应变分量为:,,求其位移

解:

显然该应变分量没有对应的位移。

要使这一方程组不矛盾,则六个应变分量必须满足一定的条件

以下我们将着手建立这一条件。

所谓的单连通域,是指该物体内任一条闭曲线可以收缩到一点而不越出界外。设应变分量εij单值连续,并有连续的二阶导数,则由

轮换x, y, z计算,可得d v,d w 和dω y,dω z。

如果能够通过积分,计算出

上述位移和转动分量如果是单值连续的,则可得到弹性体的位移单值连续的条件。

变形协调方程的数学意义是:要使三个位移分量为未知函数的六个几何方程不相矛盾,则应变分量必须满足的必要条件。

应变协调方程的物理意义可以从弹性体的变形连续作出解释。假如物体分割成无数个微分六面体单元,变形后每一单元体都发生形状改变,如变形不满足一定的关系,变形后的单元体将不能重新组合成连续体,其间将产生缝隙或嵌入现象。

为使变形后的微分单元体仍能重新组合成连续体,应变分量必须满足一定的关系,这一关系就是应变协调方程。

假如弹性体是单连通域的,则应变分量满足应变协调方程不仅是变形连续的必要条件,而且也是充分条件。

为证明应变协调方程是变形体连续的必要和充分条件,我们可利用弹性体变形连续的物理意义,反映在数学上则要求位移分量为单值连续函数的性质。

我们的目的就是证明:如果已知应变分量满足应变协调方程,则对于单连通域,就一定可以通过几何方程的积分求得单值连续的位移分量。

下面我们推导单连通域的变形协调关系

如果弹性体中的一条封闭曲线,若收缩至一点必须越出域外,则为:

多连通域物体。

一个多连通域物体,可用若干个截面将物体部分的截开,使之成为单连通域。如果所需的截面数为n,则物体为n+1连域。

平面为有两个环形孔的物体,两个截面即可使其成为单连通域,所以为三连域。

对于多连通域问题,应变满足变形协调方程并不能确保位移在分割后的单连通域内单值连续。因为当位移分别从截面两侧趋近于截面上的某一点时,一般的说其将趋于不同的值。

分别用u+,v+,w+和u-,v-,w-表示截面两侧的位移,则多连通域的位移单值连续条件还需要

补充条件,

u+=u-,v+=v-,w+=w-

因此,对于多连通域问题,应变分量满足变形协调方程只是位移连续的必要条件,只有加上上述补充条件后,条件才是充分的。

弹性力学-第三章-应变状态分析

第三章应变状态分析知识点 位移与变形 正应变 纯变形位移与刚性转动位移 应变分量坐标转轴公式主应变齐次方程组 体积应变 变形协调方程 变形协调方程证明变形与应变分量 切应变 几何方程与应变张量 位移增量的分解 应变张量 应变状态特征方程 变形协调的物理意义 变形协调方程的数学意义多连域的变形协调 一、内容介绍 本章讨论弹性体的变形,物体的变形是通过应变分量确定的。因此,首先确定位移与应变分量的基本关系-几何方程。由于应变分量和刚体转动都是通过位移导数表达的,因此必须确定刚体转动位移与纯变形位移的关系,才能完全确定一点的变形。 对于一点的应变分量,在不同坐标系中是不同的。因此,应变状态分析主要是讨论不同坐标轴的应变分量变化关系。这个关系就是应变分量的转轴公式;根据转轴公式,可以确定一点的主应变和应变主轴等。当然,由于应变分量满足二阶张量变化规律,因此具体求解可以参考应力状态分析。 应该注意的问题是变形协调条件,就是位移的单值连续性质。假如位移函数不是基本未知量,由于弹性力学是从微分单元体入手讨论的,因此变形后的微分单元体也必须满足连续性条件。这在数学上,就是应变分量必须满足变形协调方程。在弹性体的位移边界,则必须满足位移边界条件。 二、重点 1、应变状态的定义:正应变与切应变;应变分量与应变张量; 2、几 何方程与刚体转动;3、应变状态分析和应变分量转轴公式;4、应变 状态特征方程和应变不变量;主应变与应变主轴;5、变形协调方程 与位移边界条件。

§3.1 位移分量与应变分量几何方程 学习思路: 由于载荷的作用或者温度的变化,物体内各点在空间的位置将发生变化,就是产生位移。这一移动过程,弹性体将同时发生两种可能的变化:刚体位移和变形位移。变形位移是与弹性体的应力有着直接的关系。 弹性体的变形通过微分六面体单元描述,微分单元体的变形分为两个部分,一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化,分别使用正应变和切应变表示这两种变形的。 由于是小变形问题,单元变形可以投影于坐标平面分析。根据正应变和切应变定义,不难得到应变与位移的关系-几何方程,或者称为柯西方程。 几何方程给出的应变通常称为工程应变。几何方程可以表示为张量形式,应该注意的是,正应变与对应应变张量分量相等;而切应变等于对应的应变张量分量的两倍。 几何方程给出了位移分量和应变分量之间的关系。 学习要点: 1、位移函数; 2、变形与应变分量; 3、正应变表达式; 4、切应 变分量;5、几何方程与应变张量。 1、位移函数 由于载荷作用或者温度变化等外界因素等影响,物体内各点在空间的位置将发生变化,即产生位移。这个移动过程,弹性体将可能同时发生两种位移变化。 第一种位移是位置的改变,但是物体内部各个点仍然保持初始状态的相对位置不变,这种位移是物体在空间做刚体运动引起的,因此称为刚体位移。 第二种位移是弹性体形状的变化,位移发生时不仅改变物体的绝对位置,而且改变了物体内部各个点的相对位置,这是物体形状变化引起的位移,称为变形。 一般来说,刚体位移和变形是同时出现的。当然,对于弹性力学,主要是研究变形,因为变形和弹性体的应力有着直接的关系。 根据连续性假设,弹性体在变形前和变形后仍保持为连续体。那么弹性体中某点在变形过程中由M(x,y,z)移动至M'(x',y',z'),这一过程也将是连

高三化学反应原理第三章《物质在水溶液中的行为》第三章

化学测试题 I卷(54分) 2008、4、2 一、选择题(每小题3分,共54分) 1.下列溶液一定是碱性的是 A.pH = 8的某电解质的溶液. B.c(OH-)>1×10-7mol/L C.溶液中含有OH-. D.溶液中c(OH-)>c(H+) 2. 0.1mol/L K2CO3溶液中,若使c (CO32—)更接近0.1 mol/L,可采取的措施是 A. 加入少量盐酸 B. 加水 C. 加KOH固体 D. 加热 3.在60℃时,水的离子积Kw==1×10-13mol2·L-2,下列同体积的各水溶液中所含H+和OH-粒子数之和最小的是: A、pH = 4 B、pH = 6 C、pH = 8 D、pH = 11 4.在已达到电离平衡的0.1 mol/L的醋酸溶液中,欲使平衡向电离的方向移动,同时使溶液的pH 降低,应采取的措施是() A. 加热 B. 加少量水 C. 加少量盐酸 D. 加少量醋酸钠晶体 5.将足量BaCO3粉末分别加入下列溶液中,充分溶解至溶液饱和。各溶液中Ba2+的浓度最小的为() A.40mL 水B.10mL 0.2mol/LNa2CO3溶液 C.50mL 0.01mol/L 氯化钡溶液D.100mL 0.01mol/L盐酸 6. 下列有关滴定操作的顺序正确的是() ①检查滴定管是否漏水②用蒸馏水洗涤玻璃仪器③用标准溶液润洗盛标准溶液的滴定管,用待测液润洗盛待测液的滴定管④装标准溶液和待测液并调整液面(记录初读数) ⑤取一定体积的待测液于锥形瓶中⑥滴定操作 A. ①③②④⑤⑥ B. ①②③④⑤⑥ C. ②③①④⑤⑥ D. ④⑤①②③⑥ 7.下列反应的离子方程式正确的是() A.等体积等物质的量浓度的氢氧化钡溶液与碳酸氢铵溶液混合 Ba2++2 OH—+NH4++HCO3— = BaCO3↓ +NH3·H2O +H2O

鲁科版《化学反应原理》 基础知识思维导图-第3章-物质在水溶液中的行为

鲁科版《化学反应原理》 基础知识思维导 图-第 3 章-物质在水溶液中的行为.DOCX
(20XX——20XX 学年 第 X 学期)
单位 姓名 20XX 年 X 月

极其微弱,水中含极少量离子,几乎不导电
特点
吸热:升温电离程度增大

的 电
表达式:Kw=[H+]·[OH-]

单位:mol2·L-2
水的离子积(Kw)
适合于任何稀水溶液
影响因素
只与温度有关,升温,Kw增大 加酸碱盐,只影响平衡和电离程度,不改变Kw
强电解质
强酸:HCl、H2SO4、HNO3、HBr、HI 强碱:KOH、NaOH、Ca(OH)2、Ba(OH)2 盐:NaCl、BaSO4、CaCO3、AgCl、NH4HCO3
电解质
活泼金属氧化物:K2O、CaO、Na2O、MgO、Al2O3 弱酸:CH3COOH、H2CO3、H2SO3、H2S、H3PO4、HClO
弱电解质
弱碱:NH3·H2O、Mg(OH)2、Al(OH)3、Fe(OH)3、Cu(OH)2 水
络合物:Fe(SCN)3


非金属氧化物:SO2、NO2、CO2

与 非
非电解质
气态氢化物:CH4、NH3


大多有机物:蔗糖、酒精、CCl4

本质
电解质能电离 非电解质不能电离
电解质和非电解质区别
所属化合物
电解质是离子化合物或共价化合物 非电解质是共价化合物
电离方程式书写
强电解质: =、一步
判断方法:熔融状态是否导电
弱电解质:可逆号、多元弱酸分步,其他一步
形态:水合离子或水和分子
导电性:
决定因素:与离子浓度有关,与离子多少无关
向盐酸中加少量NaOH固体导电性几乎不变 向醋酸中通NH3导电性增强

平面应变问题实例

、问题描述: 一天然气输送管道,内表面承受气体压力P 的作用,分析管道的应力分布。因为管道长度很长,可以作为 平面应变问题处理,建模时只需要建立其横截面就可以了. 管道几何参数: 外径:0。6m ,内径0.4m ,壁厚0.2m 管道材料参数: 弹性模量: E=200GPa,泊松比v=0.26 载荷:P=1MPa 二、建模过程 1 、定义单元类型:选择Solid 8 2 单元, 然后在单元类型对话框中点击Options.。. 按钮,弹出如下对话框:

K3选项选为:PIane Strain ,其他两个保持默认就可以.如上图所示。 2、定义材料性质 3、创建几何模型 LtJ 3*XJ LHJIl?曰ModeImg B Create θ Keypoints [±j LiIIeS EJ Area,s 田ArbrtrarV Q ReCtangle 3.1 选择PartiaI AnnUIUS 命令 3.2在弹出的对话框中输入如下图所示参数:

单击Ok按钮即可生成如下所示图形:

3。3对上述模型分别沿yz平面和XZ平面镜像,生成完整的几何模型。完成后的模型如下图所示: 3。4合并重复的关键点和线 IL^—]r rκιerE∣κ—κs □ PreProCeSSOr 国EIement TVPe 田RealCOf 田 Hater?alPr?ρ?E SeCtionS 田HodeUng [+] MeShmg E CheCking CtiIS E NUnIbermg CtTIS 从如下菜单中选择Merge ItemS 从弹出的如下所示的对话框中,选择all ,然后单击Ok按钮退出。

化学反应原理第三章第一节

化学反应原理第三章第一节 一、水的电离 1、水的电离是一个过程,水的电离方程式是 在一定条件下,其平衡常数表达式为: 2、称为水的离子积常数,简称为,其表达式为: 25℃时,纯水中的[H+] 和[OH-] 都是mol/L,所以K W为 注意:①K W适用于任何稀溶液,在25℃时,任何稀溶液中都有K W=[H+]·[OH-]= ②在纯水中,温度升高,K W数值变,[H+] [OH-] 1.0×10-7 mol?L-1 水显性。 ③任何稀溶液中都存在着H+ 和OH-,强酸溶液中的H+来自酸电离出的H+ 和水电离出 的H+,强碱溶液中的OH-来自碱电离出的OH-和水电离出的OH-。 ④任何稀溶液中,水电离出的H+ 和OH-的物质的量浓度始终相等。 [练习] 1、室温下,某酸溶液中的[H+] =1.0×10-5 mol?L-1。则该溶液中的[OH-]=, 由水电离产生的[H+] =。 2、某温度下,纯水的[H+] =2.0×10-7 mol?L-1,则此时[OH-]=,在相同温度下的某酸溶液中[OH-]=2.0×10-10 mol?L-1,则此溶液中[H+] =,由水电离产生的[H+] =。 3、水的电离在某种意义上可以看成是中和反应的逆反应,因此下列说法不正确的是() A、水的离子积K W随温度的升高而升高 B、水的电离程度很小 C、在一定温度下,当溶液中的[H+]变小时,[OH-]一定变大 D、在任何条件下,溶液中的[H+]变大时,[OH-]一定变小 二、电解质在水溶液中存在的形式 1、知识回顾: 电解质: 非电解质: 注意:①电解质和非电解质的物质范畴都是 ②电解质导电的条件是:或 ③有些物质的水溶液虽然能够导电,但不是电解质。如: ④电解质溶液的导电能力取决于 2、强电解质: 弱电解质: 注意:①书写电离方程式时,强电解质用“=”,弱电解质用“” ②强电解质包括:强酸、强碱和大多数的盐。 弱电解质包括:弱酸、弱碱和极少数的盐[如:Fe(SCN)3]。 [练习](1)写出下列物质的电离方程式: Al2(SO4)3;H2S BaSO4;Fe(OH)2 (2)判断:①能导电的物质就是电解质。() ②水溶液导电性强的是强电解质,导电性弱的是弱电解质。() ③氨水能够导电,所以氨气是电解质。() ④在水溶液中,以分子和离子的形式共存的电解质是弱电解质。() ⑤NaHSO4在熔融状态和水溶液中的电离方程式一样,NaHSO4=Na++HSO4- 3、溶剂化作用: 电解质溶于水后形成的分子或离子不是单独存在的,而是以或

理想刚塑性平面应变问题

理想刚塑性平面应变问题 滑移线作为一种分析和作图相结合的方法是首先由Bat-dorf 和Budiansky 在1949年提出的。由于它对于求解理想刚塑性平面应变问题的方便和有效。滑移线理论在塑性力学中占有很重要的地位,一直得到较快的发展。除了对理想刚塑性平面应变问题例如机械加工,金属成型等冲压,轧锟和锻造等生产上广泛应用之外,近年来对平面应力问题,各向异性材料等也提出了滑移线理论和求解方法。 应当说理想刚塑性平面是一种假设,因为真实材料在塑性加工和变形过程中,往往存在加工硬化影响。蠕变和应变率效应,惯性力的影响等,滑移线理论是在忽略这些因素,把问题作为“准静态”处理,从而导致理想化的理论模式。自然这样的理想化的理论计算给出工程上的很好近似,方便求出极限载荷,与实验也比较相符,因而滑移线理论是值得深入研究和进一步发展的塑性力学重要内容。 刚塑性平面应变问题的基本方程 一、不可压缩条件 平面应变的位移满足关系: ),(y x u u x x = ),(y x u u y y = 0=z u (1) 其速度场满足: ),(y x v dt du x x = ),(y x v dt du y y = 0==z z v dt du (2) 其应变率张量为: ????? ???? ? ? ????? ? ? ? ?????+????+????=00 00) (210)(21y v x v y v y v x v x v y y x x y x ij ε (3)

不可压缩条件表示为: 0=++z y x εεε (4) 因为0=z ε ,故有: 0=??+??y v x v y x (5) 二、Levy —Mises 关系 由于 )2(y x x x S σσλλε-== )2 (x y y y S σσλλε-== xy xy τλγ 2= 故有 xy x y xy x y x y x y y v x v x v y v τσσγεε2-= -=??+????- ?? 三、平衡条件和屈服条件 不考虑体积力,平衡条件为: 0=??+??y x xy x τσ (6.1) 0=??+ ??y x y xy στ (6.2) Mises 屈服条件: 022=-=k J f 由正交流动法则,并知0=z ε ,则有:

化学人教版高中选修4 化学反应原理《第三章 第二节 水的电离和溶液的酸碱性》章节知识点归纳

第三章第二节水的电离和溶液的酸碱性 一、水的电离及水的离子积 1、水的电离 电离方程式:H2O+H2O H3O++OH-简写:H2O H++OH- 2、水的离子积常数 (1)表达式:K w=c(H+)·c(OH-) 常温下:K w=1.0×10-14,此时c(H+)=c(OH-)=1.0×10-7mol/L (2)影响因素:K w随温度的变化而变化,温度升高,K w增大;温度降低,K w减小。(3)适用范围:K w不仅适用于纯水,还适用于酸、碱、盐的稀溶液,且由水电离的c 水(H +)=c 水(OH -)。此时,水溶液中水的离子积常数不变。 (4)表达式的应用 K w表达式中,c(H+)、c(OH-)均表示整个溶液中相应离子总物质的量浓度。但是一般情 况下有: 酸溶液中K w=c(H+)酸·c(OH-)水(忽略水电离出的H+的浓度)。 碱溶液中K w=c(H+)水·c(OH-)碱(忽略水电离出的OH-的浓度)。 3、纯水电离的影响因素 (1)加入酸或碱,抑制水的电离,Kw不变; (2)升高温度,电离过程是一个吸热过程,促进水的电离,水的离子积增大,在常温时,K W=1×10-14;在100℃时,K W=1×10-12。 注意:①任何水溶液中H+和OH-总是同时存在的,只是相对含量不同. ②K w大小只与温度有关,与是否为酸碱性溶液无关。 25℃时,K w =1×10-14 100℃时,K w =1×10-12 ③不论是在中性溶液还是在酸碱性溶液,水电离出的C(H+)=C(OH-) ④根据Kw=C(H+)×C(OH-) 在温度一定时为定值,C(H+) 和C(OH-) 可以互求,酸性溶

鲁科版化学反应原理第三章《物质在水溶液中的行为》寒假复习学案及答案

《第三章物质在水溶液中的行为》寒假统考复习学案 编辑人:高二化学组 2013.12.23 一、水的电离:精确实验表明,水是一种极弱电解质,存在有电离平衡: 在25℃时纯水中 ,[H+]=[OH-] = ,Kw = [H+][OH-] = mol-2·L-2 [结论] 1、水的电离是个过程,故温度升高,水的Kw。 2、水的离子积是水电离平衡时的性质,它不仅适用于纯水,也适用于任何稀 溶液。即25℃时溶液中[H+][OH-] = 1.0× 10-14mol-2?L-2 3、在酸溶液中,[H+]近似看成是酸电离出来的H+浓度,[OH-]则来自于水的电离。 4、在碱溶液中,[OH-]近似看成是碱电离出来的OH-浓度,而[H+]则是来自于水的电离。 【练习】1.常温下,某溶液中由水电离出来的c(H+)=1.0×10-13mol·L-1,该溶液可能是( ) ①二氧化硫②氯化铵水溶液③硝酸钠水溶液④氢氧化钠水溶液A.①④B.①② C.②③D.③④ 2. 某溶液中水电离产生的C(H+)=10-3mol/L,,该溶液中溶质可能是()①Al2(SO4)3 ②NaOH ③NH4Cl ④NaHSO4 A、①②B、①③C、②③D、①④ 3. 25℃时,水的电离达到平衡:H 2O H++OH-;ΔH>0,下列叙述正确的是() A.将水加热,K W增大,溶液的pH增大 B.向水中加入稀氨水,平衡正向移动,c(OH-)增加 C.向水中加入少量固体硫酸氢钠,c(H+)降低,K W不变 D.向水中加入少量固体CH3COONa,平衡正向移动,c(OH-)增加 4. 能促进水的电离,并使溶液中C(H+)>C(OH—)的操作是() (1)将水加热煮沸(2)向水中投入一小块金属钠(3)向水中通CO2 (4)向水中通NH3 (5)向水中加入明矾晶体(6)向水中加入NaHCO3固体(7)向水中加NaHSO4固体 A、(1)(3)(6)(7) B、(1)(3)(6) C、(5)(7) D、(5) 二、溶液的酸碱性和pH值 1.溶液酸性、中性或碱性的判断依据是:看和的相对大小. 在任意温度的溶液中:若c(H+)>c(OH-) c(H+)=c(OH-) c(OH-)>c(H+)溶液的pH值:氢离子浓度的负对数。pH= ; 3.pH值计算的基本规律(1). 两种强酸溶液混和,先求c(H+),再求pH。C(H+)= (2).两种强碱溶液混和,先求c(OH-),再通过求c(H+),最后求pH值.C(OH-)= (3).强酸和强碱混和,先确定过量离子的浓度:若H+过量 c(H+)= 若碱过量 c(OH-)= 当酸过量时,必须以剩余的氢离 子浓度来计算溶液的 PH 值;当碱过量时,必须以剩余的氢氧根离子浓度通过K W来计算溶 液的c(H+)值,再求pH值。 (4). 有关酸、碱溶液的稀释 强酸溶液每稀释10倍,pH增大一个单位,弱酸溶液每稀释10倍,pH增大不到一个单位; 强碱溶液每稀释10倍,pH减小一个单位。弱碱溶液每稀释10倍,pH减小不到一个单位。 [提醒]:混和后溶液呈酸性时,一定用c(H+)计算pH;呈碱性时,一定用c(OH-)通过K W来 计算溶液的c(H+)值,再计算pH值 【练习】1. 下列溶液一定呈中性的是() A.PH=7的溶液 B.C(H+)=1.0×10-7mol/L的溶液 C.C(H+)= C(OH-) D.PH=3的酸与PH=11的碱等体积混合后的溶液

第三章 应变状态分析

第三章应变状态分析 内容介绍 知识点 位移与变形 正应变 纯变形位移与刚性转动位移应变分量坐标转轴公式 主应变齐次方程组 体积应变 变形协调方程 变形协调方程证明 多连域的变形协调变形与应变分量 切应变 几何方程与应变张量 位移增量的分解 应变张量 应变状态特征方程 变形协调的物理意义 变形协调方程的数学意义 由于载荷作用或者温度变化等外界因素等影响,物体内各点在空间的位置将发生变化,即产生位移。这个移动过程,弹性体将可能同时发生两种位移变化。 第一种位移是位置的改变,但是物体内部各个点仍然保持初始状态的相对位置不变,这种位移是物体在空间做刚体运动引起的,因此称为刚体位移。

第二种位移是弹性体形状的变化,位移发生时不仅改变物体的绝对位置, 而且改变了物体内部各个点的相对位置,这是物体形状变化引起的位移,称为变形。 一般来说,刚体位移和变形是同时出现的。当然,对于弹性力学,主要是研究变形,因为变形和弹性体的应力有着直接的关系。 根据连续性假设,弹性体在变形前和变形后仍保持为连续体。那么弹性体中某点在变形过程中由M(x,y,z)移动至M'(x',y',z'),这一过程也将是连续的, 如图所示。在数学上,x',y',z'必为x,y,z的单值连续函数。设MM'=S为位移矢量,其三个分量u,v,w为位移分量。 则 u=x'(x,y,z)-x=u(x,y,z) v=y'(x,y,z)-y=v(x,y,z) w=z'(x,y,z)-z=w(x,y,z) 显然,位移分量u,v,w也是x,y,z的单值连续函数。以后的分析将进一步假定位移函数具有三阶连续导数。 为进一步研究弹性体的变形情况,假设从弹性体中分割出一个微分六面体单元,其六个面分别与三个坐标轴垂直。 对于微分单元体的变形,将分为两个部分讨论。一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化。弹性力学分别使用正应变和切应变表示这两种变形的。 对于微分平行六面体单元,设其变形前与x,y,z坐标轴平行的棱边分别为MA,MB,MC,变形后分别变为M'A',M'B',M'C'。

化学选修化学反应原理各章知识点归纳整理

高二化学选修4化学反应原理知识点整理 第一章化学反应与能量 一、焓变反应热 1.反应热:一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量 2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应 (1)符号:△H (2)单位:kJ/mol 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热) △H 为“-”或△H <0 吸收热量的化学反应。(吸热>放热)△H 为“+”或△H >0 ☆常见的放热反应:①所有的燃烧反应②酸碱中和反应 ③大多数的化合反应④金属与酸的反应 ⑤生石灰和水反应⑥浓硫酸稀释、氢氧化钠固体溶解等 ☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl ②大多数的分解反应 ③以H2、CO、C为还原剂的氧化还原反应④铵盐溶解等 二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化。 ②热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s分别表示固态,液态,气态,水溶液中溶质用aq表示) ③热化学反应方程式要指明反应时的温度和压强(25 ℃,101 kPa时可以不注明)。 ④热化学方程式中的化学计量数可以是整数,也可以是分数。只能表示物质的量,不能表示分子个数。 ⑤各物质化学计量数加倍,△H加倍;反应逆向进行,△H改变符号,数值不变。 三、燃烧热 1.概念:25 ℃,101 kPa时,1 mol纯物质完全燃烧生成稳定的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点: ①研究条件:101 kPa ②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量:1 mol ④研究内容:放出的热量。(ΔH<0,单位kJ/mol) 四、中和热 1.概念:在稀溶液中,酸跟碱发生中和反应生成1mol H2O,这时的反应热叫中和热。 2.强酸与强碱的中和反应其实质是H+和OH-反应,其热化学方程式为: H+(aq) +OH-(aq) =H2O(l) ΔH=-57.3kJ/mol 3.弱酸或弱碱电离要吸收热量,所以它们参加中和反应时的中和热小于57.3kJ/mol。 4.中和热的测定实验 五、盖斯定律

苏教版化学反应原理第三章知识点归纳

苏教版化学反应原理知识点归纳 第三章 第一单元 弱电解质的电离平衡 电解质:在水溶液中或熔融状态时能够导电的化合物。 非电解质:在水溶液中和熔融状态时都不能导电的化合物。 强弱电解质的区分依据不是看该物质溶解度的大小,也不是看其水溶液导电能力的强弱,而是看溶于水的部分是否完全电离. 二、弱电解质的电离平衡 1.定义:在一定条件(如温度、浓度)下,当电解质分子电离成离子的速率和离子重新结合成分子的速率相等时,电离过程就达到了平衡状态——电离平衡 ②影响电离平衡常数大小的因素: A.电离平衡常数大小是由物质的本性决定的,在同一温度下,不同弱电解质的电离常数不同。 B.弱电解质的电离平衡常数受温度变化的影响,但室温下一般变化不大。 C.弱电解质的电离平衡常数大小不受其浓度变化的影响 3.量度弱电解质电离程度的化学量: (1)电离平衡常数: 4.影响电离平衡的因素 (1)温度 电离过程是吸热过程,温度升高,平衡向电离方向移动。 (2)浓度 弱电解质浓度越大,电离程度越小。 (3)同离子效应 同离子效应(即在弱电解质溶液中加入同弱电解质具有相同离子的强电解质,使电离平衡向逆方向移动) (4)化学反应 在弱电解质溶液中加入能与弱电解质电离产生的某种离子反应的物质时,可以使电离平衡向电离方向移动。 三、电离方程式的书写 强电解质在溶液中完全电离,用“=” 弱电解质在溶液中部分电离,用“ ” 多元弱酸的电离 应分步完成电离方程式,多元弱碱则一步完成电离方程式。 【小结】 (1)Kw 取决于温度,不仅适用于纯水,还适用于其他稀溶液。 K a = c ( H +) .c ( A -) c (HA) 对于一元弱酸:H A H ++ +A -- ,平衡时 对于一元弱碱:M O H M ++O H -,平衡时 K b = c ( M +).c ( OH - ) c (MOH ①意义:K 值越大,电离程度越大,相应酸 (或碱) 的酸(或碱)性越强。 强、弱电解质的判断: 化合物 非电解质 电 解 质 强电解质 弱电解质 大部分的盐类 强 碱 强 酸 活泼金属的氧化物 弱 酸 弱 碱 水 离 子 化 合 物 共 价 化 合 物 大多数有机物,非金属氧化物,NH 3 强 碱: N a O H 、K O H 、C a (O H )2 、B a (O H )2 弱 碱: N H 3·H 2O C H 3C O O C H 3C O O - + H + 电离 结合 2.特点: 动 电离平衡是一种动态平衡 定 条件不变,溶液中各分子、离子的 浓度不变,溶液里既有离子又有分子 等 V 电离=V 分子化≠0 逆 弱电解质的电离 α = 已电离的弱电解质浓度 弱电解质的初始浓度 已电离的分子数 弱电解质分子总数 = 弱电解质浓度越大,电离程度越小。 四、水的电离 1、水是一种极弱的电解质,能微弱的电离: + + H 2O+H 2O H 3O ++OH - ( H 2O H + +OH - ) 电离常数:K 电离= C(H + )×C(OH -) C(H 2O ) 强 酸: √ 记住: H C l 、H 2S O 4、H N O 3、H C l O 4、H B r 、H I 弱 酸: C H 3C O O H 、H 2C O 3、H 2S O 3、H 3P O 4、H C l O 、H F 、所有的有机羧酸 (2)弱电解质的电离度α :

高中化学人教版选修4化学反应原理第3章单元复习

高中化学人教版选修4化学反应原理第三章复习 一. 教学内容: 第三章复习 二. 重点、难点: 1. 将各部分知识综合运用 2. 将本章知识和第二章的平衡移动理论联系 三. 具体内容: 1. 电解质和非电解质的分类 2. 弱电解质的电离平衡 3. 水的离子积和溶液的pH 4. 溶液的酸碱性与pH 5. 盐类的水解 6. 盐类水解的应用 7. 难溶电解质的溶解平衡 8. 沉淀的生成、溶解和转化 【典型例题】 [例1] 下列溶液加热蒸干后,能析出溶质固体的是( ) A. AlCl 3 B. KHCO 3 C. 342)(SO Fe D. NH 4HCO 3 【试题参考答案】:C 【试题参考答案解析】:考察盐的水解的应用。 [例2] 在pH 都等于9的NaOH 和CH 3COONa 两种溶液中,设由水电离产生的OH - 离子浓度分别为Amol/L 与Bmol/L,则A 和B 关系为( ) A. A >B B. A=10-4 B C. B=10-4 A D. A=B 【试题参考答案】:B 【试题参考答案解析】:考察水的离子积和pH 的关系。 [例3] 一定量的盐酸跟过量的铁粉反应时,为了减缓反应速度,且不影响生成氢气的总量,可向盐酸中加入适量的( ) ① NaOH 固体 ② H 2O ③ NH 4Cl 固体 ④ CH 3COONa 固体 ⑤ NaNO 3固体 ⑥ KCl 溶液

A. ②④⑥ B. ①② C. ②③⑤ D. ②④⑤⑥ 【试题参考答案】:A 【试题参考答案解析】:考察反应速率的影响因素和水的电离平衡的移动。 [例4] 1体积pH =2.5的盐酸与10体积某一元强碱溶液恰好完全反应,则该碱溶液的pH 等于( ) A. 9.0 B. 9.5 C. 10.5 D. 11.5 【试题参考答案】:C 【试题参考答案解析】:考察有关pH 的计算。 [例5] 含等物质的量NaOH 的溶液分别用pH 为2和3的CH 3COOH 溶液中和,设消耗CH 3COOH 溶液的体积依次为V V a b 、,则两者的关系正确的是( ) A. V V a b >10 B. V V a b =10 C. V V b a <10 D. V V b a >10 【试题参考答案】:D 【试题参考答案解析】:考察有关pH 的计算。 [例6] 将pH =11 NaOH 溶液和pH =3的甲酸溶液以等体积混合后,对所得溶液,下列判断一定正确的是( ) A. c (HCOO -)<c (Na +) B. c (HCOO - )>c (Na +) C. c (OH -)<c (HCOO -) D. c (OH -)>c (HCOO -) 【试题参考答案】:BC 【试题参考答案解析】:考察弱电解质电离的特点对于中和反应后溶液中离子浓度的影响。 [例7] 常温下pH =3的二元弱酸H 2R 溶液与a L pH =11的NaOH 溶液混合后,混合液的pH 刚好等于7(假设反应前后体积不变),则对反应后混合液的叙述正确的是( ) A. c (R 2-)+ c (OH -)=c (Na +)+c (H +) B. c (R 2-)>c (Na +)>c (H +)=c (OH -) C. 2c (R 2-)+ c (HR -)=c (Na +) D. 混合后溶液的体积为2a L 【试题参考答案】:C 【试题参考答案解析】:考察弱酸和强碱反应的溶液中离子的判断。 [例8] 用标准的NaOH 滴定未知浓度的盐酸,选用酚酞为指示剂,造成测定结果偏高的原因可能

弹塑性力学-第3章 应变状态

第三章 应变状态理论 在外力、温度变化或其他因素作用下,物体内部各质点将产生位置的变化, 即发生位移。如果物体内各点发生位移后仍保持各质点间初始状态的相对位置,则物体实际上只发生了刚体平移和转动,这种位移称为刚体位移。如果物体各质点发生位移后改变了各点间初始状态的相对位置,则物体同时也产生了形状的变化,其中包括体积改变和形状畸变,物体的这种变化称为物体的变形运动或简称为变形,它包括微元体的纯变形和整体运动。应变状态理论就是研究物变形后的几何特性。即给定物体内各点变形前后的位置,确定无限接近的任意两点之间所连矢量因物体变形所引起剧烈变化。这是一个单纯的几何问题,并不涉及物体变形的原因,也就是说并不涉及物体抵抗变形的物理规律。本章主要从物体变形前后的几何变化论述物体内一点的应变状态。 位移与线元长度、方向的变化 坐标与位移 设变形前物体上各点的位置在笛卡尔坐标(Descarter coordinate)系的轴(X 、、Y、Z )上的投影为(z y x ,,),又设物体上各点得到一位移,并在同一坐标轴上的投影为(u 、v 、w ),这些位移分量可看作是坐标(z y x ,,)的函数。于是物体上任点的最终位置由下述坐标值决定。即 ?? ? ?? +=+=+=),,(),,(),,(z y x w z z y x v y z y x u x ζηξ 上式中函数u 、v 、w 以及它们对坐标(z y x ,,)的偏导数假设是连续的,则式确定了变量(z y x ,,)与),,(ζηξ之间的关系。因为物体中变形前各点对应看变形后的各点,因此式是单值的,所以式可看成是坐标的一个变换。 如果在中,假设00,y y x x ==,则由式可得如下三个方程

化学反应原理第三章第一节水溶液练习题 (1)

第一节水溶液练习题 1、下列说法中,正确的是( ) A.在任何条件下,纯水的pH=7 B.在任何条件下,纯水都呈中性 C.在95℃时,纯水的pH<7 D在95℃时,纯水中的H+物质的量浓度c(H+)<10- 7 mol.L-1 2、25℃时Kw=10-14 mol2/L2 , 100℃时Kw=10-12 mil2/L2,,这说明() A.100℃时水的电离常数较大 B.前者[H+]较后者大 C.水的电离过程是一个吸热过程 D.Kw和K无直接关系 3、纯水在25℃和80℃时的氢离子浓度,前者和后者的关系是() A、前者大 B、相等 C、前者小 D、不能肯定 4、下列说法正确的是:() A. HCl溶液中无OH- B. NaOH溶液中无 H+ C. NaCl溶液中既无OH-也无H+ D. 常温下,任何物质的水溶液中都由H+和OH-,且Kw=[H+][OH-]=10-14mol-2?L-2 【有关pH的简单计算】 例1、分别求0.05mol/LH2SO4溶液和0.05mol/L Ba(OH)2溶液的PH值。 例2、求PH=2的H2SO4溶液中H2SO4的浓度;求PH=10的NaOH溶液中NaOH的浓度。 [巩固练习] 1、pH=2的强酸溶液,加水稀释,若溶液体积扩大10倍,则C(H+)或C(OH-)的变化() A、C(H+)和C(OH-)都减少 B、C(H+)增大 C、C(OH-)增大 D、C(H+)减小 2、向纯水中加入少量的KHSO4固体(温度不变),则溶液的() A、pH值升高 B、C(H+)和C(OH-)的乘积增大 C、酸性增强 D、OH-离子浓度减小 3、100℃时,Kw=1×10-12mol-2?L-2,对纯水的叙述正确的是() A、pH=6显弱酸性 B、C(H+)=10-6mol/L,溶液为中性 C、Kw是常温时的10-2倍 D、温度不变冲稀10倍pH=7 4、在pH=1的硫酸溶液中,由水电离出来的H+浓度为() A 、0 B、0.1 mol.L-1 C、10-7 mol.L-1 D、10-13 mol.L-1 5、将pH=5的盐酸溶液稀释1000倍后,溶液的pH为() A、等于8 B、等于7 C、接近7又小于7 D、大于7而小于8 6、将纯水加热至较高的温度,下列叙述正确的是() A、水的离子积变大、pH变大、呈酸性 B、水的离子积不变、pH不变、呈中性 C、水的离子积变小、pH变大、呈碱性 D、水的离子积变大、pH变小、呈中性 7、给蒸馏水中滴入少量盐酸后,下列说法中错误的是() A、[H+ ][OH- ]乘积不变 B、pH增大了 C、[OH- ]降低了 D、水电离出的[H+ ]增加了 8、常温下,下列溶液中酸性最弱的是() A、pH=4 B、[H+ ]=1×10-3mol·L-1 C、[OH- ]=1×10-11mol·L-1 D、[H+] ·[OH- ]= 1×10-14 mol-2?L-2

第三章_应变分析

第三章 应变分析 在第二章我们研究了应力张量本身和体力、面力之间的关系式,即平衡 规律。本章将讨论变形体研究的另一个基本关系:变形与位移之间的关系。当然要以小变形假设为基础,位移和形变相对于变形体几何尺寸是微小的。 第1节 位移和(工程)应变 1.1 位移 变形体任意点P 的位移矢量i i e u u =,u 有三个分量。 (工程)应变 工程应变是通常工程中描述物体局部几何变化,分为正应变和剪应 变。l l ?= ε, (角变形)=两微元线段夹角的改变量。 (工程)正应变: 11 、 22 、 33 , (工程)剪应变: 12 = xy 、 23 = yz 、 31 = zx 工程应变共有六个分量:三个正应变和三个剪应变,正应变以伸长为正,剪应变以使直角变小为正。 x 2 x 1 x 3 P’ u P r o

第2节 应变张量和转动张量 应变张量和转动张量是描述一点变形和刚体转动的两个非常重要的物 理量,本节将讨论一下它们与位移之间关系,在讨论之前,先介绍一下相对位移矢量和张量. 相对位移矢量和相对位移张量 x 1 x 1 2 2 22 dx 2 23 x '

而 j j e dx r d = r d e dx j j ?= ——(b) 将(b )式代入(a )式,得 r d e e u u d j i j i ?=, 根据商法则 r d U u d ?= 则 j i ij j i j i e e U e e u U ==, 为一个二阶张量——相对位移张量 应变张量和转动张量 相对位移张量u i,j 包含了变形和刚体转动,为了将两者分开,对u i,j 进行整理,张量分成对称和反对称张量之和。 )(2 1)(21,,,,,i j j i i j j i j i ij u u u u u U -++== 或 ij ij j i ij u U ωε+==, 其中 ),(21,,i j j i ij u u +=ε )(2 1 ,,i j j i ij u u -=ω 显然 ij = ji (对称张量), ij = - ji (反对称张量) 而 ij 表示变形体的形变,ij 表示了刚体转动。 以在平面x 1 —x 2的两个垂直线段PQ 、PR 的相对位移来说明并直观看一下 ij , ij 二阶张量表示了形变和刚体转动。

化学选修化学反应原理各章知识点归纳整理

高二化学选修 4 化学反应原理知识点整 理 第一章化学反应与能量 一、焓变反应热 1 .反应热:一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量 2 .焓变(Δ H)的意义:在恒压条件下进行的化学反应的热效应 (1)符号:△H (2)单位:kJ/mol 3.产生原因:化学键断裂——吸热化学键形成——放热放出热量的化学反应。(放热>吸 热)△H 为“ - ”或△ H <0 吸收热量的化学反应。(吸热>放热)△ H 为“+”或△ H >0 ☆ 常见的放热反应:①所有的燃烧反应② 酸碱中和反应 ③大多数的化合反应④ 金属与酸的反应 ⑤生石灰和水反应⑥ 浓硫酸稀释、氢氧化钠固体溶解等 ☆ 常见的吸热反应:① 晶体Ba(OH)2·8H2O 与NH4Cl ② 大多数的分解反应 ③ 以H2、CO、C 为还原剂的氧化还原反应④ 铵盐溶解等 二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化。 ②热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s 分别表示固态,液态,气 态,水溶液中溶质用aq 表示) ③热化学反应方程式要指明反应时的温度和压强(25 ℃,101 kPa 时可以不注明)。④热化 学方程式中的化学计量数可以是整数,也可以是分数。只能表示物质的量,不能表示分子个数。 ⑤各物质化学计量数加倍,△ H 加倍;反应逆向进行,△ H改变符号,数值不变。 三、燃烧热 1.概念:25 ℃,101 kPa 时,1 mol 纯物质完全燃烧生成稳定的化合物时所放出的热量。燃烧热的单位用kJ/mol 表示。 ※注意以下几点: ①研究条件:101 kPa ②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量:1 mol ④研究内容:放出的热量。(Δ H<0,单位kJ/mol ) 四、中和热 1.概念:在稀溶液中,酸跟碱发生中和反应生成1mol H 2O,这时的反应热叫中和热。 2.强酸与强碱的中和反应其实质是H+和OH-反应,其热化学方程式为: H+(aq) +OH-(aq) =H 2O(l)Δ H=- 57.3kJ/mol 3.弱酸或弱碱电离要吸收热量,所以它们参加中和反应时的中和热小于57.3kJ/mol 。 4.中和热的测定实验 五、盖斯定律 1.内容:化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关,如果一个反应可以分几步进行,则各分步反应的反应热之和与该反应一步完成的反应热是相同的。

第三章物质在水溶液中的行为 化学反应原理 新课标 人教版

第三章物质在水溶液中的行为化学反应原理 [课程标准与教材分析] 本节内容分为两部分,一是引入沉淀溶解平衡、溶度积的概念以及溶度积的表达式;二是沉淀溶解平衡的移动,包括沉淀的溶解、转化和生成。通过前两节的学习,学生已经能够从化学平衡的角度对水的电离、弱电解质的电离、盐类的水解等化学平衡问题进行分析,初步形成了从平衡角度看问题、分析问题的能力。所以这节课可以自始至终依据涉及生活、生产以及人们广泛关注的环境问题等例子来解释抽象的概念,用对具体问题的分析讨论来带动理论问题的学习,引导学生利用平衡移动的一般规律一步步揭示沉淀溶解平衡的实质,可以使学生充分地动起来,极大地激发学生学习化学的兴趣,培养学生可持续发展的意识。教材强调对沉淀溶解平衡的理解,注重学生的思维训练,所谓授人以鱼,不如授之以渔,在此可以得到充分的体现。 [教学设计] 1.教学目标: 知识与技能:⑴了解难溶电解质在水中存在沉淀溶解平衡,能描述沉淀溶解平衡。 ⑵能写出溶度积的表达式,知道溶度积的含义。 ⑶理解沉淀溶解平衡的移动。 过程与方法:⑴能够运用平衡移动的观点对沉淀的溶解、生成和转化过程进行分析。 ⑵体会综合、分析、归纳、实验设计等方法在解决沉淀溶解平衡中的应用。情感态度与价值观:通过对沉淀溶解平衡及其沉淀溶解平衡移动的研究,使学生体验化学科学的奥秘,提高学生的学习兴趣。 2.重点与难点: ⑴重点是溶度积的含义,沉淀的溶解、生成和转化的本质。 ⑵难点是沉淀的转化。 3.教学分析: ⑴教学设想:通过复习水的电离、弱电解质的电离、盐类的水解等化学平衡问 题,使学生回忆怎样从平衡移动的角度来分析问题、解决问题。 然后通过涉及生活、生产以及人们广泛关注的环境问题等生动有 趣的例子来解释沉淀溶解平衡的概念,引导学生利用平衡移动的 一般规律一步步揭示沉淀溶解平衡的实质,使学生很自然地、很 高兴地完成本节课的学习,并且很想进一步探讨有关的问题。 ⑵学情分析:通过前两节的学习,学生已经能够从化学平衡的角度对水的电离、 弱电解质的电离、盐类的水解等化学平衡问题进行分析,初步形 成了从平衡角度看问题、分析问题的能力。所以这节课应充分发 挥学生自身的优势,自己去探讨有关问题。 ⑶课堂设计:

第三章 应变分析

第一章 应变分析 § 3-1有关变形的几个基本概念 一 变形:从宏观上讲,当一个物体在外部条件的作用下,它的形状和尺寸发生了时候,我们说该物体产生了变形。 二 刚性位移:物体仅仅发生了平动和转动;质点间的位置并没有发生改变,叫刚性位移。例如,圆棒被弯曲后,棒的中间一般发生了变形,但是在棒的两端并没有发生变形,我们说两端只发生了刚性位移。 三 纯变形:从宏观上讲,在物体发生变形时,不可避免地要伴有雄伟性位移,如图所示,从单元体中除去刚性位移之后,剩下的部分为纯变形。 1 正变形:线尺寸的伸长与缩短。 2 剪变形:单元体的畸变。 四 如何判断单元体是否发生变形: 主要看各质点间的相对位置是否发生变化,发生了变形的为变形,没有发生变化的为刚性位移。例如上面的棒的中心附近发生了变化 ,而两端质点间的距离并没有发生变化,棒的中心产生了变形,而两端并没有发生变形。 五 应变:应变是变形大小的度量。 1 正变形:表示正变形的应变。 2 剪应变:表示剪变形的应变。 3 小变形:变形程度不超过10-3—10-2的变形统称为小变形。 § 3-2 变形分析 一 质点的变形张量: 变形体在外力的作用下产生塑性变形,对于一点而言,在一应力张量? ?? ?? ?????=z zy zx yz y yx xz xy x στττστττσσ的 作用下,产生对应的变形,用应变张量??? ? ???? ? ?=z zy zx yz y yx xz xy x ij εαααεαααεε表示其中xy α为纯剪应变和刚性位移-z ?之和,即 z xy xy ?γα-=,同理z yx yx ?γα+= ; y xz xz ?γα+= ; y zx zx ?γα-=; x yz yz ?γα+= ; x zy zy ?γα-= ; 所以有: ???? ???? ??=z zy zx yz y yx xz xy x ij εαααεαααεε?? ? ? ? ??? ? ?--+++-=z x zy y zx x yz y z yx y xz z xy x ε?γ?γ?γε?γ?γ?γε??? ? ? ?????=z zy zx yz y yx xz xy x εγγγεγγγε???? ? ???? ?--+++-+000x y x z y z ??????, 二 位移分量和应变的关系: ),,(z y x u u = ;在三维空间有三个分量,分别是,x u , y u , z u 一般用u, v, w 表示,u, v, w

相关文档
最新文档