圆的切线证明及有关计算

合集下载

圆切线的两种常考证明方法

  圆切线的两种常考证明方法

圆切线的两种常考证明方法类型一、已知公共点(证明方法:有切点、连半径、证垂直)例.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线:(2)连接BE,若⊙O的半径长为5,OF=3,求EF的长,1.如图,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O与BC相交于点E,在边AC上取一点D,使得DE=AD,连接OD、OE.(1)求证:①△AOD≌△EOD;②DE是⊙O的切线;(2)当BC=5,AD=2时,求⊙O的半径.2.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与OD的位置关系,并说明理由.(2)若BD=33BF=3,求⊙O的半径.3.如图,AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,∠COB=2∠PCB.(1)求证:CP是⊙O的切线;(2)若M是弧AB的中点,CM交AB于点N,若AB=6,求MC•MN的值.DG BC,DG交线段AC于点G,交4.如图,△ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作//AB于点E,交⊙O于点F,连接DB,CF,∠A=∠D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分∠ACB,BD=12,求DE的长.5.如图,点E为正方形ABCD的边BC上的一点,O是ABE△的外接圆,与AD交于点F,G是CD上一∠=∠.点,且DGF AEB(1)求证:FG是O的切线;DG=,求半径OA的长.(2)若4AB=,16.如图,在Rt△ABC中,∠ABC=90∘,以AB为直径作半圆O,交AC于点D,E为BC的中点,连接DE.(1) 求证:DE是半圆O的切线;(2) 若∠C=60∘,DE=2,求AD的长.7.如图,AB为⊙O的直径,AD,BD是⊙O的弦,BC与⊙O相切于点B,OC∥AD,BA,CD的延长线相交于点E.(1) 求证:DC是⊙O的切线;(2) 若AE=1,ED=3,求⊙O的半径.8.如图,在Rt△ABC中,∠ACB=90∘,以斜边AB上的中线CD为直径作⊙O,与AC,BC分别交于点M,N,与AB的另一个交点为E.过点N作NF⊥AB,垂足为F.(1) 求证:NF是⊙O的切线;(2) 若NF=2,DF=1,求弦ED的长.类型二、未知公共点(证明方法:无切点、作垂直、证相等)例.如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求OD的长.1.如图,四边形ABCD中,AB∥CD,AE⊥CD于E,∠ABC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点D,交CD于点F.(1)求证:B C与⊙O相切;(2)若OB∥AD,DF=6,M E3OB的长度及阴影部分的面积.(结果保留π)2.如图,在Rt △ABC 中,∠ABC =90°,∠BAC 的平分线交BC 于点O ,D 为AB 上的一点,OD =OC ,以O 为圆心,OB 的长为半径作⊙O .(1)求证:AC 是⊙O 的切线;(2)若AB =6,BD =2,求线段AC 的长.3.如图,在四边形ABCD 中,AD BC ∥,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)求证:CD 是B 的切线;(2)若23AB =60BCD ∠=︒,求图中阴影部分的面积.4.如图,△ABC 为等腰三角形,O 是底边BC 的中点,腰AB 与⊙O 相切于点D ,OB 与⊙O 相交于点E .(1)求证:AC 是⊙O 的切线;(2)若BD =√3,BE =1.求阴影部分的面积.【课后练习】1.如图,在ABC 中,90ACB ∠=︒,点O 为BC 边上一点,以OB 为半径的⊙O 与边AB 、BC 交于点D 、E ,连接DC 、DE ,AC DC =.(1)求证:DC 为⊙O 切线;(2)若60A ∠=︒,⊙O 的半径为1,则DEC 的面积为.2.如图,Rt ABC 中,90ACB ∠=︒,以BC 为直径作半圆O 交AB 于点D ,点E 为AC 的中点,连接DE DC ,.(1)求证:DE 是半圆O 的切线;(2)若604BAC DE ∠=︒=,,求BD 的长.3.如图,ABC 中,90ACB ∠=︒,D 是边AB 上的一点,且2A DCB ∠=∠,E 是BC 上的一点,以EC 为直径的O 经过点D .(1)求证:AB 是O 的切线;(2)若圆心O 到弦CD 的距离为1,30DCB ∠=︒,求BD 的长.Math唐老师。

人教版初三数学上册圆的切线证明及有关计算

人教版初三数学上册圆的切线证明及有关计算

圆切线的证明及有关计算(一)一、课标要求了解切线的概念:探索切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线。

会过圆上一点画圆的切线。

二、教学目标1.归纳直线与圆相切的性质和判定方法以及切线长定理,并能运用这些知识进行计算和证明;2.在计算与证明中培养学生的分析问题、解决问题以及综合运用知识的能力。

三、教学重点运用切线的性质和判定方法进行计算与证明。

四、教学难点灵活运用所学知识解决有关切线问题。

五、【基础知识回顾】(一).切线的定义:(二).切线性质:圆的切线______于过切点的半径.提醒:根据这一定理,在圆中遇到切线时,常连接圆心和切点,即可得垂直关系(三).切线判定:(1) 和圆有唯一公共点的直线是圆的切线.(定义)(2) 经过半径的外端且______这条半径的直线是圆的切线.(判定定理)(3) 如果圆心到一条直线的距离等于______,那么这条直线是圆的切线.提醒:1、在切线的判定中,当直线和圆的公共点标出时,用判定定理证明(连半径,证垂直).2、当公共点未标出时,一般可证圆心到直线的距离d=r来判定相切(作垂直,证半径). (四).切线长(1)切线长定义:经过圆外一点作圆的切线,这点和切点之间的,叫做这点到圆的切线长.(2)切线长定理:从圆外一点可以引圆的两条切线,它们的相等,这一点和圆心的连线两条切线的夹角六.【典型例题解析】考点一:与切线性质有关的计算例1、(九上P122 1(4))如图,P A、PB切⊙O于A、B两点,且∠P=70°,则∠C=_______.分析:连接OA、OB,则OA⊥PA,OB⊥PB, 易得四边形APBO的内角∠AOB的度数,从而可得∠C。

(变式)如图,P A、PB切⊙O于A、B两点,点C在⊙O上,且∠ACB=50°,则∠P=_______.例2、如图,在等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为()A.8B.6 C.5 D.4分析:连接OD、OE,则OD⊥BA,OE⊥AC,根据切线长定理得AD=AE,易得正方形ADOE;若设OD=x,根据勾股定理可得OD2+BD2=BO2从而得到方程,通过解方程既得⊙O的半径。

实用圆切线方程的证明

实用圆切线方程的证明

关于圆的切线方程及相关公式的证明一、点P(x 0,y 0)在圆上1、在圆的标准方程(x-a) 2+(y-b) 2=r 2上,则过点P(x 0,y 0)的切线方程为(x 0-a) (x-a) +(y 0-b) (y-b) =r 2或(x 0-a) (x-x 0) +(y 0-b) (y-y 0) =0证明:∵P(x 0,y 0)在圆上,(x 0-a) 2+(y 0-b) 2=r 2,圆心O(a,b),OP 的斜率ax by k --=00 ∴切线的斜率为k1-,切线方程)(0000x x by a x y y ----=-0))(())((0000=--+--y y b y x x a x ① (x 0-a) 2+(y 0-b) 2=r 2 ②①+②得出(x 0-a )(x -x 0+x 0-a)+(y 0-b)(y -y 0+y 0-b)= r 2 (x 0-a) (x -a) +(y 0-b) (y -b) =r 22、在圆的特殊方程x 2+y 2=r 2上,则过点P(x 0,y 0)的切线方程为x 0x + y 0y ==r 2(当a=0,b=0)3、在圆的一般方程x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F >0)上,则过点P(x 0,y 0)的切线方程为x 0x + y 0y + D ×(2x x + )+ E ×(2y y + )+ F =0证明:x 2+y 2+Dx+Ey+F=0 化成圆的标准方程 44)2()2(2222FE D Ey Dx -+=+++∵P(x 0,y 0)在圆上,44)2()2(222020FE D Ey Dx -+=+++,OP 的斜率2200Dx Ey k ++=∴切线的斜率为k1-,切线方程)(220000x x Ey D x y y -++-=-0))(2())(2(0000=-++-+y y Ey x x Dx ①44)2()2(222020FE D Ey Dx -+=+++②①+②得出44)2)(2()2)(2(22000000FE D Ey y y Ey Dx x x Dx -+=++-++++-+4442)(42)(22200200FE D E y y E y y D x x D x x -+=++⨯++++⨯+x 0x + y 0y + D ×(2x x + )+ E ×(2y y + )+ F =0二、点P(x 1,y 1)在圆外1、切线长22121)()(r b y a x PA --+-= (标准方程(x-a) 2+(y-b) 2=r 2) 证明:用勾股定理。

证明圆的切线的七种常用方法

证明圆的切线的七种常用方法

证明圆的切线的七种常用方法类型1、有公共点:连半径,证垂直方法1、勾股定理逆定理法证垂直1.如图,⊙O的直径AB=12,点P是AB延长线上一点,且PB=4,点C是⊙O上一点,PC=8. 求证:PC是⊙O的切线.方法2、特殊角计算法证垂直2. 如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD =5,求⊙O 的直径.方法3、等角代换法证垂直3.如图,在Rt△ABC中,∠C=90°,D为BC 的中点,以AC 为直径的⊙O交AB于点E . 求证:DE是⊙O 的切线.方法4、平行线性质法证垂直4.如图,已知四边形OABC的三个顶点A ,B ,C在以O为圆心的半圆上,过点C 作CD ⊥AB,分别交AB,AO 的延长线于点D,E,AE交半圆O于点F,连接CF,且∠E=30°,点B是︵AC的中点.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)求证:CF=OC;(3)若⊙O的半径是6,求DC的长.AB POCACBPD OAEBDOCA O F ECDB方法5、全等三角形法证垂直5.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF .求证:BF 是⊙O 的切线.类型2、无公共点:作垂直,证半径方法6、角平分线性质法证半径6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 是AB 上一点,DE =DC ,以点D 为圆心,BD 长为半径作OD ,AB =5,EB =2. (1)求证:AC 是OD 的切线;(2)求线段AC 的长.方法7、全等三角形法证半径7.如图,四边形ABCD 中,∠A =∠ABC =90°,AD +BC =CD ,以AB 为直径作⊙O . 求证:⊙O 与边CD 相切.A OBCD F A B C D EA OB C D。

圆的切线方程公式证明

圆的切线方程公式证明

已知:圆的方程为:(x - a)²+ (y - b)²= r², 圆上一点P(x0, y0)解:圆心C(a, b)直线CP的斜率:k1 = (y0 - b) / (x0 - a)因为直线CP与切线垂直, 所以切线的斜率:k2 = -1/k1 = - (x0 - a) / (y0 - b)根据点斜式, 求得切线方程:y - y0 = k2 (x - x0)y - y0 = [- (x0 - a) / (y0 - b)] (x - x0)整理得:(x - x0)(x0 - a) + (y - y0)(y0 - b) = 0 (注意:这式也是很好用的切线方程公式) 展开后: x0x - ax + ax0 + y0y - by + by0 - x0²- y0²= 0 ~ (1)因为点P在圆上, 所以它的坐标满足方程:(x0 - a)²+ (y0 - b)²= r²化简: x0²- 2ax0 + a²+ y1²- 2by0 + b²= r²移项: - x0²- y0²= -2ax0 - 2by0 + a²+ b²- r²~ (2)由(2)代入(1), 得: x0x - ax + ax0 + y0y - by + by0 + (-2ax0 - 2by0 + a²+ b²- r²) = 0化简, (x0x - ax - ax0 + a²) + (y0y - yb - by0 + b²) = r²整理, (x0 - a)(x - a) + (y0 - b)(y - b) = r²类似地, 对於圆的一般方程:x²+ y²+ Dx + Ey + F = 0, 过圆上的点的切线方程.2. 已知:圆的方程为:x²+ y²+ Dx + Ey + F = 0, 圆上一点P(x0, y0)解:圆心C( -D/2, -E/2 )直线CP的斜率:k1 = (y0 + E/2) / (x0 + D/2)因为直线CP与切线垂直, 所以切线的斜率:k2 = -1/k1 = - (x0 + D/2) / (y0 + E/2)根据点斜式, 求得切线方程:y - y0 = k2 (x - x0)y - y0 = [- (x0 + D/2) / (y0 + E/2)] (x - x0)整理得:x0x + y0y + Dx/2 + Ey/2 - Dx0/2 - Ey0/2 -x0²- y0²= 0 ~ (3)因为点P在圆上, 所以它的坐标满足方程:x0²+ y0²+ Dx0 + Ey0 + F = 0移项: - x0²- y0²= Dx0 + Ey0 + F ~ (4)由(4)代入(3), 得: x0x + y0y + Dx/2 + Ey/2 - Dx0/2 - Ey0/2 + Dx0 + Ey0 + F = 0整理, x0x + y0y + D(x + x0)/2 + E(y + y0)/2 + F = 03a. 已知:圆的方程为:(x - a)²+ (y - b)²= r², 圆外一点P(x0, y0)解: 圆心C(a, b), 设切点为M则切线长PM = √(CP²- MC²) (根据勾股定理)= √[(x0 - a)²+ (y0 - b)²- r²] (CP:两点间距离公式求得, MC:半径长)类似地, 对於圆的一般方程:x²+ y²+ Dx + Ey + F = 0, 过圆外的点的切线长....3b. 已知:圆的方程为:x²+ y²+ Dx + Ey + F = 0 , 圆外一点P(x0, y0)解: 圆心C( -D/2, -E/2 ), 设切点为M则切线长PM = √(CP²- MC²) (根据勾股定理)= √[ (x0 + D/2)²+ (y0 + E/2)²- ((√(D²+E²-4F))/2)²](半径:r=(√(D²+E²-4F)) / 2)= √(x0²+ y0²+ Dx0 + Ey0 + F)。

圆的切线的判定定理的证明-高中数学知识点讲解

圆的切线的判定定理的证明-高中数学知识点讲解

圆的切线的判定定理的证明
1.圆的切线的判定定理的证明
【知识点的知识】
1、直线和圆的位置关系:
相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.
相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点.相离:直线和圆没有公共点时,叫做直线和圆相离.
2、切线的性质定理:圆的切线垂直于过切点的直径(或半径).
3、由直线与圆的位置关系和切线的性质定理推理总结出切线的判定定理:
切线的判定定理:经过半径(或直径)的外端并且垂直于这条半径(直径)的直线是圆的切线.
注意:“经过半径(或直径)的外端”和“垂直于这条半径(或直径)”这两个条件缺一不可.
4、切线的判定方法:
①直线到圆心的距离等于该圆的半径(直线与圆的位置关系);
②线与圆有唯一公共点(切线定义);
③切线的判定定理.
1/ 1。

圆切线证明的方法

圆切线证明的方法

切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可.证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º. ∵∠CAB =30º,∴BC =21AB =OB . ∵BD =OB ,∴BC =21OD .∴∠OCD =90º. ∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端"和“垂直于这条半径"这两个条件缺一不可,否则就不是圆的切线. 【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90º即可.证明:连接OD .∵OC ∥AD ,∴∠1=∠3,∠2=∠4.图1图2∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,∴△OBC ≌△ODC .∴∠OBC =∠ODC .∵BC 是⊙O 的切线,∴∠OBC =90º.∴∠ODC =90º. ∴DC 是⊙O 的切线.【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .思路:利用圆的切线的性质-—与圆的切线垂直于过切点的半径.证明:连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD . ∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】 如图1,B 、C 是⊙O 上的点,线段AB 经过圆心O ,连接AC 、BC ,过点C 作CD ⊥AB 于D ,∠ACD =2∠B .AC 是⊙O 的切线吗?为什么? 解:AC 是⊙O 的切线. 理由:连接OC , ∵OC =OB ,∴∠OCB =∠B .∵∠COD 是△BOC 的外角, ∴∠COD =∠OCB +∠B =2∠B . ∵∠ACD =2∠B , ∴∠ACD =∠COD . ∵CD ⊥AB 于D , ∴∠DCO +∠COD =90°. ∴∠DCO +∠ACD =90°. 即OC ⊥AC .∵C 为 ⊙O 上的点,∴AC 是⊙O 的切线.【例5】 如图2,已知⊙O是△ABC 的外接圆,AB 是⊙O的直径,D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线于点E ,且AC 平分∠EAB .求证:DE 是⊙O 的切线.图3O ABCD2 31证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC 于E,B为切点的切线交OD延长线于F。

专题提升(十二) 与圆的切线有关的计算与证明

专题提升(十二) 与圆的切线有关的计算与证明

专题提升(十二)与圆的切线有关的计算与证明类型之一与圆的切线的性质有关的计算或证明(人教版九上P102习题第12题)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.求证:AC平分∠DAB.【思想方法】已知圆的切线,可得切线垂直于过切点的半径(若图中未画出,通常需要连半径作辅助线).[2019·天津]已知P A,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.(1)如图①,求∠ACB的大小;(2)如图②,AE为⊙O的直径,AE与BC相交于点D,若AB=AD,求∠EAC的大小.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D,C,过点C作直线CE⊥AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.类型之二与圆的切线的判定有关的计算或证明(人教版九上P101习题第4题)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.【思想方法】证明圆的切线的两种常用思路:(1)作半径,证垂直;(2)作垂直,证半径.1.[2018·青海]如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=5,求⊙O的直径.2.[2019·雅安]如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于点E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.3.[2019·菏泽]如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC 的延长线于点D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线;(2)若∠A=22.5°,求证:AC=DC.如图,AB是⊙O的直径,D为⊙O上一点,AT平分∠BAD,交⊙O于点T,过点T作TC⊥AD,交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)若⊙O的半径为2,CT=3,求AD的长.参考答案(完整答案和解析见PPT 课件之课时作业)【教材母题】 略 【中考变形】 (1)50° (2)20° 【中考预测】 (1)略 (2)258【教材母题】 略 【中考变形】1.(1)略 (2)25 2.(1)略 (2)43 3.略 【中考预测】 (1)略 (2)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档