九年级圆的教学设计

合集下载

《圆的认识》教学设计(共10篇)

《圆的认识》教学设计(共10篇)

《圆的认识》教学设计(共10篇)篇:《圆的认识》教学设计教学设想:本节课我选为了参加区的竞赛课,通过三次试教,在不断的实践与反思中修改教案我认为本节课可以从以下方面来把握。

一、从生活中提炼对圆的认识数学与我们生活是紧密联系的,通过设计先让学生欣赏带有圆形的图片使学生感受生活中的圆,再让学生从生活中找圆感知圆在我们生活中随处可见。

“圆与我们其他平面图形有什么不同”提出这样一个问题使学生明白圆与其他平面图形的不同之处,从而得出圆是由曲线围城的其他平面图形是由直线围成的。

二、在实践操作中,感悟在纸上用圆规画圆的优点课前让学生准备带有圆形的物体和圆规,让孩子们在自己实践操作中充分体验用圆形物体画圆与圆规画圆的区别,再充分让孩子们说,在交流中得出用圆规画的优越性以及使用圆规画圆的正确方法。

指导自学,交流对圆各部分名称的认识“我们知道画圆,那么怎样来介绍这个圆,数学上是不是有专门的数学语言来描叙了”让学生带着这样一个问题去自学培养学生的自学能力,在交流时充分让孩子们说,使他们对圆心、直径、半径认识并结合在自己所画圆的中找圆心、半径、直径。

在实际操作经历中对概验的理性认识,在认识理解的基础上顺水推舟提升对圆特征的了解。

四、探索圆其他方面的特征课前给学生准备一个圆,让学生找出这个圆的半径、直径、圆心。

可以说这个环节是本节课亮点,圆不是自己画的怎样来找他各部分名称呢?孩子们要经历思维的碰窜会努力的想办法来找,这时老师鼓励他们在合作交流探索中使孩子们获得成功的喜悦。

五、巧妙设计练习,丰富学生对圆的认识数学来源与生活又服务与生活,设计利用所学的数学知识来解决生活的实际问题让学生走出课堂发现更多生活的小秘密。

课后反思:1、数学课要重视学生的感悟体验,让学生“动”起来数学课要让学生“动”起来,要在动手中体验与感悟。

但这种“动”是有目的的动,是为了让学生积累一定的感性认识与活动经验的动。

这节课安排学生在画圆时感悟与体验,正确地把握了教学手段与目的的关系,关注了学生的数学思考,并创设了更多的机会让学生思考,把外在的操作活动和内在的思维活动有机地结合起来,提升了数学活动的价值。

圆的认识教学设计(精选5篇)

圆的认识教学设计(精选5篇)

圆的认识教学设计〔精选5篇〕圆的认识教学设计〔精选5篇〕圆的认识教学设计篇1教学目的:1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径;能借助工具画图,能用圆规画指定大小的圆。

2、让学生经历从猜测到验证的过程,在活动中进一步积累认识图形的学习经历,增强空间观念,开展数学考虑。

3、使学生进一步体验图形与生活的联络,感受生活中圆的存在与作用,感受其神奇与蕴含的美学价值,进步数学学习的兴趣教学重点:在观察、操作、画图等活动中感受并发现圆的特征。

教学难点:归纳圆的特征,并能准确画出指定大小的圆。

教学用具:教学课件教学过程:一、情景引入出示一组生活中物体的图片,让学生欣赏。

〔如太阳、圆月、汽车的车轮、呼拉圈、光盘、钟面等〕1、刚刚欣赏到的那些漂亮图片中的物体是什么形状?2、在我们的生活中,就在我们的身边,还有那些地方能看到圆?〔学生衣服上的纽扣、身上的硬币、桌子里的杯子等等〕请学生用手指一指这些物体上的圆,并用手摸一摸,有什么感觉?3、看来,在我们的大自然中、生活中圆是无处不在,今天就让我们一起来理解这个虽然不熟悉但和我们处处在一起的圆。

〔板书:圆的认识〕二、教学新知,初步画圆1、刚刚看了那么多的圆,说了那么多的圆。

接下来请大家用你能想到的方法自己动手画一个圆。

2、请学生交流画圆的方法。

如借助圆形的物体画,还有书上讲到的方法或是用圆规画〕3、通过刚刚的看圆、说圆与画圆,你觉得圆与以前学过的平面图形有什么不同?总结:以前学过的平面徒刑都是由线段围成的,圆是由曲线围成的,圆比拟光滑,没有角。

4、大家介绍了很多画圆的方法。

为了使我们能画出任意大小的圆来,勤劳、智慧的人们制成了专门用来画圆的工具――圆规。

三、认识圆规,掌握用圆规画圆的方法。

1、认识圆规。

让学生取出课前准备好的圆规,一起认识圆规的的构成并介绍圆规两脚的功能:圆规有两只脚,一只是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。

九年级数学上册(人教版)24.1.1圆教学设计

九年级数学上册(人教版)24.1.1圆教学设计
3.引入新课:通过讨论和思考,引出本节课的学习内容——圆的定义、性质及计算方法。
(二)讲授新知
1.圆的定义:讲解圆的基本概念,强调圆是由一条曲线组成,所有点到圆心的距离相等。
2.圆的性质:讲解圆的半径、直径、周长、面积等基本性质,以及圆的对称性、轴对称性等。
3.圆的周长和面积计算:介绍圆周长和面积的公式,并结合实例进行讲解。
九年级数学上册(人教版)24.1.1圆教学设计
一、教学目标
(一)知识与技能
1.理解圆的定义,掌握圆的基本性质,如半径相等、直径是半径的2倍等。
2.学会使用圆规画圆,掌握圆的对称性质,并能运用到实际中。
3.掌握圆的周长和面积的计算公式,并能灵活运用解决相关问题。
4.了解圆的位置关系,如相离、相切、相交等,并能判断圆与圆、圆与直线之间的位置关系。
3.教学评价:
a.采用形成性评价和终结性评价相结合的方式,全面了解学生的学习过程和结果。
b.重视学生在课堂上的表现,如发言、讨论、练习等,及时给予鼓励和指导。
c.定期进行单元测试,检测学生对圆的知识掌握程度,为下一步教学提供依据。
4.教学拓展:
a.介绍圆在生活中的应用,如建筑、艺术、科技等领域,激发学生的学习兴趣。
b.计算给定圆的周长和面积,要求使用两种不同的方法计算,并比较结果。
c.画出两个相交、相切和相离的圆,并简要说明判断依据。
2.实践应用题:
a.利用圆的性质,设计一个圆形花园,要求给出花园的半径和面积。
b.在一张白纸上画出一个圆,然后剪下这个圆,测量并计算它的周长和面积。
c.结合生活实例,说明圆在实际应用中的优势。
c.如果一个圆的半径增加了两倍,那么它的周长和面积会发生怎样的变化?

《圆的认识》教学设计优秀12篇

《圆的认识》教学设计优秀12篇

《圆的认识》教学设计优秀12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《圆的认识》教学设计优秀12篇作为一名人·民教师,有必要进行细致的教案准备工作,借助教案可以有效提升自己的教学能力。

《24.1.1 圆》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《24.1.1 圆》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《圆》教学设计方案(第一课时)一、教学目标1. 掌握圆的定义、性质及相关概念;2. 能够运用圆的性质解决相关问题;3. 培养学生的观察、思考和解决问题的能力。

二、教学重难点1. 教学重点:圆的定义和性质的应用;2. 教学难点:理解并掌握圆心角、弦、弧之间的关系以及圆中的有关计算问题。

三、教学准备1. 准备教学用具:圆规、圆板、绳子、剪刀等;2. 准备教学材料:相关例题和练习题;3. 安排教学时间:本课时为单课时,约45分钟。

四、教学过程:(一)引入1. 复习引入:请学生回忆小学学习过的平面图形有哪些?2. 设问引入:在初中,我们将学习一种特殊的几何图形——圆。

那么,圆在生活中有哪些应用呢?我们如何来研究圆呢?(二)新课活动一:感知圆的形状1. 请学生利用手中的圆规和圆规画圆,并观察圆的形成过程。

2. 讨论:圆的形成与什么有关?圆的大小与什么有关?圆的位置与什么有关?3. 汇报交流:圆的位置用定点、定长来描述;圆的半径、直径的变化规律;圆的形状特征。

活动二:画圆工具介绍介绍圆的各部分名称,重点讲解圆心和半径。

并介绍画圆的工具——圆规。

活动三:探究圆的特征请学生尝试用量角器、圆规等工具对以下问题进行探究:(1)任意两个半径分别相等吗?(2)任意两个直径分别相等吗?(3)所有半径的长度都相等吗?(4)所有直径的长度都相等吗?通过探究引导学生归纳总结出圆的特征。

活动四:生活中的圆请学生列举生活中的圆形物体,并思考为什么我们经常使用圆形?生活中哪些地方用到了圆的知识?目的是激发学生学习兴趣,体会数学在生活中的应用。

(三)小结(学生回答教师补充)通过本节课的学习,你有什么收获?特别要注意哪些概念和特征?哪些内容需要我们牢记的?本节课与小学的数学知识有什么联系与区别?还有什么疑问?(鼓励求异思维)(四)作业布置(必做题、选做题)必做题:教材66-67页练习题。

选做题:思考题。

思考题为:有三个完全一样的等腰直角三角形ABC,∠ACB=90°,AC=BC=a,试着用这些三角形拼成各种形状的圆,并求出每个圆的面积。

苏科版数学九年级上册第2章《圆》教学设计1

苏科版数学九年级上册第2章《圆》教学设计1

苏科版数学九年级上册第2章《圆》教学设计1一. 教材分析《苏科版数学九年级上册第2章《圆》》是学生在学习了平面几何基本概念和性质的基础上,进一步研究圆的相关知识。

本章内容包括圆的定义、性质、圆的方程、圆与直线的关系等。

通过本章的学习,使学生了解圆的基本概念和性质,掌握圆的方程的求法,培养学生解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。

但部分学生对圆的概念和性质理解不深,对于圆的方程的求法和解题方法还不够熟练。

因此,在教学过程中,要注重引导学生深入理解圆的概念和性质,并通过大量的练习,提高学生解决实际问题的能力。

三. 教学目标1.理解圆的定义和性质,掌握圆的方程的求法。

2.培养学生解决实际问题的能力,提高学生的逻辑思维能力和空间想象能力。

3.培养学生合作学习的意识,提高学生的沟通能力和团队协作能力。

四. 教学重难点1.圆的定义和性质的理解。

2.圆的方程的求法和解题方法的掌握。

五. 教学方法1.采用问题驱动法,引导学生主动探究圆的定义和性质。

2.采用案例分析法,分析实际问题,培养学生解决实际问题的能力。

3.采用小组合作学习法,培养学生合作学习的意识,提高学生的沟通能力和团队协作能力。

六. 教学准备1.准备相关的教学案例和实际问题,用于课堂分析和讨论。

2.准备教学PPT,用于辅助教学。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过展示一些与圆相关的实际问题,引导学生思考圆的定义和性质,激发学生的学习兴趣。

2.呈现(10分钟)讲解圆的定义和性质,引导学生通过PPT了解圆的相关知识。

在此过程中,注重引导学生主动参与,提问学生对圆的定义和性质的理解。

3.操练(10分钟)通过PPT展示一些例题,讲解圆的方程的求法。

在此过程中,引导学生主动思考,解答问题。

同时,提醒学生注意解题方法的总结。

4.巩固(10分钟)布置练习题,让学生独立完成。

圆的认识教学设计教案(精选7篇)

圆的认识教学设计教案(精选7篇)

圆的认识教学设计教案(精选7篇)圆的认识教学设计教案(精选7篇)作为一名教学工作者,总归要编写教案,借助教案可以提高教学质量,收到预期的教学效果。

教案应该怎么写呢?下面是由给大家带来的圆的认识教学设计教案内容7篇,让我们一起来看看!圆的认识教学设计教案篇1教学目标:1、进一步认识圆,知道并理解圆的各部分名称;了解圆的特征,理解直径和半径的关系;学习用圆规画圆,初步能按要求画圆。

2、在数学活动中让学生经历知识再发现、再创造的过程,完成知识的意义赋予,从中培养探究意识、发现能力和解决简单实际问题的能力,享受成功的喜悦。

3、体验圆的美,同时感受数学是一种过程、一种文化。

教法学法:教法:自主探索、合作交流学法:组织学生进行探究学习教学过程一、课前谈话抢答:根据教师的描述说出是什么图形?(三角形、梯形、长方形、平行四边形、正方形。

)二、直接导入、揭示课题1、教师出示圆:这是什么图形,认识吗?2、揭示课题:圆的认识。

(板书)三、探究新知1、找:生活中,哪些物体的表面是圆形的?2、引导比较:圆和其它平面图形相比,有什么区别?得出:圆是由曲线围成的平面图形。

3、探究圆的特征。

师:你知道老师这个圆是怎么画出来的吗?①、画:学生自己画比较方法的优劣指名上台画谈画圆的体会。

到黑板上画学生评价感悟定点、定长的重要性②、说:知道有关圆的哪些知识?在探底中动态生成:(根据学生回答板书)(a)圆心。

(o)(b)半径(r);直径(d)画(c)同圆(或等圆)中直径是半径的2倍,半径是直径的1/2。

(d=2r,r=d÷2)(d)有无数条半径、直径。

注意:尽量让学生说,顺着学生思路引导,在动态中把握。

③、引导验证:让学生结合图形进行验证。

④、按要求画圆:在黑板右面画一个更大的圆、独立思考、组织讨论、指名画目标:〈1〉、知道圆心决定圆的位置。

(定点)〈2〉、圆规两脚间的距离决定圆的大小。

(定长)按要求画圆。

(r=3厘米;d=4厘米)让学生说画法、教师小结方法并板书进一步掌握画圆的方法四、教学小结通过本课的学习,你有什么收获?五、巩固练习1、找出圆中直径和半径。

《圆的认识》教学设计(优秀5篇)

《圆的认识》教学设计(优秀5篇)

《圆的认识》教学设计(优秀5篇)《圆的认识》教学设计篇一教学目标1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的特征,初步学会用圆规画圆。

2、使学生掌握圆的特征,理解在同一个圆里直径与半径的关系,能根据这种关系求圆的直径或半径。

3、养学生的观察、分析、抽象、概括等思维能力和初步的空间观念,使学生初步学会用数学知识解释、解决生活中的实际问题。

教学重难点掌握圆的特征,理解在同一个圆里直径和半径的关系,能根据这种关系求圆的直径或半径。

教学准备多媒体一套。

学生准备硬币等圆形物体若干;圆规一把、直尺一把、三角尺一副;小剪刀一把;红色、蓝色彩笔各一支。

教学过程一、导入新课二、探究新知三、全课总结四、综合练习五、延伸拓展1、导入:玩过套圈游戏吗?如果现在有几位同学要进行套圈比赛,站成什么形状比较合理?2、你见过圆吗?生活中你在哪儿见过?能说说吗?一直说下去能说完吗?的确圆是无处不在的,打开有关生活中圆的课件。

问:同学们你们从中又看到了圆了吗?你会画圆吗?动手试一试,看谁想的方法多。

3、怎样可以画出一个圆?还有其它方法吗?师根据学生口答边画圆边归纳方法:(1)定长(2)定点(3)旋转请大家用这个方法再画一个圆,并很快把它剪下来。

要进行套圈比赛的圆肯定比较大,用圆规画行吗?怎么办?4、揭题:为什么站成圆形大家会觉得比较公平呢?今天我们一起来学习圆的认识(板书课题),相信通过今天的学习大家一定会明白其中的道理。

(一)认识圆心1、圆形画好了,游戏可以开始了吗?套圈用的瓶子要放在哪儿呢?2、你能很快找出圆的中心吗?试一试,找出刚才剪下的圆的中心。

谁先发现,谁就先上来介绍。

说明:圆的中心叫“圆心”,就是画圆时针固定的一点,用字母O表示。

(师板书:圆心O)(二)认识半径1、圆画好了,瓶子放在圆心了,接下来怎样?(站人)站在哪里?(圆上)哪儿是“圆上”?指给你的同桌看一看,谁能上来指一指?4、要站在圆上,随便哪一点都可以吗?为什么?怎样证明?(引导学生画一画、量一量)说明:象这样,连接圆心到圆上任意一点的线段,叫做圆的半径,用字母r来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1《圆》教学设计一、教学目标知识技能: 1.了解圆和圆的相关概念,知道圆实轴对称图形,理解并掌握垂直于弦的直径有哪些性质.2.了解弧、弦、圆心角、圆周角的定义,明确它们之间的联系.数学思考: 1.在引入圆的定义过程中,明确与圆相关的定义,体会数学概念间的联系.2.在探究弧、弦、圆心角、圆周角之间的联系的过程中,培养学生的观察、总结及概括能力.问题解决: 1.在明确垂直于弦的直径的性质后,能根据这个性质解决一些简单的实际问题.2.能根据弧、弦、圆心角、圆周角的相关性质解决一些简单的实际问题.情感态度:在引入圆的定义及运用相关性质解决实际问题的过程中,感悟数学源于生活又服务于生活.在探索过程中,形成实事求是的态度和勇于创新的精神.二、重难点分析教学重点:垂径定理及其推论;圆周角定理及其推论.垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据,同时也为进行圆的计算和作图提供了方法和依据;圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等等问题提供了十分简便的方法.所以垂径定理及其推论、圆周角定理及其推论是本小节的重点.对于垂径定理,可以结合圆的轴对称性和等腰三角形的轴对称性,引导学生去发现“思考”栏目图中相等的线段和弧,再利用叠合法推证出垂径定理.对于垂径定理的推论,可以按条件画出图形,让学生观察、思考,得出结论.要注意让学生区分它们的题设和结论,强调“弦不是直径”的条件.圆周角定理的证明,分三种情况进行讨论.第一种情况是特殊情况,是证明的基础,其他两种情况都可以转化为第一种情况来解决,转化的条件是添加以角的顶点为端点的直径为辅助线.这种由特殊到一般的思想方法,应当让学生掌握.教学难点:垂径定理及其推论;圆周角定理的证明.垂径定理及其推论的条件和结论比较复杂,容易混淆,圆周角定理的证明要用到完全归纳法,学生对于分类证明的必要性不易理解,所以这两部分内容是本节的难点.圆是生活中常见的图形,学生小学时对它已经有了初步接触,对于圆的基本性质有所了解.但是对于垂径定理和推论、圆周角定理和推论及其理论推导还比较陌生,教师应该鼓励引导学生通过动手操作、动脑思考等途径去发现结论,加深认识.三、学习者学习特征分析圆是生活中常见的图形,学生小学时对它已经有了初步接触,对于圆的基本性质有所了解.但是对于垂径定理和推论、圆周角定理和推论及其理论推导还比较陌生,教师应该鼓励引导学生通过动手操作、动脑思考等途径去发现结论,加深认识.四、教学过程(一)创设情境,引入新课圆是一种和谐、美丽的图形,圆形物体在生活中随处可见.在小学我们已经认识了圆这种基本的几何图形,并能计算圆的周长和面积.早在战国时期,《墨经》一书中就有关于“圆”的记载,原文为“圆,一中同长也”.这是给圆下的定义,意思是说圆上各点到圆心的距离都等于半径.现实生活中,路上行驶的各种车辆都是圆形的轮子,为什么车轮做成圆形的?为什么不做成椭圆形和四边形的呢?这一节我们就一起来学习圆的有关知识,并且来解决上述的疑问.(二)合作交流,探索新知1.观察图形,引入概念(1)圆是生活中常见的图形,许多物体都给我们以圆的形象.(多媒体图片引入)(2)观察画圆的过程,你能由此说出圆的形成过程吗?(3)圆的概念:让学生根据上面所找出的特点,描述什么样的图形是圆.(学生可以在讨论、交流的基础上自由发言;绝大部分学生能够比较准确的描述出圆的定义,部分学生没有说准确,在其他学生带动下也能够说出)在学生充分交流的基础上得到圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.(多媒体动画引入)(4)圆的表示方法以点O为圆心的圆,记作“⊙O”,读作“圆O”.(5)从画圆的过程可以看出:①圆上各点到定点(圆心O)的距离都等于定长(半径r);②到定点的距离等于定长的点都在同一个圆上.因此,圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r 的点的集合.(把一个几何图形看成是满足某种条件的点的集合的思想,在几何中十分重要,因为这实际上就是关于轨迹的概念.圆,实际上是“到定点的距离等于定长的点”的轨迹.事实上,①保证了图形上点的纯粹性,即不杂;②保证了图形的完备性,即没有漏掉满足这种条件的点.①②同时符合,保证了图形上的点“不杂不漏”.)(6)由车轮为什么是圆形,让学生感受圆在生活中的重要性.问题1,车轮为什么做成圆形?问题2,如果做成正方形会有什么结果?(通过车轮实例,首先让学生感受圆是生活中大量存在的图形.教学时给学生展示正方形车轮在行走时存在的问题,使学生感受圆形的车轮运转起来最平稳.)把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.2.与圆有关的概念(1)连接圆上任意两点的线段(如线段AC)叫做弦.(2)经过圆心的弦(如图中的)叫做直径.(3)圆上任意两点间的部分叫做圆弧,简称弧.小于半圆的弧(如图中的)叫做劣弧;大于半圆的弧(用三个字母表示,如图中的 ABC,)叫做优弧.(4)圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.(5)能够重合的两个圆叫做等圆.(容易看出半径相等的两个圆是等圆,反过来,同圆或等圆的半径相等.)(6)在同圆或等圆中,能够互相重合的弧叫做等弧.(对于和圆有关的这些概念,应让学生借助图形进行理解,并弄清楚它们之间的联系和区别.例如,直径是弦,但弦不一定是直径.半圆是弧,但弧不一定是半圆;半圆即不是劣弧,也不是优弧.)3.垂直于弦的直径(1)创设情景引入新课问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m.你能求出赵州桥主桥拱的半径吗?)(2)圆的对称性的探究①活动:用纸剪一个圆,沿着圆的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(学生可能会找到1条,2条,3条…教师不要过早地去评判,应该把机会留给学生,让他们在互相交流中,认识到圆的对称轴有无数多条,要鼓励学生表达自己的想法)②得到结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.(3)垂径定理及其逆定理①垂径定理的探究如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)圆是轴对称图形吗?如果是,它的对称轴是什么?? (2)你能发现图中有哪些相等的线段和弧吗?为什么?(旨在通过这样复合图形的轴对称性探索垂径定理,教学时应鼓励学生探索方式的多样性.引导学生理解,证明垂径定理的基本思路是:先构造等腰三角形,由垂直于弦得出平分弦;然后将直径看做圆的对称轴,利用轴对称图形对应元素相等的性质得出平分弧的结论)(多媒体动画引入)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.②垂径定理的逆定理的探究(仿照前面的证明过程,鼓励学生独立探究,然后通过同学间的交流得出结论)垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③解决求赵州桥拱半径的问题4.弧,弦,圆心角(1)通过实验探索圆的另一个特性如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现哪些等量关系?为什么?(多媒体图片引入)(教科书展示了一种证明方法——叠合法,教学时要鼓励学生用多种方法探索图形的性质,学生的想法未必完善,但只要有合理的成分就应给予肯定和鼓励.)结论:在同圆或等圆中,相等的圆心角所的弧相等,所对的弦也相等.(2)对(1)中结论的逆命题的探究在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角_____,所对的弦_____;在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角______,所对的弧_____.(教学时仍要鼓励学生用多种方法进行探索)(3)应用新知,体验成功例. 如图,在⊙O中,= ,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.5.圆周角(1)创设情境引入概念如图是一个圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物,同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙,丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?概念:顶点在圆上,并且两边都与圆相交的角叫做圆周角.(意在引出同弧所对的圆心角与圆周角,同弧所对的圆周角之间的大小关系.教学时要引导学生分析圆周角有两个特征:角的顶点在圆上;两边在圆内的部分是圆的两条弦.)(2)圆的相关性质①动手实践活动一:分别量一下所对的两个圆周角的度数,比较一下,再变动点C在圆周上的位置,圆周角的度数有没有变化?你能发现什么规律?活动二:再分别量出图中所对的圆周角和圆心角的度数,比较一下,你有什么发现?(利用一些计算机软件,可以很方便的度量圆周角,圆心角,有条件的话可以试一试)得到结论:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.②为了进一步研究上面发现的结论,在⊙O任取一个圆周角∠BAC,将圆对折,使折痕经过圆心O和∠BAC的顶点A.由于A的位置的取法可能不同,这时折痕可能会:在圆周角的一条边上;在圆周角的内部;在圆周角的外部.(学生解决这一问题是有一定难度的,应给学生留有时间和空间,让他们进行思考.引导学生观察后两种情况,让学生思考:这两种情况能否转化为第一种情况?如何转化?当解决一个问题有困难时,我们可以首先考虑其特殊情形,然后再设法解决一般问题.这是解决问题时常用的策略.)由此得到圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.进一步我们还可以得到下面的推论:半径(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.由圆周角定理可知:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.(3)圆内接多边形的定义及其相关性质① 定义:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.②利用圆周角定理,我们的得到关于圆内接四边形的一个性质:圆内接四边形的对角互补.(三)应用新知,体验成功利用资源库中的“典型例题”进行教学.(四)课堂小结,体验收获(PPT显示)这堂课你学会了哪些知识?有何体会?(学生小结)1.圆的有关概念;2.垂径定理及其逆定理;3.弧,弦,圆心角的相关性质;4.圆周角的概念及相关性质;(五)拓展延伸,布置作业利用资源库中或手头的相关材料进行布置.五、学习评价:(一)选择题1.如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,•错误的是()(A)CE=DE.(B).(C)∠BAC=∠BAD .(D)AC>AD.1题图 2题图 3题图2.如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,•则下列结论中不正确的是()(A)AB⊥CD .(B)∠AOB=4∠ACD.(C).(D)PO=PD.3.如图,⊙O中,如果=2,那么()(A)AB=AC.(B)AB=AC.(C)AB<2AC.(D)AB>2AC.4.如图,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于()(A)140°.(B)110°.(C)120°.(D)130°.4题图 5题图 6题图5.如图,∠1、∠2、∠3、∠4的大小关系是()(A)∠4<∠1<∠2<∠3 .(B)∠4<∠1=∠3<∠2.(C)∠4<∠1<∠3∠2 .(D)∠4<∠1<∠3=∠2.6.如图,AD是⊙O的直径,AC是弦,OB⊥AD,若OB=5,且∠CAD=30°,则BC等于()(A)3.(B)3+.(C)5-. (D)5.(二)填空题7.如图,AB为⊙O直径,E是中点,OE交BC于点D,BD=3,AB=10,则AC=_____.7题图 9题图 10题图 11题图8.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;最长弦长为_______.9.如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么_______(只需写一个正确的结论)10.如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=________.11.如图,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.(三)解答题12.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.13.如图,以ABCD的顶点A为圆心,AB为半径作圆,分别交BC、AD于E、F,若∠D=50°,求的度数和的度数.14.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.15.如图,已知AB=AC,∠APC=60°(1)求证:△ABC是等边三角形.(2)若BC=4cm,求⊙O的面积.16.如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.(1)求证:AB为⊙C直径.(2)求⊙C的半径及圆心C的坐标.12题图13题图14题图15题图16题图答案:(一)选择题1.D; 2.D; 3.C; 4.D; 5.B; 6.D.(二)填空题7.8;8.8 10;9.AB=CD; 10.3; 11.90°.(三)解答题12.过O作OF⊥CD于F,如下图所示∵AE=2,EB=6,∴OE=2,∴EF=,OF=1,连结OD,在Rt△ODF中,42=12+DF2,DF=,∴CD=2.13.BE的度数为80°,EF的度数为50°;14.;15.(1)证明:∵∠ABC=∠APC=60°,又=,∴∠ACB=∠ABC=60°,∴△ABC为等边三角形.(2)解:连结OC,过点O作OD⊥BC,垂足为D,在Rt△ODC中,DC=2,∠OCD=30°,设OD=x,则OC=2x,∴4x2-x2=4,∴OC=.16.(1)略(2)4,(-2,2)。

相关文档
最新文档