除法的估算
【除法的估算】 三年级估算的原则

【除法的估算】三年级估算的原则课题一:除法的估算教学内容:教科书第16页例2及“做一做”,练习三第3、4题。
教学目标:1.使学生体会学习除法估算的必要,了解除数是一位数除法估算的一般方法。
2.引导学生根据具体情境合理进行估算,知道什么时候要估大些、什么时候要估小些,培养学生良好的思维品质和应用数学的能力。
教学过程:一、理解学习除法估算的必要1.看图出示以下情境和问题:①课本例2:李叔叔他们三人平均每人大约运多少箱?②从学校到仙女湖有223千米,客车行驶了4小时,平均每小时约行多少千米?③每听饮料3元,100元最多能买多少听饮料?④在一次地震中,有灾民182人,如果按每4人发一顶帐篷,最少要准备多少顶帐篷?2.请学生尝试列出解答上面各题的算式。
一般来说,学生都能根据除法的含义列出下列4个算式:124÷3≈、223÷4≈、100÷3≈182÷4≈。
3.体会除法估算是解答问题的一种工具。
请学生逐一说出上面四道算式的意思,让学生在说算式意思的过程中,体会生活中许多问题的解答要用除法估算来完成,理解除法估算是解决问题的重要工具。
二、怎样进行除法估算1.一般方法(1)从上面4个算式中抽出:124÷3≈,请学生尝试估算。
(2)展示、交流学生估算的过程和方法。
生1:124≈120生2:124=120+4120÷3=40(或3×40=120)120÷3=40每人大约运40箱。
剩下的4箱中每人还1可运1箱,每人大约运41箱。
引导学生对以上两种估算的过程和方法进行比较:①两种估算的过程和方法都是正确的。
②两种结果虽然有微小的差异,但都接近准确值,不影响对问题的合理解决,可以说,这样的差异在本题的解决中是可以忽略不计的。
(3)让学生独立估算223÷4≈。
学生估算的过程和方法与124÷3≈的估算过程方法会基本相同。
有以下几种思路:生1:223≈200生2:223=200+23 生3:223≈240200÷4=50 200÷4=50 240÷4=60平均每小时平均每小时平均每小时约行50千米。
除法估算的方法

除法估算的方法在日常生活和学习中,我们经常会遇到需要进行除法运算的情况。
有时候,我们可能没有计算器或者纸笔,需要用头脑进行估算。
那么,如何进行除法的估算呢?接下来,我们将介绍几种简单实用的方法。
首先,我们来看一下除法估算的基本原理。
在进行除法估算时,我们可以利用近似数来代替真实数,从而简化计算过程。
这样做不仅可以提高计算速度,还可以在一定程度上减小计算误差。
一种常用的除法估算方法是“倍数估算法”。
这种方法适用于除数和被除数都是较大的数的情况。
具体步骤如下:首先,将除数和被除数都变为最接近的整十数、整百数或整千数。
然后,利用这两个整数进行除法运算,得到一个估算的商。
最后,根据估算的商和原始的除数进行调整,得到最终的估算结果。
举个例子,如果我们需要计算3478除以23的结果,我们可以将3478近似为3500,将23近似为20。
然后,我们可以计算3500除以20的结果,得到175。
最后,我们可以根据原始的除数23进行调整,得到最终的估算结果。
另一种常用的除法估算方法是“小数估算法”。
这种方法适用于除数和被除数都是小数的情况。
具体步骤如下:首先,将除数和被除数都变为整数,然后进行除法运算,得到一个估算的商。
最后,根据估算的商和原始的小数进行调整,得到最终的估算结果。
举个例子,如果我们需要计算6.8除以2.3的结果,我们可以将6.8乘以10,2.3乘以10,得到68除以23的结果。
然后,我们可以计算68除以23的结果,得到2.956。
最后,我们可以根据原始的小数进行调整,得到最终的估算结果。
除了以上介绍的方法,我们还可以利用近似数的特点进行除法估算。
例如,我们可以利用除数和被除数的倍数关系,进行快速估算。
又如,我们可以利用除数和被除数的乘积关系,进行快速估算。
这些方法都可以帮助我们在没有计算器或者纸笔的情况下,快速准确地进行除法估算。
总之,除法估算是一种非常实用的计算方法。
通过掌握一些简单的估算技巧,我们可以在日常生活和学习中,更加便捷地进行除法运算。
除法估算的方法

除法估算的方法除法是数学中的一种基本运算,它是指用一个数除以另一个数,求出商和余数的过程。
在日常生活和实际问题中,我们经常需要进行除法估算,以便快速得到大概的结果。
下面将介绍几种常用的除法估算方法。
一、舍位取整法。
舍位取整法是指在进行除法估算时,将被除数的各位数字从左到右逐个进行处理,每次只保留一个有效数字,其余位数全部舍去。
这样可以大大简化计算过程,快速得到估算结果。
例如,计算2345÷67≈?首先,将2345中的2保留下来,其余位数舍去,得到2000;然后,将67中的6保留下来,其余位数舍去,得到60;最后,进行估算,2000÷60≈30。
通过舍位取整法,我们可以快速得到2345÷67的估算结果为30。
二、倍数估算法。
倍数估算法是指在进行除法估算时,利用被除数和除数的倍数关系进行估算,以便快速得到结果。
例如,计算428÷7≈?首先,找到7的倍数,即7、14、21、28、35、42;然后,找到最接近428的倍数,即42;最后,进行估算,428÷7≈60。
通过倍数估算法,我们可以快速得到428÷7的估算结果为60。
三、近似估算法。
近似估算法是指在进行除法估算时,利用被除数和除数的近似值进行估算,以便快速得到结果。
例如,计算789÷13≈?首先,将789和13分别取近似值,即将789取为800,将13取为10;然后,进行估算,800÷10≈80。
通过近似估算法,我们可以快速得到789÷13的估算结果为80。
四、分部估算法。
分部估算法是指在进行除法估算时,将被除数和除数分别进行估算,然后将两者的估算结果进行相乘,以便快速得到结果。
例如,计算246÷9≈?首先,对246进行估算,将其取为250;然后,对9进行估算,将其取为10;最后,进行估算,250÷10≈25。
通过分部估算法,我们可以快速得到246÷9的估算结果为25。
估算除法总结

估算除法总结引言在数学中,除法是一种基本操作,用于将一个数(被除数)分成若干等份(除数),求解每一份的大小(商)。
然而,在实际应用中,除法可能会涉及到较大的数值,计算起来较为繁琐。
为了简化除法的计算过程,我们可以采用估算除法的方法,通过近似计算来得到一个接近实际结果的答案。
本文将介绍估算除法的几种常见方法和应用场景。
正文1. 位数估算法位数估算法是一种简单而有效的估算除法的方法。
它适用于两个数相差较大的情况,如一个数是百位数,另一个数是个位数。
具体计算步骤如下:1.找出被除数和除数的位数差。
假设被除数有m位,除数有n位,则位数差为m - n。
2.将除数向左移动位数差的位数,得到一个近似的除数。
3.对近似的除数和被除数进行除法运算,得到商。
4.根据需要,可以进行进一步的修正和近似。
2. 数线估算法数线估算法是一种直观而简单的估算除法的方法。
它适用于整除的情况,即除数是被除数的倍数。
具体计算步骤如下:1.绘制一条数线,上面按照除数的大小划分出若干等分。
2.在数线上找到被除数所在的位置,并确定它与除数之间的差距。
3.根据差距的大小,可以估算出商的范围。
3. 近似估算法近似估算法是一种灵活而准确的估算除法的方法。
它适用于除法中的特殊情况,如小数除法和除数为小数的情况。
具体计算步骤如下:1.将被除数和除数化为相近的整数。
2.进行整数除法运算,得到一个近似的商。
3.根据余数和小数部分的大小,对近似的商进行修正和调整。
应用场景估算除法在日常生活和工作中有广泛的应用场景。
以下是几个常见的应用场景:1.财务估算:在财务计算中,除法常常用于计算销售额、成本、利润等数据。
估算除法可以帮助快速计算出一个近似的财务指标,方便经营和决策。
2.统计分析:在统计学中,除法用于计算比例、频率、概率等。
通过估算除法,可以在大规模数据中快速估算出一个近似的统计指标,提供参考和判断依据。
3.工程计算:在工程领域,除法常用于计算速度、功率、效率等数据。
除法估算的方法

除法估算的方法在数学学习中,我们经常会遇到需要进行除法估算的情况,尤其是在没有计算器的情况下。
除法估算是一种快速估算除法运算结果的方法,可以帮助我们在日常生活和学习中更快地得到答案。
下面将介绍几种常用的除法估算方法。
首先,我们来介绍一种常用的除法估算方法——近似商法。
这种方法适用于被除数和除数都是整数的情况。
首先,我们可以先用整数去估算被除数和除数的大小关系,然后根据这个关系进行估算。
比如,如果我们需要计算48除以7的结果,我们可以先估算48和7的大小关系,然后找到一个整数来近似7,比如10。
然后我们可以计算48除以10的结果,得到4.8,再根据这个结果来近似48除以7的结果,得到约等于7。
其次,还有一种常用的除法估算方法——倍数估算法。
这种方法适用于被除数是整数,除数是小数的情况。
我们可以先将除数变为整数,然后将被除数也按照同样的倍数进行变化,最后再进行估算。
比如,如果我们需要计算36除以0.6的结果,我们可以将0.6变为整数6,然后将36也按照同样的倍数进行变化,得到360,最后再进行估算,得到60。
另外,还有一种常用的除法估算方法——小数估算法。
这种方法适用于被除数和除数都是小数的情况。
我们可以先将被除数和除数都变为整数,然后再进行估算。
比如,如果我们需要计算0.48除以0.12的结果,我们可以将被除数和除数都扩大10倍,得到48除以12,然后再进行估算,得到4。
除法估算是数学学习中的重要内容,掌握好除法估算的方法可以帮助我们更快地得到答案。
通过近似商法、倍数估算法和小数估算法等方法,我们可以在没有计算器的情况下快速估算除法运算结果,提高我们的计算能力和解决问题的能力。
希望大家能够认真学习和掌握这些方法,提高自己的数学水平。
除法的估算(一)

除法的估算(一)引言除法作为数学中的一种基本运算,是我们日常生活中经常用到的。
在实际计算中,我们经常需要快速估算除法的结果,以便得到一个近似的答案。
本文将介绍一些常用的估算方法,帮助我们在日常生活和工作中快速的进行除法运算的估算。
估算方法一:近似商法近似商法是一种常用的估算除法的方法,它通过快速计算除法的近似商来得到答案。
具体步骤如下:1.找到除数最接近的整十数或整百数;2.在被除数和除数同时乘以相同的倍数,使得除数成为整数;3.计算倍数后的新除数能够被倍数后的新被除数整除的商。
示例:假设我们要计算265 ÷ 18的运算结果。
1.找到最接近的整十数或整百数,18距离20最近;2.将265和18同时乘以倍数10,得到2650 ÷180;3.计算180能够整除2650的商,得到14。
所以,265 ÷ 18的估算结果为14。
估算方法二:倍数估算法倍数估算法是另一种常用的估算除法的方法,它利用了倍数之间的关系估算除法的结果。
具体步骤如下:1.找到使得除数和倍数差距最小的整数倍数;2.对除数和被除数都采用相同的倍数进行放大;3.计算放大后的新除数能够被放大后的新被除数整除的商。
示例:假设我们要计算451 ÷ 27的运算结果。
1.找到使得除数和倍数差距最小的整数倍数,27乘以16最接近451,即27× 16 = 432;2.将451和27同时乘以倍数16,得到451 × 16 ÷ 27;3.计算432能够整除451 × 16的商,得到256。
所以,451 ÷ 27的估算结果为256。
估算方法三:分解估算法分解估算法是一种更加灵活的估算除法的方法,它将除法运算分解成多个较为简单的运算。
具体步骤如下:1.将除数和被除数分别进行分解,使得每个分解后的数都较为简单;2.根据分解后的简单数运算,并使用近似的数进行估算;3.将估算结果进行合理调整,得到最终的估算结果。
除法的估算

除法的估算什么是除法的估算?除法估算是一种寻找答案大致范围的方法,根据余数的大小和区间的长度,通过不停地画图、推算、逼近,不断缩小区间,最终得到一个大约的数值。
在日常生活和工作中,我们经常会用到除法估算。
例如,如果要知道一件物品每个人分配的费用,那么我们就需要用到除法估算。
又比如,当我们需要计算一个数除以另一个数的商时,如 357÷9,那么很可能会用到除法估算来估算答案的范围。
除法估算的方法下面,我们将介绍几种除法估算的方法,这些方法对初学者或非精确计算可用。
粗略估算法这种方法非常简单,只需要观察到被除数的数量级,并在心里除以除数的数量级,再稍微调整一下,便能得到一个大约的答案。
例如:•398 ÷ 7 = > 心算得到被除数约为400,除数为7,两个数量级相差不大,因此估算值大约为57。
•1314 ÷ 17 = > 心算得到被除数约为1300,除数为17,两个数量级相差较大,因此估算值大约为70。
这种方法的优点是简单方便,不需要任何计算工具,但是其精度并不高。
实际估算法这种方法则需要在脑海中进行逐位估算,方法如下:•首先,观察被除数的最高位和除数相比的数量级,假设为m。
做法:找到最大的10的指数,不超过被除数的位数,比如,看到1314 ÷ 17,即看到有4位数,所以m=1000。
•其次,将估算值的最高位设置为答案的最高位。
做法:找到结果的最高位。
比如根据例子,17 × 6 = 102,所以估算值的最高位为6。
•再次,用估算值的最高位和除数相乘,得到一个比结果小的数p。
做法:根据上面的估算值6计算,17 × 6 = 102,所以p=100。
•接着,在被除数中减去p,以得到新的被除数R。
做法:根据例子,被除数1314 - 100 = 1214,所以R = 1214。
•然后,检查R的最高位和除数的数量级。
做法:根据=1214,其数量级为1000,与除数相同,所以继续估算。
除法的估算方法

除法的估算方法在日常生活中,我们经常会遇到需要进行除法运算的情况。
除法是一种基本的数学运算,它在我们的日常生活和工作中都有着重要的应用。
然而,有时候我们需要进行快速估算,而不是精确计算,这就需要掌握一些估算方法来帮助我们快速得到答案。
本文将介绍几种常用的除法估算方法,希望能够帮助大家更好地掌握这一技巧。
一、直接估算法。
直接估算法是最简单、最直接的估算方法。
它适用于那些除数和被除数相差较大的情况。
具体操作方法是,先将除数和被除数都取最接近的整十数,然后进行除法运算。
例如,计算48除以7,我们可以将48估算为50,7估算为10,然后进行50除以10,得到5。
这样就可以快速得到一个相对准确的估算值。
二、近似估算法。
近似估算法适用于那些除数和被除数相差不大的情况。
具体操作方法是,先将除数和被除数都取一个较接近的整数,然后进行除法运算。
例如,计算26除以4,我们可以将26估算为25,4估算为5,然后进行25除以5,得到5。
这样就可以快速得到一个近似的估算值。
三、分步估算法。
分步估算法适用于那些较为复杂的除法运算。
具体操作方法是,先将除数和被除数进行分解,然后分别进行估算,最后将结果合并得到最终的估算值。
例如,计算138除以6,我们可以先将138估算为140,6估算为5,然后进行140除以5,得到28。
这样就可以快速得到一个较为准确的估算值。
四、倍数估算法。
倍数估算法适用于那些除数是整数倍数的情况。
具体操作方法是,先找到除数的整数倍数,然后进行估算。
例如,计算96除以8,我们可以先找到96的整数倍数,如90或100,然后进行估算。
如果取90,就是90除以8,得到11;如果取100,就是100除以8,得到12.5。
这样就可以快速得到一个相对准确的估算值。
以上就是几种常用的除法估算方法,它们在不同的情况下都有着各自的适用范围。
通过掌握这些估算方法,我们可以在日常生活和工作中更快速地进行除法运算,提高工作效率。
希望本文的介绍能够帮助大家更好地掌握除法的估算方法,从而在实际应用中更加灵活和高效地运用数学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除法的估算
教学内容:除法的估算(课本第16页例2)
教学目标:1、使学生体会学习除法估算的必要性,了解除数是一位数除法估算的一般方法。
2、引导学生根据具体情境合理进行估算,培养学生良好的思维品质
和应用数学的能力。
教学重点:使学生掌握除数是一位数除法估算的一般方法。
教学难点:在具体的情境中进行除法估算,表达估算的思路。
教学准备:课件。
教学课时:一课时
教学过程:
一、复习导入:
课件出示口算题:
1800÷3 2400÷6 250÷5 420÷6
2700÷9 140÷7 120÷6 5400÷6
学生开火车直接说得数。
看哪一组开得又对又快。
板书课题:除法的估算
二、探究新知。
1、出示教学挂图,呈现农贸市场的情境图
师:上一节课我们共同为赵伯伯、李阿姨和王叔叔解决了难题,这节课我们继续为李叔叔他们三人解决困难,好吗?他们遇到了什么难题呢?我们一起来看看吧。
2、呈现李叔叔三人的情境图:
师:你们看,李叔叔他们三人想怎么把蔬菜运走呀?
(用三辆车一次把这124箱蔬菜全部运完。
)
课件演示:小精灵聪聪出现了:你们能提出什么问题吗?
同桌交流、讨论。
请学生提出问题,老师板书:
李叔叔他们三人平均每人大约运多少箱?
师:这道题该怎么解决呢?(让学生讨论)
(二)自主探索,学习新知:
师引导:你能大概猜一下他们每一个人运了多少箱吗?可以用什么方法快速地解决它呢?
生讨论后反馈结果。
请一学生叙述估算的过程。
可能出现以下几种情况:
(1)、把124看成120,120÷3=40(箱)
(2)、把124拆成120和4,再分别和3除,每人平均分了40箱,还剩4箱,又分了一次,最后还剩下一箱,每个人大约运了41箱。
师板书:124÷3≈40(箱)
或者124=120+4 120÷3=40 4÷3=1 (1)
124÷3≈41(箱)
(三)小结:
师:刚才你们是用什么方法很快地帮李叔叔解决难题的?(估算)这节课让你学到了什么知识?(学生发言)在生活中你还认为哪些地方用得到估算呢?
估算经常在我们的生活中出现,它是一种非常有用的方法,当我们遇到数字较大的题目,比如分东西,而你又不能准确地算出该平均分多少物品给每个人时,我们就可以用估算来计算。
三、巩固练习
做P16 “做一做”第1、2题
1、学生说说题意,并说一说为什么260可以看作240或者280。
之后解答这道题目。
2、要求学生独立完成本道题,之后进行全班性讲评。
四、课堂总结:
在这堂课上你学会了什么?你有什么收获?
五、课堂作业:
完成练习三第3题。
六:板书设计:
除法的估算
124÷3≈40(箱)
124 = 120 + 4
120÷3=40(箱)4÷3=1(箱)……1(箱)
124÷3≈41(箱)。