平面图形及其位置关系
第四章 平面图形及其位置关系辅导题

第四章 平面图形及其位置关系辅导题典例精讲:例1:如图,∠AOB 是平角,∠AOC=80°,∠COE=50°,OD 平分∠AOC ; 1)求∠DOE 的度数;2)OE 是∠BOC 的平分线吗?为什么?例2:如图9-14,B 、C 两点把线段AD 分成2∶3∶4三部分,M 是AD 的中点,CD=8,求MC 的长. 随堂练习1、 下列说法正确的是( ) A. 一条直线就是一个平角 B. 射线比直线短C. 过三点可以作一条直线D. 两点间的线段的长度叫两点间的距离2、平面上有任意三点,经过其中两点画一条直线,可以画( )直线A 、1条B 、2条C 、3条D 、1条或者3条3、点C 在线段AB 上,不能判断点C 是线段AB 中点的式子是( )A 、AB=2ACB 、AC+BC=ABC 、BC=D 、AC=BC 4、按下列线段的长度,点A 、B 、C 一定在同一直线上的是( )AB MC D图9-14AB 21A 、AB=2cm ,BC=2cm ,AC=2cmB 、AB=1cm ,BC=1cm ,AC=2cmC 、AB=2cm ,BC=1cm ,AC=2cmD 、AB=3cm ,BC=1cm ,AC=1cm 5、8点30分时,时钟的时针与分针所夹的锐角是( )A. 60B. 55C. 75D. 706、 已知AB=6cm ,P 点是到A 、B 两点等距离的点,则PA 的长度为( )A. 3cmB. 4cmC. 5cmD. 不能确定7、平面内,有两个角∠AOB=50°,∠AOC=20°,OA 为两角的公共边,则∠BOC 为( ) A ) 30° B 70° C 30°或70° D 无法确定8、在一段火车路线上有四4个车站,在这段路线中往返行车,需要制几种不同的车票(每种车票都要印出上、下车站) ( )A .12种B .9种C .6种D .3种 9、下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个的是( )二、填空题1. 如图9-1,AB________AC+BC (填“<”、“>”或“=”),依据是____________.2、如图,∠AOC 与∠BOD 都是直角,如果∠AOB=144°,则∠DOC=3、如果线段AB=5cm ,BC=3cm ,A 、B 、C 三点在同一条直线上,那么A 、C 两点间的距离是__________cm.4、比较20°15′与20.15°的大小关系是5、图中共有________条线段,共有_______条射线,以点C 为端点的射线是____。
七年级数学平面图形及其位置关系

06 空间位置关系初步认识
空间中点、直线、平面位置关系描述
• 中点:连接两点线段的中点,将线段等分为两部分 。
• 直线:由无数个点组成,且任意两点都在该直线上 。直线可以无限延伸,没有端点。
• 平面:由无数个点组成,且任意三点不共线。平面 可以无限延展,没有边界。
• 位置关系描述:点和直线可以有三种位置关系—— 点在直线上、点在直线外、点在直线的延长线上。 两直线可以有三种位置关系——平行、相交、重合 。直线和平面可以有三种位置关系——直线在平面 内、直线与平面相交、直线与平面平行。
空间距离计算方法介绍
直角三角形勾股定理应用
勾股定理
在直角三角形中,两直角边的平 方和等于斜边的平方。
勾股定理的逆定理
如果三角形的三边长a,b,c满 足a²+b²=c²,那么这个三角形
是直角三角形。
勾股定理的应用
用于求解直角三角形中的未知边 长或角度,以及解决一些实际问
题如最短路径问题等。
三角形全等条件及证明方法
全等三角形的定义
定义法
判定定理
两条直线相交成直角时,这两条直线 互相垂直。
在同一平面内,如果两条直线都垂直 于同一条直线,那么这两条直线互相 垂直。
性质法
利用平行线的性质,若两条直线分别 与第三条直线垂直,则这两条直线互 相垂直。
平行四边形中平行与相交关系
1 2
平行四边形定义
两组对边分别平行的四边形叫做平行四边形。
射线
有一个固定端点,另一端 无限延伸。
线段
有两个端点,长度有限, 可以度量。
知识点3

深师教育 83482818 83483108 益田路 3002 号东方雅苑写字楼 1C1 平面图形及其位置关系———三角形和四边形的认识与证明Ⅰ.考点透视一、平面图形及其位置关系1.直线、射线与线段的区别与联系2.角(角的两种定义、角的分类、角的度量以及余角、补角的概念和性质)3.相交线与平行线(1)相交线(对顶角的概念及其性质、垂线的概念及其性质)(2)平行线(平行线的性质与判定) 例1.如图,在正方形网格中,∠α、∠β、∠γ的大小关系是( )A.α>β>γB.α=β>γC.α<β=γD.α=β=γ二、三角形的认识与证明1.三角形(三角形的有关概念、三角形的分类、三角形中的重要线段以及三角形的有关性质)2.全等三角形(全等三角形的性质与判定)3.角平分线与线段的垂直平分线(定义、性质与判定)例2.下列说法:①等边三角形有三条对称轴;②在△ABC 中,若a 2+b 2≠c 2,则△ABC 不是直角三角形;③等腰三角形的一边长为4,另一边长9,则它的周长为17或22;④一个三角形中至少有两个锐角。
其中正确的个数有( )A.1个B.2个C.3个D.4个三、四边形的认识与证明1.平行四边形(平行四边形的定义、性质与判定)2.特殊的平行四边形(1)矩形(定义、性质与判定)(2)菱形(定义、性质与判定)(3)正方形(定义、性质与判定)3.梯形(等腰梯形的定义、性质与判定)4.多边形(多边形的性质及其正多边形的特征)例3.(1)正方形具有而菱形不一定具有的性质( )A.四边都相等B.对角线互相垂直且平分C.对角线相等D.对角线平分一组对角(2)下列命题中假命题的是( )A.对角线互相平分的四边形是平行四边形.B.两条对角线相等的四边形是矩形.C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形(3)检查一个门框是矩形的方法是( )A.测量两条对角线是否相等B.测量有三个角是直角C.测量两条对角线是否互相平分D.测量两条对角线是否互相垂直(4)顺次连接矩形各边中点所得的四边形是( )A.矩形B.菱形C.梯形D.正方形(5)菱形的周长等于高的8倍,则其最大内角等于( )A.60°B.90°C.120°D.150°(6)矩形ABCD 中,AB=8,BC=6,E 、F 是AC 的三等分点,则△BEF 的面积是( )A.8B.12C.16D.24。
北师大版数学七年级上册第四章平面图形 复习

则AC的长是( C )
A.2
B.8 C.2或8
D.15
.. . A C1 B
. C
m
数学思想:分类讨论
A.
(2)垂线段的性质
.
B
l
直线外一点与直线上各点连接的所有线段中,
垂线段最短. 简称:垂线段最短
七巧板的构成:
图案设计
1.把一根木条钉牢在墙壁上需要 2 个钉子,
根据是 两点确定一条直线
.
2.如图,军舰从港口沿OB方
向航行,它的方向是( D )
A.东偏南30°
B.南偏东60°
C.南偏西30°
西
1.七巧板游戏 2.图案设计
一.直线、射线、线段的联系以及它们的区别
名称 端点 可向几方 个数 延伸
线 段
2
不可 延伸
射
线1
1
长度是 否
可测量
可以
不行
图形
l
A
B
OM
符号 表示
线段AB 线段l 射线OM
直 线
无
2
不行
l
A
B
直线AB 直线l
1.如图,下列说法正确的有( C )
① 直线AB与直线BA是同一条直线; ② 射线AB与射线BA是同一条射线; ③ 线段AB与线段BA是同一条线段; ④ 图中有两条射线.
4.角的比较 1周角=2平角=4直角
5.角平分线的定义
从一个角的顶点引出的一条射线,把这个角 分成两个相等的角,这条射线叫做这个角的平分线.
推理格式:
B
AC 平分BAD
BAC = CAD
C
BAC = 1 BAD ,CAD = 1 BAD
【小升初】数学奥数第15讲:平面图形及其位置关系-教案

(小升初)备课教员:×××第十五讲平面图形及其位置关系一、教学目标: 1. 理解线段、直线、射线等简单的平面图形,了解两点确定一条直线的事实。
2. 了解“两点之间的所有连线中,线段最短”的性质,能借助直尺,圆规等工具比较两条线段的长短。
3. 理解角的有关概念,认识角的表示及度、分、秒,能进行简单的换算。
4. 能掌握锐角、钝角、直角、平角、周角的概念,会比较角的大小。
5. 了解两条直线的平行关系,掌握两条直线平行的符号表示。
6. 了解两条直线的垂直关系,掌握两条直线垂直的符号表示。
7. 能用直尺、三角板、量角器等工具熟练地画垂线、平行线,培养识图与绘图能力。
二、教学重点:综合性几何问题中培养学生养成多角度思考和数形结合的良好习惯。
三、教学难点:提高观察、分析、概括、抽象的能力。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分种)师:在我们小学,我们已经学习过一些平面图形,同学们还记得我们学过哪些吗?生:师:是的,这节课我们主要来研究这方面的知识点。
(板书课题:平面图形及其位置关系)师:在小学我们已经学习过线段、射线、直线,现在我们一起来回顾一下这方面的知识点。
也是我们这节课所要学习的东西。
二、星海遨游(43分钟)例题一:(9分钟)如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是()。
A、8cmB、2㎝C、4cmD、不能确定师:题目中告诉我们AB、BC的两条线段长度,我们先画图表示出线段AB。
生:师:同学们再画出线段BC。
生:师:同学们好像遇到一点麻烦了,我们不知道C点到底画在哪里对吗?生:是的。
师:同学们思考的比较认真,题目中没有告诉我们A、B、C三点是否在同一条直线上,所以C点的位置是没有固定的,所以A、C两点间的距离是不能确定的。
板书:解:D例题二:已知线段AB=20㎝,C为AB中点,D为CB上一点,E为DB的中点,且EB=3㎝,则CD=________cm。
平面与平面的位置关系判定平面与平面的位置关系有哪些平面与平面垂直的性质定理

一、平面与平面的位置关系有且只有两种1、两个平面平行——没有公共点;2、两个平面相交——有一条公共直线。
二、面面垂直性质定理1.如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
2.如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
3.如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
4.如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
(判定定理推论1的逆定理)三、平面与平面垂直的性质如果两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。
平面与平面垂直有如下性质:如果两个平面垂直,那么在一个平面内与交线垂直的直线垂直于另一个平面;如果两个平面垂直,那么与一个平面垂直的直线平行于另一个平面或在另一个平面内。
四、面面垂直定义若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。
五、线面垂直定义如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。
是将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法。
在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”。
六、线面垂直判定定理直线与平面垂直的判定定理(线面垂直定理):一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
推论1:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。
推论2:如果两条直线垂直于同一个平面,那么这两条直线平行。
两个平面的位置关系的符号语言及其图形如下表:。
平面图形及其位置关系

平面图形及其位置关系
1、直线:
将线段向两个方向无限延伸就形成了直线,它有零个端点。
、
2、射线:
将线段向一个方向无限延伸就形成了射线,它有一个端点。
3、过两点有且只有一条直线。
4、两点之间所有连线中,线段最短;两点之间线段的长度,叫做这两点之间的
距离。
、
5、角的定义
静态定义:角是具有两条就有公共端点的射线组成,两条射线的公共端点是这个角的顶点
动态定义:角也可以看成是由一条射线绕着它的端点旋转而成的。
6、角平分线的定义:
从角的一个顶点引出一条射线,把这个角平分成两个相等的角,这条射线叫做这个角的平分线。
7、两个角的两条边互相平行时,这两个角和为180度或相等。
8、平行:
定义:同一平面内,不相交的两条线叫做平行。
画法:一、靠二、移三、画
性质:经过直线外一点,有且只有一条直线与这条直线平行
如果两条直线都与第三条直线平行,那么这两条直线互相平行
9、垂直:
定义:两条直线相交成直角,这两条直线互相垂直
垂足:互相垂直的两条直线的交点
性质:平面内过一点有且只有一条直线与已知直线垂直
垂线段最短。
10、直线,线段,射线:。
第四章《平面图形及其位置关系》复习总结

第四章《平⾯图形及其位置关系》复习总结第四章《平⾯图形及其位置关系》复习⼀、线段、射线、直线意义:性质:两点之间,线段最短表⽰:线段AB (或BA ),线段b线段⽐较⼤⼩:度量法,叠合法两点间的距离重要概念线段的中点意义:射线表⽰:射线OA意义:直线表⽰:直线AB (或BA ),直线m性质:两点确定⼀条直线注意:1.表⽰线段,射线,直线时,在字母前要注明“线段”“射线”或“直线”;2.线段,射线都可看作直线的⼀部分;3.射线,直线没有长度,线段有长度;4.⽤两个⼤写字母表⽰线段或直线时,两个字母没有顺序性,但表⽰射线的两个⼤写字母必须把端点字母放在前⾯;5.线段可向两⽅延长:延长线段AB (反向延长线段BA ),延长线段BA (反向延长线段AB );6.射线只能反向延长;7.端点相同,延伸⽅向相同的射线是同⼀条射线;8.AM=MB 并不能说明点M 是线段AB 的中点,需添上条件“M 在线段AB 上”;9.“距离”与“线段”、“路程”不同.结论:平⾯内n 条直线,最多..可有()21-n n 个交点;过平⾯上n 个点中的两个点,最多..可画()21-n n 条直线;n 个班进⾏单循环⽐赛,共⽐赛()21-n n 场; n 个⼈相互握⼿的总次数为()21-n n 次;D CB A O B A 直线上有n 个点,则⼀共有()21-n n 条线段;有公共端点的n 条射线共可组成()21-n n 个⾓;平⾯内n 条直线最多..可将平⾯分成222++n n 个部分. 练习:1.分别画出下列图形:⑴直线l 经过点C ,D ;⑵点P 在直线m 上,但在直线n 外;⑶取不在同⼀直线上的三点A ,B ,C ,画直线AB ,线段BC ,射线CA ;⑷取不在同⼀直线上的三点P ,Q ,R ,①连接PQ ,并延长⾄E ,②连接RQ 并反向延长⾄F ,③过点R 画射线PR.2.判断题⑴直线l 上有两个端点;⑵经过A ,B 两点的线段只有⼀条;⑶延长线段AB 到C ,使AC=BC ;⑷反向延长线段BC ⾄A ,使AB=BC ;⑸过两点有且只有⼀条直线;⑹直线上的任意两点都可以表⽰这条直线;⑺两条直线相交,只有⼀个交点;⑻三条直线两两相交,共有三个交点;⑼射线AC 在直线AB 上;⑽直线AB 与直线BA 是指同⼀条直线.3.根据下图,下列说法正确的有⑴点B 在线段AC 上;⑵直线AB 经过点C ;⑶点D 不在直线AC 上;⑷点A 在线段BC 的延长线上.4.观察下图,并判断对错⑴线段OA 与线段AO 是同⼀条线段;⑵线段OA 与线段OB 是同⼀条线段;⑶直线OA 与线段BO 是同⼀条直线;⑷射线OA 与射线AO 是同⼀条射线;DC B A m C B A ⑸射线OA 与射线OB 是同⼀条射线;⑹射线OB 与射线AB 是同⼀条射线.5.点与直线的位置关系有种,分别是和 .6.如图,直线上有四点,则图中有条直线,条射线,条线段.7.如果线段AB=5cm ,BC=3cm ,那么A ,C 两点的距离是()A.8cmB.2cmC.4cmD.⽆法确定8.两根⽊条,⼀根长60cm ,⼀根长100cm ,将它们的⼀端重合,顺次放在同⼀条直线上,此时两根⽊条的中点间的距离是cm.9.已知线段m ,⽤圆规和直尺作⼀条线段 AB ,使AB=2m.思考题如图所⽰,某单位有三个住宅区A ,B ,C (在⼀条直线上)分别住有职⼯30⼈,25⼈,10⼈,已知AB=100m,BC=200m. 该单位为⽅便职⼯上下班,单位的接送车打算在AC 之间只设⼀个停靠点P ,为使所有的⼈步⾏到停靠点的路程之和最短,那么停靠点P 的位置应设在() A. A 点 B. B 点C. AB 之间D. BC 之间⼆、⾓静态定义动态相关概念:直⾓,平⾓,周⾓,锐⾓,钝⾓⾓⾓的平分线表⽰法:∠A ,∠AOB ,∠1,∠α度量与计算:1°=60′=3600″,1′=60″⼤⼩⽐较:度量法,叠合法注意:1.构成⾓的两个要素是顶点、两边,两边都是射线,⾓的⼤⼩与两边的长短⽆关,只与两边张开的程度有关;2.在初中阶段,如⽆特别说明,所涉及的⾓均指⼩于平⾓的⾓.C D B AE DC B AO 3.不管⽤哪种⽅法表⽰⾓,⾸先要写上符号“∠”,注意区分“∠”与“<”;4.⽤⼀个⼤写字母表⽰⾓,只适⽤于顶点处只有⼀个⾓的情形5.⾓的平分线是射线,不是直线、线段6.⽤⼀付三⾓板可以画出15°的整数倍的⾓7.如果⼀个⾓的两边分别平⾏于另⼀个⾓的两边,那么这两个⾓相等或互补.练习;1.判断⑴平⾓是⼀条直线;⑵⼀条射线是⼀个周⾓;⑶两条射线组成的图形叫做⾓;⑷两边成⼀直线的⾓是平⾓;⑸有公共端点的两条线段组成的图形叫做⾓;⑹⼀条射线旋转得到⾓;⑺⼀个钝⾓与⼀个锐⾓的差⼀定是锐⾓;⑻两个锐⾓的和⼀定⼤于90°;⑼若∠AOC=∠BOC ,则OC 是∠AOB 的平分线;⑽若∠AOC=21∠AOB ,则OC 是∠AOB 的平分线. 2.如图所⽰,图中⼩于平⾓的⾓有个.3.灯塔A 在灯塔B 的南偏东70°,A 、B 相距4海⾥,轮船C 在灯塔B 的正东,在灯塔A 的北偏东40°,试画图确定轮船C 的位置.4.如图,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE=20°,∠AOD=40°,求∠DOE 的度数.5.48.26°= ° ′″ 56°25′12″= °6.⼀条船沿北偏东60°的⽅向航⾏⾄某地,然后依原航线返回,船返回时正确的⽅向是 .7.已知∠1,∠2都是钝⾓,甲,⼄,丙,丁四⼈计算()2161∠+∠的结果依次是28°,48°,88°,60°,其中只有⼀个结果正确,那么正确的结果是()A.甲B.⼄C.丙D.丁三、位置定义:同⼀平⾯内,不相交的两条直线叫做平⾏线表⽰:AB∥CD,m∥n平⾏画法:三⾓板,量⾓器,直尺圆规,⽅格纸等经过直线外⼀点,有且只有⼀条直线平⾏于已知直线性质:位置平⾏与同⼀直线的两直线互相平⾏定义:相关概念:点到直线的距离垂直表⽰:AB⊥CD,m⊥n画法:三⾓板,量⾓器,直尺圆规,⽅格纸等性质:同⼀平⾯内,过⼀点有且只有⼀条直线垂直于已知直线注意:1.平⾏线是相互的,AB∥CD,也可记作CD∥AB;2.⼀条直线有⽆数条直线与其平⾏,但过直线外⼀点却只有⼀条;3.点到直线的距离是⼀个数量,不是指图形(垂线段),⽽是指垂线段的长度练习:1.判断对错⑴不相交的两条直线是平⾏线;⑵同⼀平⾯内,不相交的两条射线叫做平⾏线;⑶同⼀平⾯内,两条直线不相交就重合;⑷同⼀平⾯内,没有公共点的两条直线是平⾏线;⑸过平⾯内⼀点有且只有⼀条直线与已知直线平⾏;⑹两条线段AB,CD没有交点,那么直线AB与直线CD平⾏;⑺平⾏于同⼀直线的两条直线互相平⾏;⑻同⼀平⾯内,不相交的两条射线互相平⾏;⑼同⼀平⾯内,不重合的两条直线的位置关系只有相交、平⾏两种;⑽同⼀平⾯内,经过⼀个已知点能画⼀条直线和已知直线垂直;⑾⼀条直线的垂线可以有⽆数条;⑿过射线的端点与射线垂直的直线只有⼀条;⒀过直线外⼀点和直线上⼀点这两个已知点,可以画已知直线的垂线.2.对直线a,b,c ,若a∥b,a与c相交,那么b与c是什么位置关系?说明理由. 3.在同⼀平⾯内有三条直线,如果要使其中有且只有两条直线平⾏,那么它们()A.没有交点 B.只有⼀个交点 C.有两个交点 D.有三个交点D C B A D C B A OP N M B A N M O C B A 4.同⼀平⾯内的四条直线⽆论其位置关系如何,它们的交点个数不可能有()A.2个B.3个C.4个D.5个5.⼀个三棱柱中有多少对平⾏线?6.在平⾯上有三条直线a ,b ,c ,它们之间有哪⼏种可能的位置关系?请画图说明.7.已知平⾏四边形ABCD 如图,过A 点分别作出BC ,DC 边上的⾼AE ,AF.8.如图所⽰,下⾯结论中正确的有个⑴线段AC 与线段BC 互相垂直;⑵线段CD 与线段BC 互相垂直;⑶点C 到AB 的距离是线段CD ;⑷线段AC 是A 到BC 的距离;⑸线段AC 的长度是点A 到BC 的距离.9.点P 为直线l 外⼀点,点A 、B 、C 为直线l 上三点:PA=4,PB=5,PC=2,则点P 到直线l 的距离为()A .4B .2C .⼩于2D .不⼤于210.如图,已知点O 在直线AB 上,OP ⊥MN 于点P ,那么()A .线段OP 的长度叫做点O 到直线MN 的距离;B .线段OP 的长度叫做点P 到直线AB 的距离;C .线段OP 叫做直线AB 到直线MN 的距离;D .直线OP 的长度叫做点O 与P 两点间的距离. 11.画⼀条线段的垂线,垂⾜在()A .线段上B .线段的端点C .线段的延长线上D .以上都可能12.七巧板通常是由个直⾓三⾓形,个正⽅形和个平⾏四边形组成.13.⽤⼀副七巧板分别拼出⑴⼀个等腰梯形;⑵长⽅形;⑶平⾏四边形,并在图中找出⼀个锐⾓、⼀个直⾓、⼀个钝⾓、⼀对平⾏线段、⼀对互相垂直的线段.14.点M 为线段AB 的三等分点,且AM=6,求AB 的长.15.如图,点O 是直线AB 上⼀点,过O 画射线OC ,OM ,ON ,且OM 平分∠AOC ,ON 平分∠BOC ,那么射线OM ,ON 之间有什么位置关系?说明你的理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图(7)
A
E
D
B
F G
C
平面图形及其位置关系 一.选择题
1、下列说法正确的是( )
A 、过一点P 只能作一条直线。
B 、射线AB 和射线BA 表示同一条射线
C 、直线AB 和直线BA 表示同一条直线
D 、射线a 比直线b 短
2.从A 到B 最短的路线是( )
A 、A -G -E -
B B 、A -
C -E -B C 、A -
D -G -
E -B D.、A -
F -E -B
3、同一平面内互不重合的三条直线的公共点的个数是( )
A 、可能是0个,1个,2个
B 、可能是0个,2个,3个
C 、可能是0个,1个,2个或3个
D 、可能是1个或3个
4、 直线a 外有一定点A ,A 到a 的距离是5,P 是直线a 上的任意一点,则( ) A 、AP>5 B 、AP 5 C 、AP=5 D 、AP<5
5、下列说法正确的是( )
A 、连结两点的线段叫做两点的距离
B 、过一点能作已知直线的一条垂线
C 、射线AB 的端点是A 和B
D 、不相交的两条直线叫做平行线 6、一个钝角与一个锐角的差是( )
A 、锐角
B 、直角
C 、钝角
D 、不能确定 7、AB=10,AC=16,那么AB 的中点与AC 的中点的距离为( )
A 、13
B 、3或13
C 、3
D 、6 8、 下列说法中正确的是( )
A 、8时45分,时针与分针的夹角是30°
B 、6时30分,时针与分针重合
C 、3时30分,时针与分针的夹角是90°
D 、3时整,时针与分针的夹角是30° 9、如图,四条表示方向的射线中,表示北偏东60°的是( )
13、下列图形中,无端点的是( )
A 、角平分线
B 、线段
C 、射线
D 、直线 14、下列说法错误的是( )
10、已知AB=10㎝,在AB 的延长线上取一点C ,使AC=16㎝,那么线段AB 的中点与AC 得中点的距离为( )
A 、5㎝
B 、
4㎝ C 、3㎝ D 、2㎝
11、下列说法中,正确的个数有( )
①两条不相交的直线叫做平行线;②两条直线相交所成的四个角相等,则这两条直线互相垂直;③经过一点有且只有一条直线与已知直线平行;④如果直线a ∥b,a ∥c,则b ∥c. A 、1个 B 、2个 C 、3个 D 、4个
12、在同一平面内,有三条直线a ,b ,c ,如果,,c b c a ⊥⊥那么a 与b 的位置关系是( ) A 、相交 B 、平行 C 、垂直 D 、不能确定
13、用边长为1的正方形纸片剪出一副七巧板,并将其拼成如图 的“小天鹅”,则阴影部分的面积是原正方形面积的( )
A. B. C.716 D.916
14、 按下列线段长度,可以确定点A 、B 、C 不在同一条直线上的是( )
A 、AB=8㎝,BC=19㎝,AC=27㎝;
B 、AB=10㎝,BC=9㎝,AC=18㎝
C 、AB=11㎝,BC=21㎝,AC=10㎝;
D 、AB=30㎝,BC=12㎝,AC=18㎝ 15、 下列推理中,错误的是( )
A 、在m 、n 、p 三个量中,如果m=n, n=p ,那么m=p.
B. 在∠A 、∠B 、∠C 、∠D 四个角中,如果∠A=∠B ,∠C=∠D ,∠A=∠D ,那么∠B=∠C ;
C. a 、b 、c 是同一平面内的三条直线,如果a ∥b ,b ∥c ,那么a ∥c ;
D. a 、b 、c 是同一平面内的三条直线,如果a 丄b ,b 丄c ,那么a 丄c ;
16、 一个人从A 点出发向北偏东60°的方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,则
∠ABC 的度数是( )
A 、75°
B 、105°
C 、45°
D 、135° 17、下列说法正确的是( )
A 、过一点能作已知直线的一条平行线;
B 、过一点能作已知直线的一条垂线
C 、射线AB 的端点是A 和B ;
D 、点可以用一个大写字母表示,也可用小写字母表示 二.填空题
1、在墙上固定一根木条,至少要钉 枚铁钉,理由是 。
2、将弯曲的河道改直,可以缩短航程,是根据 。
3、若AB ∥CD,HG ∥CD,则有 。
4、如图1,若点C 为线段AB 的中点,则AC= =2
1 。
5、用三种方法表示图2的角: , , 。
6、如图3,共有
条线段。
7、0.5周角= 平角= 直角= 度。
8、0.15°= ′= ″,25°12′36″= °。
9、若∠1︰∠2︰∠3=1︰2︰3,且∠1+∠2+∠3=180°,则∠2= 度。
10、钟表在3点30分时,时针与分针所成的锐角是 度。
11、在图4中,小于平角的角有 个。
12、将一张正方形的纸片,按如图所示对折两次, 相邻两条折痕(虚线)间的夹角为_______度。
13、如图1,AB 的长为m ,BC 的长为n ,MN 分别是AB ,BC 的中点,则MN=_____ 14、如图2,用“>”、“<”或“=”连接下列各式,并说明理由.
AB +BC_____AC , AC +BC_____AB , BC_____AB +AC ,理由是__________ 15、计算:48°39′+67°41′=_________;90°-78°19′40″=___________ 21°17′×5=_______; 176°52′÷3=_________(精确到分)
16、如图3中,∠AOB=180°,∠AOC=90°,∠DOE=90°,则图中相等的角有_对,分别为_______________;
两个角的和为90°的角有___________对;两个角的和为180°的角有________对.
三、画一画:
1、 如图,已知∠AOB ,画图并回答:
⑴画∠AOB 的平分线OP ;
⑵在OP 上任取两点C 、D ,过C 、D 分别画OA 、OB 的垂线,交OA 于E ,F ,交OB 于G 、H , ⑶量出CE ,CG ,DF ,DH 的长,由此可得到的结论是什么? ⑷过C 作MC ∥OB 交OA 于M
A
O
B
2、如图,污水处理厂要把处理过的水引入排水沟PQ ,应如何铺 设排水管道,才能用料最省?试画出铺设管道的路线,并说明理 由。
3、如图方格纸中有一条直线AB 和一格点P ,请在图中过点P 分别画出与AB 平行的直线PM 与AB 垂直的直线PN ,N 为垂足,并用符号表示它们。
四.解答题
1、在直线l 上任取一点A ,截取AB=16 cm ,再截取AC=40 cm ,求:AB 的中点D 与AC 的中点E 之间的距离.
2、(10分)如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点 (1) 若AM=1,BC=4,求MN 的长度。
(2) 若AB=6,求MN 的长度。
3、如图所示,OA 丄OB ,OC 丄OD ,OE 为∠BOD 的平分线,∠BOE=17°18′, 求∠AOC 的度数
4,如图,OE 为∠AOD 的平分线,∠COD=4
1
∠EOC ,∠COD=15°,
求:①∠EOC 的大小; ②∠AOD 的大小
C D
E
O A
5,、如图所示,已知点C 是线段AB 的中点,D 是AC 上任意一点,M 、N 分别是AD 、DB 的中点,若AB=16,
求MN 的长。
6、往返于A 、B 两地的客车,中途停靠C 、D 、E 三个站点,问: (1)有多少种不同的票价?
(2)在这段线路上往返行车,要准备多少种车票?(每种车票都要印出上车站与下车站)
五,探索题
1.如图,线段AB 上的点数与线段的总数有如下关系:如果线段AB 上有三个点时,线段总共有3条,如果线段AB 上有4个点时,线段总数有6条,如果线段AB 上有5个点时,线段总数共有10条,……
3=2+1 6=3+2+1 10=4+3+2+1
1、当线段AB 上有6个点时,线段总数共有 条。
2、当线段AB 上有100个点时,线段总数共有多少条?
2,(1)如图,已知∠AOB 是直角,∠BOC=30°,OM 平分∠AOC ,ON 平分∠BOC ,求∠MON 的度数; (2)若(1)中∠AOB=α,其他条件不变,求∠MON 的大小; (3) 若(1)中∠BOC=β
,(β
为锐角),其他条件不变,求∠MON 的大小;
(4) 从(1)、(2)、(3)的结果中,能看出什么规律?
A M D C N B
A C
B A
C
D B A C D
E B。