中考复习之专题五_函数

合集下载

中考数学专题五函数应用问题综合题(解析版全国适用)

中考数学专题五函数应用问题综合题(解析版全国适用)

函数实际问题综合题一、一次函数+二次函数应用问题例题(2020·湖北随州·中考真题)2020年新冠肺炎疫情期间.部分药店趁机将口罩涨价.经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系如下表:第x 天1 2 3 4 5 销售价格p (元/只)2 3 4 5 6 销量q (只)7075808590店从第6天起将该型号口罩的价格调整为1元/只.据统计.该药店从第6天起销量q (只)与第x 天的关系为2280200q x x =-+-(630x ≤≤.且x 为整数).已知该型号口罩的进货价格为0.5元/只.(1)直接写出....该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数关系式. (2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数关系式.并判断第几天的利润最大.(3)物价部门为了进一步加强市场整顿.对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款.若罚款金额不低于2000元.则m 的取值范围为______.【答案】(1)1p x =+.15x ≤≤且x 为整数.565q x =+.15x ≤≤且x 为整数.(2)22135655,152240100,630x x x x W x x x x ⎧++⎪=⎨⎪-+-⎩且为整数且为整数.第5天时利润最大.(3)85m . 【解析】 【分析】(1)根据表格数据.p 是x 的一次函数.q 是x 的一次函数.分别求出解析式即可. (2)根据题意.求出利润w 与x 的关系式.再结合二次函数的性质.即可求出利润的最大值.(3)先求出前5天多赚的利润.然后列出不等式.即可求出m 的取值范围. 【详解】(1)观察表格发现p 是x 的一次函数.q 是x 的一次函数. 设p=k 1x+b 1.将x=1.p=2.x=2.p=3分别代入得:1111232k b k b =+⎧⎨=+⎩. 解得:1111k b =⎧⎨=⎩. 所以1p x =+.经验证p=x+1符合题意. 所以1p x =+.15x ≤≤且x 为整数. 设q=k 2x+b 2.将x=1.q=70.x=2.q=75分别代入得:222270752k b k b =+⎧⎨=+⎩. 解得:22565k b =⎧⎨=⎩. 所以565q x =+.经验证565q x =+符合题意. 所以565q x =+.15x ≤≤且x 为整数. (2)当15x ≤≤且x 为整数时.(10.5)(565)W x x =+-+213565522x x =++. 当630x ≤≤且x 为整数时.()2(10.5)280200W x x =--+-240100x x =-+-.即有22135655,152240100,630x x x x W x x x x ⎧++⎪=⎨⎪-+-⎩且为整数且为整数. 当15x ≤≤且x 为整数时.售价.销量均随x 的增大而增大. 故当5x =时.495W =最大(元)当630x ≤≤且x 为整数时.2240100(20)300W x x x =-+-=--+ 故当20x时.300W =最大(元).由495300>.可知第5天时利润最大. (3)根据题意.前5天的销售数量为:7075808590400q =++++=(只). ∴前5天多赚的利润为:(270375480585690)140016504001250W =⨯+⨯+⨯+⨯+⨯-⨯=-=(元).∴12502000m ≥. ∴85m. ∴m 的取值范围为85m . 【点睛】此题考查二次函数的性质及其应用.一次函数的应用.不等式的应用.也考查了二次函数的基本性质.另外将实际问题转化为求函数最值问题.从而来解决实际问题. 练习题1.(2021·山东青岛·中考真题)科研人员为了研究弹射器的某项性能.利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升.此时.在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力).在1秒时.它们距离地面都是35米.在6秒时.它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示.小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示.(1)直接写出1y 与x 之间的函数关系式. (2)求出2y 与x 之间的函数关系式.(3)小钢球弹射1秒后直至落地时.小钢球和无人机的高度差最大是多少米?【答案】(1)1530y x =+.(2)22540y x x =-+.(3)70米【解析】 【分析】(1)先设出一次函数的解析式.再用待定系数法求函数解析式即可. (2)用待定系数法求函数解析式即可.(3)当1<x ≤6时小钢球在无人机上方.因此求y 2-y 1.当6<x ≤8时.无人机在小钢球的上方.因此求y 1-y 2.然后进行比较判断即可. 【详解】解:(1)设y 1与x 之间的函数关系式为y 1=kx +b'. ∵函数图象过点(0.30)和(1.35).则'35'30k b b +=⎧⎨=⎩. 解得5'30k b =⎧⎨=⎩. ∴y 1与x 之间的函数关系式为1530y x =+. (2)∵6x =时.1563060y =⨯+=. ∵2y 的图象是过原点的抛物线.∴设22y ax bx =+.∴点()1,35.()6,60在抛物线22y ax bx =+上.∴3536660a b a b +=⎧⎨+=⎩.即35610a b a b +=⎧⎨+=⎩. 解得540a b =-⎧⎨=⎩. ∴22540y x x =-+.答:2y 与x 的函数关系式为22540y x x =-+.(3)设小钢球和无人机的高度差为y 米. 由25400x x -+=得10x =或28x =. ①16x <≤时.21y y y =-2540530x x x =-+-- 253530x x =-+-27125524x ⎛⎫=--+⎪⎝⎭. ∵50a =-<.∴抛物线开口向下. 又∵16x <≤. ∴当72x =时.y 的最大值为1254. ②68x <≤时.12y y y =-2530540x x x =++- 253530x x =-+27125524x ⎛⎫=--⎪⎝⎭. ∵50a =>.∴拋物线开口向上. 又∵对称轴是直线72x =. ∴当72x >时.y 随x 的增大而增大. ∵68x <≤.∴当8x =时.y 的最大值为70. ∵125704<. ∴高度差的最大值为70米. 答:高度差的最大值为70米. 【点睛】本题考查了二次函数以及一次函数的应用.关键是根据根据实际情况判断无人机和小钢球的高度差.2.(2021·辽宁盘锦·中考真题)某工厂生产并销售A .B 两种型号车床共14台.生产并销售1台A 型车床可以获利10万元.如果生产并销售不超过4台B 型车床.则每台B 型车床可以获利17万元.如果超出4台B 型车床.则每超出1台.每台B 型车床获利将均减少1万元.设生产并销售B 型车床x 台. (1)当4x >时.完成以下两个问题: ①请补全下面的表格:A 型B 型车床数量/台 ________ x每台车床获利/万元10________70万元.问:生产并销售B 型车床多少台?(2)当0<x ≤14时.设生产并销售A .B 两种型号车床获得的总利润为W 万元.如何分配生产并销售A .B 两种车床的数量.使获得的总利润W 最大?并求出最大利润. 【答案】(1)①14x -.21x -.②10台.(2)分配产销A 型车床9台、B 型车床5台.或产销A 型车床8台、B 型车床6台.此时可获得总利润最大值170万元 【解析】 【分析】(1)①由题意可知.生产并销售B 型车床x 台时.生产A 型车床(14-x )台.当4x >时.每台就要比17万元少(4x -)万元.所以每台获利17(4)x --.也就是(21x -)万元. ②根据题意可得根据题意:(21)10(14)70x x x ---=然后解方程即可. (2)当0≤x ≤4时.W =10(14)x -+17x =7140x +.当4<x ≤14时. W =2( 5.5)170.25x --+.分别求出两个范围内的最大值即可得到答案. 【详解】解:(1)当4x >时.每台就要比17万元少(4x -)万元 所以每台获利17(4)x --.也就是(21x -)万元 ①补全表格如下面:A 型B 型车床数量/台 14x -x每台车床获利/万元1021x -由B 型可获得利润为(21)x x -万元.根据题意:(21)10(14)70x x x ---=. 2312100x x -+=.(21)(10)0x x --=.∵0≤x ≤14. ∴10x =.即应产销B 型车床10台. (2)当0≤x ≤4时. 当0≤x ≤4 A 型 B 型车床数量/台 14x -x每台车床获利/万元 1017 利润10(14)x -17x该函数值随着x 的增大而增大.当x 取最大值4时.W 最大1=168(万元). 当4<x ≤14时. 当4<x ≤14 A 型 B 型车床数量/台 14x -x每台车床获利/万元1021x -利润10(14)x - (21)x x -则=+=211140x x -++=( 5.5)170.25x --+.当5x =或6x =时(均满足条件4<x ≤14).W 达最大值W 最大2=170(万元). ∵W 最大2> W 最大1.∴应分配产销A 型车床9台、B 型车床5台.或产销A 型车床8台、B 型车床6台.此时可获得总利润最大值170万元. 【点睛】本题主要考查了一元二次方程的实际应用.一次函数和二次函数的实际应用.解题的关键在于能够根据题意列出合适的方程或函数关系式求解.3.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售.已知该原料的进价为6.2万元/t .加工过程中原料的质量有20%的损耗.加工费m (万元)与原料的质量x (t )之间的关系为m =50+0.2x .销售价y (万元/t )与原料的质量x (t )之间的关系如图所示.(1)求y 与x 之间的函数关系式.(2)设销售收入为P (万元).求P 与x 之间的函数关系式.(3)原料的质量x 为多少吨时.所获销售利润最大.最大销售利润是多少万元?(销售利润=销售收入﹣总支出).【答案】(1)1y 204x =-+.(2)21165P x x =-+.(3)原料的质量为24吨时.所获销售利润最大.最大销售利润是3265万元 【解析】 【分析】(1)利用待定系数法求函数关系式.(2)根据销售收入=销售价×销售量列出函数关系式.(3)设销售总利润为W .根据销售利润=销售收入﹣原料成本﹣加工费列出函数关系式.然后根据二次函数的性质分析其最值. 【详解】解:(1)设y 与x 之间的函数关系式为y kx b +=. 将(20.15).(30.12.5)代入. 可得:20153012.5k b k b +=⎧⎨+=⎩. 解得:1420k b ⎧=-⎪⎨⎪=⎩. ∴y 与x 之间的函数关系式为1y 204x =-+.(2)设销售收入为P (万元).∴()2411120%2016545P xy x x x x ⎛⎫=-=⨯-+=-+ ⎪⎝⎭.∴P 与x 之间的函数关系式为21165P x x =-+.(3)设销售总利润为W .∴()216.216 6.2500.25W P x m x x x x =--=-+--+.整理.可得:()22148132650245555W x x x =-+-=--+. ∵﹣15<0.∴当24x =时.W 有最大值为3265. ∴原料的质量为24吨时.所获销售利润最大.最大销售利润是3265万元. 【点睛】本题考查了二次函数的实际应用.涉及了数形结合的数学思想.熟练掌握待定系数法求解析式是解决本题的关键.4.(2021·湖北荆门·中考真题)某公司电商平台.在2021年五一长假期间.举行了商品打折促销活动.经市场调查发现.某种商品的周销售量y (件)是关于售价x (元/件)的一次函数.下表仅列出了该商品的售价x .周销售量y .周销售利润W (元)的三组对应值数据. x 40 70 90 y1809030W 3600 4500 2100.(2)若该商品进价a (元/件).售价x 为多少时.周销售利润W 最大?并求出此时的最大利润.(3)因疫情期间.该商品进价提高了m (元/件)(0m >).公司为回馈消费者.规定该商品售价x 不得超过55(元/件).且该商品在今后的销售中.周销售量与售价仍满足(1)中的函数关系.若周销售最大利润是4050元.求m 的值.【答案】(1)3300y x =-+.(2)售价60元时.周销售利润最大为4800元.(3)5m = 【解析】 【分析】(1)①依题意设y=kx+b.解方程组即可得到结论.(2)根据题意得(3300)()W x x a =-+-.再由表格数据求出20a =.得到2(3300)(20)3(60)4800W x x x =-+-=--+.根据二次函数的顶点式.求出最值即可.(3)根据题意得3(100)(20)(55)W x x m x =----.由于对称轴是直线60602mx =+>.根据二次函数的性质即可得到结论. 【详解】解:(1)设y kx b =+.由题意有401807090k b k b +=⎧⎨+=⎩.解得3300k b =-⎧⎨=⎩. 所以y 关于x 的函数解析式为3300y x =-+. (2)由(1)(3300)()W x x a =-+-.又由表可得: 3600(340300)(40)a =-⨯+-.20a ∴=.22(3300)(20)336060003(60)4800W x x x x x ∴=-+-=-+-=--+.所以售价60x =时.周销售利润W 最大.最大利润为4800. (3)由题意3(100)(20)(55)W x x m x =----. 其对称轴60602mx =+>.055x ∴<时上述函数单调递增. 所以只有55x =时周销售利润最大.40503(55100)(5520)m ∴=----. 5m ∴=.【点睛】本题考查了二次函数在实际生活中的应用.重点是掌握求最值的问题.注意:数学应用题来源于实践.用于实践.在当今社会市场经济的环境下.应掌握一些有关商品价格和利润的知识.总利润等于总收入减去总成本.然后再利用二次函数求最值.5.(2021·辽宁营口·中考真题)某商家正在热销一种商品.其成本为30元/件.在销售过程中发现随着售价增加.销售量在减少.商家决定当售价为60元/件时.改变销售策略.此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y (件)与售价x (元/件)满足如图所示的函数关系.(其中4070x ≤≤.且x 为整数)(1)直接写出y 与x 的函数关系式.(2)当售价为多少时.商家所获利润最大.最大利润是多少?【答案】(1)10700406052006070x x y x x -+≤≤⎧=⎨-<≤⎩.(2)当售价为70元时.商家所获利润最大.最大利润是4500元 【解析】 【分析】(1)利用待定系数法分段求解函数解析式即可.(2)分别求出当4060x ≤≤时与当6070x <≤时的销售利润解析式.利用二次函数的性质即可求解. 【详解】解:(1)当4060x ≤≤时.设11y k x b =+. 将()40,300和()60,100代入.可得11113004010060k b k b =+⎧⎨=+⎩.解得1110700k b =-⎧⎨=⎩.即10700y x =-+. 当6070x <≤时.设22y k x b =+. 将()70,150和()60,100代入.可得22221507010060k b k b =+⎧⎨=+⎩.解得225200k b =⎧⎨=-⎩.即5200y x =-. ∴10700406052006070x x y x x -+≤≤⎧=⎨-<≤⎩. (2)当4060x ≤≤时.销售利润()()22301010002100010504000w y x x x x =⋅-=-+-=--+.当50x =时.销售利润有最大值.为4000元. 当6070x <≤时.销售利润()()()2230150605500150005502500w y x x x x x =⋅---=-+=-+.该二次函数开口向上.对称轴为50x =.当6070x <≤时位于对称轴右侧. 当70x =时.销售利润有最大值.为4500元. ∵45004000>.∴当售价为70元时.商家所获利润最大.最大利润是4500元. 【点睛】本题考查一次函数的应用、二次函数的性质.根据图象列出解析式是解题的关键. 6.(2021·湖南郴州·中考真题)某商店从厂家以每件2元的价格购进一批商品.在市场试销中发现.此商品的月销售量y (单位:万件)与销售单价x (单位:元)之间有如下表所示关系:x… 4.0 5.0 5.5 6.5 7.5 … y…8.06.05.03.01.0…(1)根据表中的数据.在图中描出实数对(,)x y 所对应的点.并画出y 关于x 的函数图象. (2)根据画出的函数图象.求出y 关于x 的函数表达式. (3)设经营此商品的月销售利润为P (单位:万元). ①写出P 关于x 的函数表达式.②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本).若物价局限定商品的销售单价不得超过....进价的200%.则此时的销售单价应定为多少元? 【答案】(1)图象见详解.(2)216y x =-+.(3)①222032P x x =-+-.②销售单价应定为3元. 【解析】 【分析】(1)由题意可直接进行作图.(2)由图象可得y 与x 满足一次函数的关系.所以设其关系式为y kx b =+.然后任意代入表格中的两组数据进行求解即可.(3)①由题意易得()2P x y =-.然后由(2)可进行求解.②由①及题意可得22203210x x -+-=.然后求解.进而根据销售单价不得超过进价的200%可求解.【详解】解:(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+.则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩.解得:216k b =-⎧⎨=⎩. ∴y 与x 的函数关系式为216y x =-+. (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-.∴P 关于x 的函数表达式为222032P x x =-+-. ②由题意得:2200x ≤⨯%.即4x ≤. ∴22203210x x -+-=. 解得:123,7x x ==.∴3x=.答:此时的销售单价应定为3元.【点睛】本题主要考查二次函数与一次函数的应用.熟练掌握二次函数与一次函数的应用是解题的关键.7.(2021·四川南充·中考真题)超市购进某种苹果.如果进价增加2元/千克要用300元.如果进价减少2元/千克.同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克.就按原价购进.如果购进苹果超过100千克.超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克.且购进苹果当天全部销售完.据统计.销售单价z(元/千克)与一天销售数量x(千克)的关系为112100z x=-+.在(2)的条件下.要使超市销售苹果利润w(元)最大.求一天购进苹果数量.(利润=销售收入-购进支出)【答案】(1)苹果的进价为10元/千克.(2)10(100)8200(100)x xyx x≤⎧=⎨+>⎩.(3)要使超市销售苹果利润w最大.一天购进苹果数量为200千克.【解析】【分析】(1)设苹果的进价为x元/千克.根据等量关系.列出分式方程.即可求解.(2)分两种情况:当x≤100时. 当x>100时.分别列出函数解析式.即可.(3)分两种情况:若x≤100时.若x>100时.分别求出w关于x的函数解析式.根据二次函数的性质.即可求解.【详解】解:(1)设苹果的进价为x元/千克.由题意得:30020022x x=+-.解得:x=10.经检验:x=10是方程的解.且符合题意.答:苹果的进价为10元/千克.(2)当x≤100时.y=10x.当x>100时.y=10×100+(10-2)×(x-100)=8x+200.∴10(100)8200(100)x x y x x ≤⎧=⎨+>⎩. (3)若x ≤100时.w =zx -y =21112102100100x x x x x ⎛⎫-+-=-+ ⎪⎝⎭=()21100100100x --+. ∴当x =100时.w 最大=100. 若x >100时.w =zx -y =()2111282004200100100x x x x x ⎛⎫-+-+=-+- ⎪⎝⎭=()21200200100x --+. ∴当x =200时.w 最大=200.综上所述:当x =200时.超市销售苹果利润w 最大.答:要使超市销售苹果利润w 最大.一天购进苹果数量为200千克. 【点睛】本题主要考查分式方程、一次函数、二次函数的实际应用.根据数量关系.列出函数解析式和分式方程.是解题的关键.8.(2021·湖北十堰·中考真题)某商贸公司购进某种商品的成本为20元/kg .经过市场调研发现.这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数.且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系.如下表: 时间x (天) 1 3 6 10 …日销量()kg m 142 138 132 124 …(1)m 与x 的函数关系为___________.(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中.公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院.后发现:在前20天中.每天扣除捐赠后的日销售利润随时间x 的增大而增大.求n 的取值范围.【答案】(1)2144m x =-+.(2)第16天销售利润最大.最大为1568元.(3)1.75<n <4 【解析】 【分析】(1)设m kx b =+.将()1142,.()3138,代入.利用待定系数法即可求解. (2)分别写出当120x ≤≤时与当2040x <≤时的销售利润表达式.利用二次函数和一次函数的性质即可求解.(3)写出在前20天中.每天扣除捐赠后的日销售利润表达式.根据二次函数的性质可得对称轴16220n +≤.求解即可. 【详解】解:(1)设m kx b =+.将()1142,.()3138,代入可得: 1421383k b k b =+⎧⎨=+⎩.解得2144k b =-⎧⎨=⎩. ∴2144m x =-+. (2)当120x ≤≤时.销售利润()()()212021440.2530201615682W my m x x x =-=-++-=--+. 当16x =时.销售利润最大为1568元. 当2040x <≤时.销售利润20302160W my m x =-=-+. 当21x =时.销售利润最大为1530元.综上所述.第16天销售利润最大.最大为1568元. (3)在前20天中.每天扣除捐赠后的日销售利润为:()()()21'200.2510214416214401442W my m nm x n x x n x n =--=+--+=-+++-.对称轴为直线x ═16+2n .∵在前20天中.每天扣除捐赠后的日销售利润随时间x 的增大而增大.且x 只能取整数.故只要第20天的利润高于第19天. 即对称轴要大于19.5 ∴16+2n >19.5. 求得n >1.75.又∵n <4. ∴n 的取值范围是:1.75<n <4. 答:n 的取值范围是1.75<n <4. 【点睛】本题考查二次函数与一次函数的实际应用.掌握二次函数与一次函数的性质是解题的关键.9.(2021·江苏扬州·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租.下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元.那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元.那么将少租出1辆汽车.另外.公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元.无论是否租出汽车.公司均需一次性支付月维护费共计1850元. ..②月利润=月租车费-月维护费.③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润. 在两公司租出的汽车数量相等的条件下.根据上述信息.解决下列问题:(1)当每个公司租出的汽车为10辆时.甲公司的月利润是_______元.当每个公司租出的汽车为_______辆时.两公司的月利润相等. (2)求两公司月利润差的最大值.(3)甲公司热心公益事业.每租出1辆汽车捐出a 元()0a >给慈善机构.如果捐款后甲公司剩余的月利润仍高于乙公司月利润.且当两公司租出的汽车均为17辆时.甲公司剩余的月利润与乙公司月利润之差最大.求a 的取值范围. 【答案】(1)48000.37.(2)33150元.(3)50150a << 【解析】 【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金.再乘以10.减去维护费用可得甲公司的月利润.设每个公司租出的汽车为x 辆.根据月利润相等得到方程.解之即可得到结果. (2)设两公司的月利润分别为y 甲.y 乙.月利润差为y .同(1)可得y 甲和y 乙的表达式.再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况.列出y 关于x 的表达式.根据二次函数的性质.结合x 的范围求出最值.再比较即可.(3)根据题意得到利润差为()25018001850y x a x =-+-+.得到对称轴.再根据两公司租出的汽车均为17辆.结合x 为整数可得关于a 的不等式180016.517.5100a-<<.即可求出a 的范围. 【详解】解:(1)()50105030001020010-⨯+⨯-⨯⎡⎤⎣⎦=48000元.当每个公司租出的汽车为10辆时.甲公司的月利润是48000元. 设每个公司租出的汽车为x 辆.由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦. 解得:x =37或x =-1(舍).∴当每个公司租出的汽车为37辆时.两公司的月利润相等.(2)设两公司的月利润分别为y 甲.y 乙.月利润差为y . 则y 甲=()50503000200x x x -⨯+-⎡⎤⎣⎦. y 乙=35001850x -.当甲公司的利润大于乙公司时.0<x <37. y =y 甲-y 乙=()()5050300020035001850x x x x -⨯+---⎡⎤⎣⎦ =25018001850x x -++. 当x =1800502--⨯=18时.利润差最大.且为18050元. 当乙公司的利润大于甲公司时.37<x ≤50. y =y 乙-y 甲=()3500185050503000200x x x x ---⨯++⎡⎤⎣⎦ =25018001850x x --. ∵对称轴为直线x =1800502--⨯=18. 当x =50时.利润差最大.且为33150元. 综上:两公司月利润差的最大值为33150元.(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润.则利润差为25018001850y x x ax =-++-=()25018001850x a x -+-+.对称轴为直线x =1800100a-. ∵x 只能取整数.且当两公司租出的汽车均为17辆时.月利润之差最大. ∴180016.517.5100a-<<. 解得:50150a <<. 【点睛】本题考查了二次函数的实际应用.二次函数的图像和性质.解题时要读懂题意.列出二次函数关系式.尤其(3)中要根据x 为整数得到a 的不等式.10.(2018·湖北荆门·中考真题)随着龙虾节的火热举办.某龙虾养殖大户为了发挥技术优势.一次性收购了10000kg 小龙虾.计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同.放养10天的总成本为166000.放养30天的总成本为178000元.设这批小龙虾放养t 天后的质量为akg.销售单价为y 元/kg.根据往年的行情预测.a 与t 的函数关系为a=()()1000002010080002050t t t ⎧≤≤⎪⎨+<≤⎪⎩.y 与t 的函数关系如图所示. (1)设每天的养殖成本为m 元.收购成本为n 元.求m 与n 的值. (2)求y 与t 的函数关系式.(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少? (总成本=放养总费用+收购成本.利润=销售总额﹣总成本)【答案】(1)m=600.n=160000.(2)()()316020513220505t t y t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩.(3)该龙虾养殖大户将这批小龙虾放养25天后一次性出售所得利润最大.最大利润是108500元. 【解析】 【详解】【分析】(1)根据题意列出方程组.求出方程组的解得到m 与n 的值即可. (2)根据图象.分类讨论利用待定系数法求出y 与P 的解析式即可.(3)根据W=ya ﹣mt ﹣n.表示出W 与t 的函数解析式.利用一次函数与二次函数的性质求出所求即可.【详解】(1)依题意得1016600030178000m n m n +=⎧⎨+=⎩ . 解得:600160000m n =⎧⎨=⎩. (2)当0≤t≤20时.设y=k 1t+b 1.由图象得:111162028b k b =⎧⎨+=⎩. 解得:113516k b ⎧=⎪⎨⎪=⎩ ∴y=35t+16.当20<t≤50时.设y=k 2t+b 2.由图象得:222220285022k b k b +=⎧⎨+=⎩.解得:221532k b ⎧=-⎪⎨⎪=⎩. ∴y=﹣15t+32.综上.()()3160t 205y 13220t 505t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩. (3)W=ya ﹣mt ﹣n.当0≤t≤20时.W=10000(35t+16)﹣600t ﹣160000=5400t.∵5400>0.∴当t=20时.W 最大=5400×20=108000.当20<t≤50时.W=(﹣15t+32)(100t+8000)﹣600t ﹣160000=﹣20t 2+1000t+96000=﹣20(t ﹣25)2+108500. ∵﹣20<0.抛物线开口向下. ∴当t=25.W 最大=108500. ∵108500>108000.∴当t=25时.W 取得最大值.该最大值为108500元.【点睛】本题考查了二次函数的应用.具体考查了待定系数法确定函数解析式.利用二次函数的性质确定最值.熟练掌握二次函数的性质是解本题的关键.二、一次函数+反比例函数应用问题例题(2021·广东深圳·中考真题)探究:是否存在一个新矩形.使其周长和面积为原矩形的2倍、12倍、k 倍.(1)若该矩形为正方形.是否存在一个正方形.使其周长和面积都为边长为2的正方形的2倍?_______(填“存在”或“不存在”).(2)继续探究.是否存在一个矩形.使其周长和面积都为长为3.宽为2的矩形的2倍? 同学们有以下思路:设新矩形长和宽为x 、y .则依题意10x y +=.12xy =.联立1012x y xy +=⎧⎨=⎩得210120x x -+=.再探究根的情况:根据此方法.请你探究是否存在一个矩形.使其周长和面积都为原矩形的12倍.如图也可用反比例函数与一次函数证明1l :10y x =-+.2l :12y x=.那么.①是否存在一个新矩形为原矩形周长和面积的2倍?_______. ②请探究是否有一新矩形周长和面积为原矩形的12.若存在.用图像表达. ③请直接写出当结论成立时k 的取值范围:.【答案】(1)不存在.(2)①存在.②不存在.见解析.③2425k 【解析】 【分析】(1)直接求出边长为2的正方形周长与面积.再求出周长扩大2倍即边长扩大2倍时正方形的面积.比较是否也为2倍即可.(2)①依题意根据一元二次方程根的情况判断即可.②设新矩形长和宽为x 、y .则依题意52x y +=.3xy =.联立.求出关于x 、y 的一元二次方程.判断根的情况.③设新矩形长和宽为x 和y .则由题意5x y k +=.6xy k =.同样列出一元二次方程.利用根的判别式进行求解即可. 【详解】(1)边长为2的正方形.周长为8.面积为4.当周长为其2倍时.边长即为4.面积为16.即为原来的4倍.故不存在. (2)①存在.∵210120x x -+=的判别式0∆>.方程有两组正数解.故存在. 从图像来看.1l :10y x =-+.2l :12y x=在第一象限有两个交点.故存在. ②设新矩形长和宽为x 、y .则依题意52x y +=.3xy =.联立523x y xy ⎧+=⎪⎨⎪=⎩得25302x x -+=. 因为∆<0.此方程无解.故这样的新矩形不存在.从图像来看.1l :52y x =-+.2l :3y x =在第一象限无交点.故不存在.③2425k. 设新矩形长和宽为x 和y .则由题意5x y k +=.6xy k =. 联立56x y k xy k +=⎧⎨=⎩得2560x kx k -+=.225240k k ∆=-.故2425k .【点睛】本题考查了一元二次方程的应用.根的判别式.需要认真阅读理解题意.根据题干过程模仿解题. 练习题1.(2021·浙江台州·中考真题)电子体重科读数直观又便于携带.为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1. R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k .b 为常数.0≤m ≤120).其图象如图1所示.图2的电路中.电源电压恒为8伏.定值电阻R 0的阻值为30欧.接通开关.人站上踏板.电压表显示的读数为U 0 .该读数可以换算为人的质量m . 温馨提示:①导体两端的电压U .导体的电阻R .通过导体的电流I .满足关系式I =UR. ②串联电路中电流处处相等.各电阻两端的电压之和等于总电压.(1)求k .b 的值.(2)求R 1关于U 0的函数解析式. (3)用含U 0的代数式表示m .(4)若电压表量程为0~6伏.为保护电压表.请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩.(2)1024030R U =-.I (3)0120135m U =-.(4)该电子体重秤可称的最大质量为115千克. 【解析】 【分析】(1)根据待定系数法.即可求解.(2)根据“串联电路中电流处处相等.各电阻两端的电压之和等于总电压”.列出等式.进而即可求解.(3)由R 1=12-m +240.1024030R U =-.即可得到答案. (4)把06U =时.代入0480540m U =-.进而即可得到答案. 【详解】解:(1)把(0.240).(120.0)代入R 1=km +b .得2400120bk b =⎧⎨=+⎩.解得:2402b k =⎧⎨=-⎩. (2)∵001830U U R -=. ∴1024030R U =-. (3)由(1)可知:2402b k =⎧⎨=-⎩. ∴R 1=2-m +240. 又∵1024030R U =-. ∴024030U -=2-m +240.即:0120135m U =-. (4)∵电压表量程为0~6伏. ∴当06U =时.1201351156m =-= 答:该电子体重秤可称的最大质量为115千克. 【点睛】本题主要考查一次函数与反比例函数的实际应用.熟练掌握待定系数法.是解题的关键. 2.(2021·安徽·中考真题)已知正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (m .2). (1)求k .m 的值.(2)在图中画出正比例函数y kx =的图象.并根据图象.写出正比例函数值大于反比例函数值时x 的取值范围.【答案】(1),k m 的值分别是23和3.(2)30x -<<或3x > 【解析】 【分析】(1)把点A (m .2)代入6y x=求得m 的值.从而得点A 的坐标.再代入(0)y kx k =≠求得k 值即可.(2)在坐标系中画出y kx =的图象.根据正比例函数(0)y kx k =≠的图象与反比例函数6y x=图象的两个交点坐标关于原点对称.求得另一个交点的坐标.观察图象即可解答. 【详解】(1)将(,2)A m 代入6y x=得62m =.3m ∴=.(3,2)A ∴.将(3,2)A 代入y kx =得23k =.23k ∴=. ,k m ∴的值分别是23和3.(2)正比例函数23y x =的图象如图所示.∵正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (3.2). ∴正比例函数(0)y kx k =≠与反比例函数6y x=的图象的另一个交点坐标为(-3.-2). 由图可知:正比例函数值大于反比例函数值时x 的取值范围为30x -<<或3x >. 【点睛】本题是正比例函数与反比例函数的综合题.利用数形结合思想是解决问题的关键. 3.(2020·广西柳州·中考真题)如图.平行于y 轴的直尺(部分)与反比例函数my x=(x >0)的图象交于A 、C 两点.与x 轴交于B 、D 两点.连接AC .点A 、B 对应直尺上的刻度分别为5、2.直尺的宽度BD =2.OB =2.设直线AC 的解析式为y =kx +b . (1)请结合图象.直接写出: ①点A 的坐标是 . ②不等式mkx b x+>的解集是 . (2)求直线AC 的解析式.。

中考专题复习之五函数初步知识

中考专题复习之五函数初步知识

中考专题复习之五:函数初步知识一、 函数概念相关题型 1.(2010江苏泰州)已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .2. (2010湖北随州)若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是( )AB .4 C4 D .43. (2010湖北鄂州)如图所示,四边形OABC 为正方形,边长为6,点A 、C 分别在x 轴,y 轴的正半轴上, 点D在OA 上,且D点的坐标为(2,0),P 是OB 上的一个动点,试求PD +P A 和的最小值是( )A .102B .10C .4D .64.(2010湖南娄底)如果点P (m -1,2-m )在第四象限,则m 的取值范围是_________ 5.(2010 山东荷泽)已知点P 的坐标为(m ,n ),O 为坐标原点,连结OP ,将线段OP 绕O 点顺时针旋转90°得OP ',则点P '的坐标为 . 6.(2009年兰州)函数y =x -2+31-x 中自变量x 的取值范围是 A .x ≤2 B .x =3 C . x <2且x ≠3 D .x ≤2且x ≠37.(2010浙江杭州)(本小题满分6分)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A ,B 两点. 请你用 两种不同方法表述点B 相对点A 的位置.二、 图像理解 1.(2010江苏南京)如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致为2.(2010 山东省德州)某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是(A) (B) (C)(D)3.(2010四川凉山)如图,因水桶中的水有图错误!未找到引用源。

专题05一次函数--浙江省2019-2021年3年中考真题数学分项汇编(解析版)

专题05一次函数--浙江省2019-2021年3年中考真题数学分项汇编(解析版)

三年(2019-2021)中考真题数学分项汇编(浙江专用)专题05一次函数(浙江专用)一.选择题(共8小题)1.(2021•嘉兴)已知点P (a ,b )在直线y =﹣3x ﹣4上,且2a ﹣5b ≤0,则下列不等式一定成立的是( ) A .a b≤52B .a b≥52C .b a≥25D .b a≤25【分析】结合选项可知,只需要判断出a 和b 的正负即可,点P (a ,b )在直线y =﹣3x ﹣4上,代入可得关于a 和b 的等式,再代入不等式2a ﹣5b ≤0中,可判断出a 与b 正负,即可得出结论. 【详解】解:∵点P (a ,b )在直线y =﹣3x ﹣4上, ∴﹣3a ﹣4=b , 又2a ﹣5b ≤0,∴2a ﹣5(﹣3a ﹣4)≤0, 解得a ≤−2017<0,当a =−2017时,得b =−817, ∴b ≥−817, ∵2a ﹣5b ≤0, ∴2a ≤5b , ∴ba≤25.故选:D .2.(2020•嘉兴)一次函数y =2x ﹣1的图象大致是( )A .B .C .D .【分析】根据一次函数的性质,判断出k 和b 的符号即可解答.【详解】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.3.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+2【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【详解】解:∵直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.∴A(﹣1,0),B(﹣3,0)A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B、y=√2x+2与x轴的交点为(−√2,0);故直线y=√2x+2与x轴的交点在线段AB上;C、y=4x+2与x轴的交点为(−12,0);故直线y=4x+2与x轴的交点不在线段AB上;D、y=2√33x+2与x轴的交点为(−√3,0);故直线y=2√33x+2与x轴的交点在线段AB上;故选:C.4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【分析】求得解析式即可判断.【详解】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∴2=a+a,解得a=1,∴y=x+1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2), 故选:A .5.(2019•绍兴)若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于( ) A .﹣1B .0C .3D .4【分析】利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a ,10)代入解析式即可; 【详解】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=k +b 7=2k +b ∴{k =3b =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3; 故选:C .6.(2019•杭州)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是( )A .B .C .D .【分析】根据直线判断出a 、b 的符号,然后根据a 、b 的符号判断出直线经过的象限即可,做出判断.【详解】解:A 、由图可知:直线y 1=ax +b ,a >0,b >0.∴直线y 2=bx +a 经过一、二、三象限,故A 正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、二、四象限,交点不对,故C错误;D、由图可知:直线y1=ax+b,a<0,b<0,∴直线y2=bx+a经过二、三、四象限,故D错误.故选:A.7.(2020•台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.【分析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.【详解】解:由题意小球在左侧时,V=kt,∴y=0+kt2•t=12kt2,∴小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.8.(2019•衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.【分析】根据题意分类讨论,随着点P位置的变化,△CPE的面积的变化趋势.【详解】解:通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的高BC不变,则其面积是x的一次函数,面积随x增大而增大,当x=2时有最大面积为4,当P在AD边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而增大,当x=6时,有最大面积为8,当点P在DC边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而减小,最小面积为0;故选:C.二.填空题(共5小题)9.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B (1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC═∠DAE(填“>”、“=”、“<”中的一个).【分析】在直角坐标系中构造直角三角形,根据三角形边之间的关系推出角之间的关系.【详解】解:连接DE,由上图可知AB═2,BC═2,∴△ABC是等腰直角三角形,∴∠BAC═45°,又∵AE═√AF2+EF2═√22+12═√5,同理可得DE═√22+12═√5,AD═√12+32═√10,则在△ADE中,有AE2+DE2═AD2,∴△ADE 是等腰直角三角形, ∴∠DAE ═45°, ∴∠BAC ═∠DAE , 故答案为:═.10.(2019•杭州)某函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1,写出一个满足条件的函数表达式 y =﹣x +1(答案不唯一) . 【分析】根据题意写出一个一次函数即可. 【详解】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{k +b =0b =1 解得:{k =−1b =1,所以函数的解析式为y =﹣x +1, 故答案为:y =﹣x +1(答案不唯一).11.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是 (32,4800) .【分析】根据题意可以得到关于t 的方程,从而可以求得点P 的坐标,本题得以解决. 【详解】解:令150t =240(t ﹣12), 解得,t =32,则150t =150×32=4800, ∴点P 的坐标为(32,4800), 故答案为:(32,4800).12.(2020•金华)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) ﹣1(答案不唯一). . 【分析】直接利用第二象限内点的坐标特点得出m 的取值范围,进而得出答案. 【详解】解:∵点P (m ,2)在第二象限内, ∴m <0,则m 的值可以是﹣1(答案不唯一). 故答案为:﹣1(答案不唯一).13.(2019•衢州)如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF ,其中顶点A 位于x 轴上,顶点B ,D 位于y 轴上,O 为坐标原点,则OB OA的值为 12.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n ﹣1,…,则顶点F 2019的坐标为 (6062√55,405√5) .【分析】(1)先证明△AOB ∽△BCD ,所以OB OA=DC BC,因为DC =1,BC =2,所有OB OA=12;(2)利用三角形相似与三角形全等依次求出F 1,F 2,F 3,F 4的坐标,观察求出F 2019的坐标. 【详解】解:(1)∵∠ABO +∠DBC =90°,∠ABO +∠OAB =90°, ∴∠DBC =∠OAB , ∵∠AOB =∠BCD =90°, ∴△AOB ∽△BCD , ∴OB OA=DC BC,∵DC =1,BC =2, ∴OB OA=12,故答案为12;(2)解:过C 作CM ⊥y 轴于M ,过M 1作M 1N ⊥x 轴,过F 作FN 1⊥x 轴.根据勾股定理易证得BD =√22+12=√5,CM =OA =2√55,DM =OB =AN =√55, ∴C (2√55,√5), ∵AF =3,M 1F =BC =2, ∴AM 1=AF ﹣M 1F =3﹣2=1, ∴△BOA ≌ANM 1(AAS ), ∴NM 1=OA =2√55, ∵NM 1∥FN 1, ∴M 1N FN 1=AM 1AF, 2√55FN 1=13,∴FN 1=6√55, ∴AN 1=3√55, ∴ON 1=OA +AN 1=2√55+3√55=5√55 ∴F (5√55,6√55), 同理, F 1(8√55,7√55),即(1×3+55√5,6+15√5) F 2(11√55,8√55),即(2×3+55√5,6+25√5) F 3(14√55,9√55),即(3×3+55√5,6+35√5)F 4(17√55,10√55),即(4×3+55√5,6+45√5) …F 2019(2019×3+55√5,6+20195√5),即(60625√5,405√5), 故答案为即(60625√5,405√5). 三.解答题(共17小题)14.(2021•嘉兴)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”,80米~100米为“冲刺期”.市田径队把运动员小斌某次百米跑训练时速度y (m /s )与路程x (m )之间的观测数据,绘制成曲线如图所示. (1)y 是关于x 的函数吗?为什么? (2)“加速期”结束时,小斌的速度为多少? (3)根据如图提供的信息,给小斌提一条训练建议.【分析】(1)根据函数的定义,可直接判断;(2)由图象可知,“加速期”结束时,即跑30米时,小斌的速度为10.4m /s . (3)答案不唯一.建议合理即可.【详解】解:(1)y 是x 的函数,在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与之对应.(2)“加速期”结束时,小斌的速度为10.4m /s .(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.15.(2020•嘉兴)经过实验获得两个变量x (x >0),y (y >0)的一组对应值如下表.x ..... 1 2 3 4 5 6 ...... y......6321.51.21......(1)请画出相应函数的图象,并求出函数表达式.(2)点A (x 1,y 1),B (x 2,y 2)在此函数图象上.若x 1<x 2,则y 1,y 2有怎样的大小关系?请说明理由.【分析】(1)利用描点法即可画出函数图象,再利用待定系数法即可得出函数表达式.(2)根据反比例函数的性质解答即可.【详解】解:(1)函数图象如图所示,设函数表达式为y=kx(k≠0),把x=1,y=6代入,得k=6,∴函数表达式为y=6x(x>0);(2)∵k=6>0,∴在第一象限,y随x的增大而减小,∴0<x1<x2时,则y1>y2.16.(2021•丽水)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?【分析】(1)由图象直接求出工厂离目的地的路程; (2)用待定系数法求出函数解析式即可;(3)当油箱中剩余油量为10升时和当油箱中剩余油量为0升时,求出t 的取值即可. 【详解】解:(1)由图象,得t =0时,s =880, ∴工厂离目的地的路程为880千米, 答:工厂离目的地的路程为880千米; (2)设s =kt +b (k ≠0),将(0,880)和(4,560)代入s =kt +b 得, {880=b 560=4k +b , 解得:{k =−80b =880,∴s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11), 答:s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11); (3)当油箱中剩余油量为10升时, s =880﹣(60﹣10)÷0.1=380(千米), ∴380=﹣80t +880, 解得:t =254(小时), 当油箱中剩余油量为0升时, s =880﹣60÷0.1=280(千米), ∴280=﹣80t +880,解得:t =152(小时), ∵k =﹣80<0, ∴s 随t 的增大而减小, ∴t 的取值范围是254<t <152.17.(2021•金华)在平面直角坐标系中,点A 的坐标为(−√73,0),点B 在直线l :y =38x 上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D . ①若BA =BO ,求证:CD =CO .②若∠CBO =45°,求四边形ABOC 的面积.(2)是否存在点B ,使得以A ,B ,C 为顶点的三角形与△BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【分析】(1)①由BC ⊥AB ,CO ⊥BO ,可得∠BAD +∠ADB =∠COD +∠DOB =90°,而根据已知有∠BAD =∠DOB ,故∠ADB =∠COD ,从而可得∠COD =∠CDO ,CD =CO ;②过A 作AM ⊥OB 于M ,过M 作MN ⊥y 轴于N ,设M (m ,38m ),可得tan ∠OMN =tan ∠AOM =38,即AM OM=38,设AM =3n ,则OM =8n ,Rt △AOM 中,AM 2+OM 2=OA 2,可求出AM =3,OM =8,由∠CBO =45°可知△BOC 是等腰直角三角形,△ABM 是等腰直角三角形,从而有AM =BM =3,BO =CO =OM ﹣BM =5,AB =√2AM =3√2,BC =√2BO =5√2,即可求出S 四边形ABOC =S △ABC +S △BOC =552; (2)(一)过A 作AM ⊥OB 于M ,当B 在线段OM 或OM 延长线上时,设OB =x ,则BM =|8﹣x |,AB =√9+(8−x)2, 由△AMB ∽△BOC ,OC BM=OB AM,即OC|8−x|=x3,得OC =x 3⋅|8−x|,BC =√OB 2+OC 2=x3√9+(8−x)2,以A ,B ,C 为顶点的三角形与△BCO 相似,分两种情况:①若AB OB=BC OC,OB =4;②若AB OC=BC OB,OB =4+√7或OB =4−√7或OB =9;(二)当B 在线段MO 延长线上时,设OB =x ,则BM =8+x ,AB =√9+(8+x)2,由△AMB ∽△BOC ,OCBM=OB AM,即OC8+x=x3,得OC =x3•(8+x ),以A ,B ,C 为顶点的三角形与△BCO 相似,需满足AB OC =BC OB ,即√9+(8+x)2x 3(8+x)=x3√9+(8+x)2x,可得OB =1.【详解】(1)①证明:∵BC ⊥AB ,CO ⊥BO , ∴∠ABC =∠BCO =90°,∴∠BAD +∠ADB =∠COD +∠DOB =90°, ∵BA =BO , ∴∠BAD =∠DOB , ∴∠ADB =∠COD , ∵∠ADB =∠CDO , ∴∠COD =∠CDO , ∴CD =CO ;②解:过A 作AM ⊥OB 于M ,过M 作MN ⊥y 轴于N ,如图:∵M 在直线l :y =38x 上,设M (m ,38m ),∴MN =|m |=﹣m ,ON =|38m |=−38m ,Rt △MON 中,tan ∠OMN =ON OM =38, 而OA ∥MN , ∴∠AOM =∠OMN , ∴tan ∠AOM =38,即AM OM=38,设AM =3n ,则OM =8n ,Rt △AOM 中,AM 2+OM 2=OA 2, 又A 的坐标为(−√73,0),∴OA=√73,∴(3n)2+(8n)2=(√73)2,解得n=1(n=﹣1舍去),∴AM=3,OM=8,∵∠CBO=45°,CO⊥BO,∴△BOC是等腰直角三角形,∵BC⊥AB,∠CBO=45°,∴∠ABM=45°,∵AM⊥OB,∴△ABM是等腰直角三角形,∴AM=BM=3,BO=CO=OM﹣BM=5,∴等腰直角三角形△ABM中,AB=√2AM=3√2,等腰直角三角形△BOC中,BC=√2BO=5√2,∴S△ABC=12AB•BC=15,S△BOC=12BO•CO=252,∴S四边形ABOC=S△ABC+S△BOC=55 2;(2)解:存在点B,使得以A,B,C为顶点的三角形与△BCO相似,理由如下:(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB =x ,则BM =|8﹣x |,AB =√9+(8−x)2, ∵CO ⊥BO ,AM ⊥BO ,AB ⊥BC ,∴∠AMB =∠BOC =90°,∠ABM =90°﹣∠OBC =∠BCO , ∴△AMB ∽△BOC , ∴OC BM=OB AM,即OC|8−x|=x3,∴OC =x3⋅|8−x|,Rt △BOC 中,BC =√OB 2+OC 2=x3√9+(8−x)2,∵∠ABC =∠BOC =90°,∴以A ,B ,C 为顶点的三角形与△BCO 相似,分两种情况: ①若ABOB=BC OC,则√9+(8−x)2x=x3√9+(8−x)2x3|8−x|, 解得x =4, ∴此时OB =4; ②若AB OC=BC OB,则√9+(8−x)2x3|8−x|=x3√9+(8−x)2x,解得x 1=4+√7,x 2=4−√7,x 3=9,x 4=﹣1(舍去), ∴OB =4+√7或OB =4−√7或OB =9; (二)当B 在线段MO 延长线上时,如图:由(1)②可知:AM =3,OM =8, 设OB =x ,则BM =8+x ,AB =√9+(8+x)2, ∵CO ⊥BO ,AM ⊥BO ,AB ⊥BC ,∴∠AMB =∠BOC =90°,∠ABM =90°﹣∠OBC =∠BCO , ∴△AMB ∽△BOC , ∴OC BM=OB AM,即OC8+x=x3,∴OC =x3•(8+x ),Rt △BOC 中,BC =√OB 2+OC 2=x3•√9+(8+x)2,∵∠ABC =∠BOC =90°,∴以A ,B ,C 为顶点的三角形与△BCO 相似,需满足AB OC=BC OB,即√9+(8+x)2x3(8+x)=x3√9+(8+x)2x,解得x 1=﹣9(舍去),x 2=1, ∴OB =1,综上所述,以A ,B ,C 为顶点的三角形与△BCO 相似,则OB 的长度为:4或4+√7或4−√7或9或1; 18.(2021•绍兴)Ⅰ号无人机从海拔10m 处出发,以10m /min 的速度匀速上升,Ⅱ号无人机从海拔30m 处同时出发,以a (m /min )的速度匀速上升,经过5min 两架无人机位于同一海拔高度b (m ).无人机海拔高度y (m )与时间x (min )的关系如图.两架无人机都上升了15min . (1)求b 的值及Ⅱ号无人机海拔高度y (m )与时间x (min )的关系式; (2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.【分析】(1)由题意得:b =10+10×5=60;再用待定系数法求出函数表达式即可; (2)由题意得:(10z +10)﹣(6x +30)=28,即可求解. 【详解】解:(1)b =10+10×5=60, 设函数的表达式为y =kx +t ,将(0,30)、(5,60)代入上式得{t =3060=5k +t ,解得{k =6t =30,故函数表达式为y =6x +30(0≤x ≤15);(2)由题意得:(10z +10)﹣(6x +30)=28, 解得x =12<5,故无人机上升12min ,Ⅰ号无人机比Ⅱ号无人机高28米.19.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份 每千克含铁42毫克配料表原料 每千克含铁 甲食材 50毫克 乙食材10毫克 规格 每包食材含量每包单价 A 包装 1千克 45元 B 包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完. ①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A 的数量不低于B 的数量,则A 为多少包时,每日所获总利润最大?最大总利润为多少元?【分析】(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元,根据“用80元购买的甲食材比用20元购买的乙食材多1千克”列分式方程解答即可;(2)①设每日购进甲食材x 千克,乙食材y 千克,根据(1)的结论以及“每日用18000元购进甲、乙两种食材并恰好全部用完”列方程组解答即可; ②设A 为m 包,则B 为500−m 0.25包,根据“A 的数量不低于B 的数量”求出m 的取值范围;设总利润为W 元,根据题意求出W 与x 的函数关系式,再根据一次函数的性质,即可得到获利最大的进货方案,并求出最大利润.【详解】解:(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元, 由题意得802a−20a=1,解得a =20,经检验,a =20是所列方程的根,且符合题意, ∴2a =40(元),答:甲食材每千克进价为40元,乙食材每千克进价为20元; (2)①设每日购进甲食材x 千克,乙食材y 千克, 由题意得{40x +20y =1800050x +10y =42(x +y),解得{x =400y =100,答:每日购进甲食材400千克,乙食材100千克; ②设A 为m 包,则B 为500−m 0.25=(2000﹣4m )包,∵A 的数量不低于B 的数量, ∴m ≥2000﹣4m , ∴m ≥400,设总利润为W 元,根据题意得:W =45m +12(2000﹣4m )﹣18000﹣2000=﹣3m +4000, ∵k =﹣3<0,∴W 随m 的增大而减小,∴当m =400时,W 的最大值为2800,答:当A 为400包时,总利润最大,最大总利润为2800元.20.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T (℃)和高度h (百米)的函数关系如图所示. 请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.【分析】(1)根据高度每增加1百米,气温大约降低0.6℃,由3百米时温度为13.2℃,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.【详解】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃), ∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b , 则:{3k +b =13.25k +b =12,解得{k =−0.6b =15,∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15, 解得h =15.∴该山峰的高度大约为15百米,即1500米.21.(2020•宁波)A ,B 两地相距200千米.早上8:00货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示.(通话等其他时间忽略不计) (1)求货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式.(2)因实际需要,要求货车乙到达B 地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B 地的速度至少为每小时多少千米?【分析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B 地所需的时间,由题意可列出不等式1.6v ≥120,解不等式即可得出答案.【详解】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6k +b80=2.6k +b ,解得:{k =80b =−128,∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时), ∴x 的取值范围是1.6≤x <3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x <3.1); (2)当y =200﹣80=120时, 120=80x ﹣128, 解得x =3.1, 由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时), 设货车乙返回B 地的车速为v 千米/小时, ∴1.6v ≥120, 解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.22.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km /h ,游轮行驶的时间记为t (h ),两艘轮船距离杭州的路程s (km )关于t (h )的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长. (2)若货轮比游轮早36分钟到达衢州.问: ①货轮出发后几小时追上游轮? ②游轮与货轮何时相距12km ?【分析】(1)根据图中信息解答即可.(2)①求出B,C,D,E的坐标,利用待定系数法求解即可.②分三种情形种情形分别构建方程求解即可.【详解】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22.4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t﹣40﹣(50t﹣700)=12,解得t=21.6.相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,当游轮在刚离开杭州12km时,此时根据图象可知货轮就在杭州,游轮距离杭州12km,所以此时两船应该也是相距12km,即在0.6h的时候,两船也相距12km∴0.6h或21.6h或22.4h时游轮与货轮相距12km.23.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 11 12 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【分析】(1)利用描点法画出图形即可判断.(2)设函数关系式为y =kx +b ,利用待定系数法解决问题即可. 【详解】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{k +b =0.752k +b =1,解得{k =14b =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.24.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.【分析】(1)根据4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,可以得到相应的分式方程,从而可以求得4月份进了这批T恤衫多少件;(2)①根据甲乙两店的利润相同,可以得到关于a、b的方程,然后化简,即可用含a的代数式表示b;②根据题意,可以得到利润与a的函数关系式,再根据乙店按标价售出的数量不超过九折售出的数量,可以得到a的取值范围,从而可以求得乙店利润的最大值.【详解】解:(1)设3月份购进x件T恤衫,18000 x +10=390002x,解得,x=150,经检验,x=150是原分式方程的解,则2x=300,答:4月份进了这批T恤衫300件;(2)①每件T恤衫的进价为:39000÷300=130(元),(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)化简,得b=150−a2;②设乙店的利润为w元,w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×150−a2−600=36a+2100,∵乙店按标价售出的数量不超过九折售出的数量,∴a≤b,即a ≤150−a2, 解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900, 答:乙店利润的最大值是3900元.25.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x ≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x ≤200时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把x =180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【详解】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入, 得{150k +b =35200k +b =10, ∴{k =−0.5b =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.26.(2019•温州)如图,在平面直角坐标系中,直线y=−12x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连接OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当nm =17tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,进而求出OE的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由nm =17tan∠EOF和n=−12m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=2√5,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5√5,利用待定系数法可得s关于t的函数表达式,根据s和t都不是负数,确定t的取值;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH=ABBQ3=BHBQ=126√5=25√5,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN=14,列方程为2t﹣2=14(7−32t),可得t的值.(iii)由图形可知PQ不可能与EF平行.【详解】解:(1)令y=0,则−12x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC=√82+42=4√5,又∵E为BC中点,∴OE=12BC=2√5;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=12OB=4,OE=12BC=2√5∵∠CDN=∠NEM,∠CND=∠MNE ∴△CDN∽△MEN,∴CNMN =CDEM=1,∴CN=MN=1,∴EN=√12+42=√17,∵S△ONE=12EN•OF=12ON•EM,∴OF=√17=1217√17,由勾股定理得:EF=√OE2−OF2=(2√5)2−(12√1717)2=1417√17,∴tan∠EOF=EFOF=14√171712√1717=76,∴n m=17×76=16,∵n =−12m +4, ∴m =6,n =1, ∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动, ∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合, ∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5, ∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{t =2s =2√5和{t =4s =5√5代入得{2k +b =2√54k +b =5√5,解得:{k =32√5b =−√5, ∴s =3√52t −√5, ∵s ≥0,t ≥0,且32√5>0,∴s 随t 的增大而增大, 当s ≥0时,3√52t −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52t −√5(23≤t ≤4);②(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE , 作QH ⊥x 轴于点H ,则PH =BH =12PB ,Rt △ABQ 3中,AQ 3=6,AB =4+8=12, ∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t , ∵cos ∠QBH =ABBQ 3=BHBQ =6√5=25√5, ∴BH =14﹣3t , ∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5, ∵Q 3Q =s =3√52t −√5, ∴Q 3G =32t ﹣1,GQ =3t ﹣2,∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2, ∵∠HPQ =∠CDN , ∴tan ∠HPQ =tan ∠CDN =14, ∴2t ﹣2=14(7−32t),t =3019,(iii )由图形可知PQ 不可能与EF 平行, 综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019.27.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h (单位:m )与下行时间x (单位:s )之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【分析】(1)根据函数图象中的数据可以得到y关于x的函数解析式;(2)分别令h=0和y=0求出相应的x的值,然后比较大小即可解答本题.【详解】解:(1)设y关于x的函数解析式是y=kx+b,{b=615k+b=3,解得,{k=−15 b=6,∴y=−15x+6,∴当y=0时,x=30,即y关于x的函数解析式是y=−15x+6(0≤x≤30);(2)当h=0时,0=−310x+6,得x=20,当y=0时,0=−15x+6,得x=30,∵20<30,∴甲先到达地面.28.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)【分析】(1)设y =kx +b ,运用待定系数法求解即可;(2)把y =1500代入(1)的结论即可;(3)设小聪坐上了第n 班车,30﹣25+10(n ﹣1)≥40,解得n ≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.【详解】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0),把(20,0),(38,2700)代入y =kx +b ,得{0=20k +b 2700=38k +b ,解得{k =150b =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.。

2024年中考数学总复习考点梳理专题五 二次函数综合题

2024年中考数学总复习考点梳理专题五 二次函数综合题
专题五
二次函数综合题
专题五 二次函数综合题
类型一 线段问题
1.
如图,抛物线y= 1 x2+bx+c过点A(4,0),B(-4,
4
4),与y轴交于点C,连接AB.
(1)求抛物线的表达式;
第1题图
专题五 二次函数综合题
解:(1)∵抛物线y= 1 x2+bx+c过点A(4,0),B(-4,4),
4
∴将A(4,0),B(-4,4)分别代入y=
1
x2+bx+c中,
4

4 4
4b 4b
c c
0 4

解得
b
1 2

c 2
∴抛物线的表达式为
y= 1 x2- 1 x-2;
42
第1题图
专题五 二次函数综合题
(2)若E是线段AB上的一个动点(不与点A,B重合),过点E作y轴
的平行线,分别交抛物线,x轴于F,D两点,若DE=2DF,请
求出点E的坐标.
3k b b 4
0,解得
k b
4 3
4

∴直线BC的解析式为y=- 4 x-4,
3
∴E(m,- 4 m-4),∴PE=-4 m2-4m,
3
3
∵PE=CE,∴- 4 m2-4m=-5 m,
3
3
解得m1=-
7 4
,m2=0(舍去),
第2题解图②
∴CE= 5 ( 7) 35,∴四边形PECE′的周长为4CE=4× 35 35 ;
当x=-13
8
时,4
3
x2+
8 3
x-4=-
77,
16
∴P(-13 ,- 77 );
8

初中数学中考一轮复习专题5 二次函数重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题5 二次函数重点、考点知识、方法总结及真题练习

【答案】 【解析】解:(1)把 A(0,﹣1)代入 y1=a(x﹣2)2,得:﹣1=4a,即 a=﹣ ,
∴二次函数解析式为 y1=﹣ (x﹣2)2=﹣ a2+a﹣1;
设直线 AB 解析式为 y=kx+b,
把 A(0,﹣1),B(2,0)代入得:

解得:k= ,b=﹣1,
则直线 AB 解析式为 y= x﹣1;
选叏的五点为:顶点、不 y 轴的交点 0,c 、以及 0,c 关于对称轴对称的点 2h ,c 、 不 x 轴的交点 x1 ,0 , x2 ,0 (若不 x 轴没有交点,则叏两组关于对称轴对称的点).
画草图时应抓住以下几点:开口斱向,对称轴,顶点,不 x 轴的交点,不 y 轴的交点.
4. 二次函数 y ax2 bx c 的性质
正斱形的面积,∴y=﹣x2+36.
3.抛物线 y=x2﹣2x+3 的顶点坐标是

【答案】(1,2)
【解析】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,
∴抛物线 y=x2﹣2x+3 的顶点坐标是(1,2).
4.已知抛物线 y=﹣2(x+1)2﹣3,如果 y 随 x 的增大而减小,那么 x 的叏值范围
D. y=1﹣ x2
【解析】解:把每一个函数式整理为一般形式, A、y=(x﹣1)(x+2)=x2+x﹣2,是二次函数,故 A 丌符合题意; B、y= (x+1)2= x2+x+ ,是二次函数,故 B 丌符合题意;
C、y=2(x+3)2﹣2x2=12x+18,是一次函数,故 C 符合题意; D、y=1﹣ x2=﹣ x2+1,是二次函数,故 D 丌符合题意. 故选:C.

中考复习专题 一次函数、反比例函数与实际应用

中考复习专题 一次函数、反比例函数与实际应用

专题五 一次函数、反比例函数与实际应用1.如图,直线l 1的解析式为y =x +1,直线l 2的解析式为y =ax +b(a ≠0),这两条直线交于y 轴上一点C ,直线l 1与x 轴交于点A ,直线l 2与x 轴交于点B(2,0).(1)求a ,b 的值;(2)过动点Q(n ,0)且垂直于x 轴的直线与l 1,l 2分别交于点M ,N ,当点M ,N 都位于x 轴上方时,求n 的取值范围;(3)动点P 从点B 出发沿x 轴以每秒1个单位长度的速度向左移动,设移动时间为t s ,当△PAC 为等腰三角形时,直接写出t 的值.解:(1)∵点C 是直线l 1:y =x +1与y 轴的交点,∴C(0,1).∵C 在直线l 2:y =ax +b 上,∴b =1.∴直线l 2的解析式为y =ax +1.∵点B(2,0)在直线l 2上,∴2a +1=0.∴a =-12; (2)在y =x +1中,令y =0,得x =-1.∴A(-1,0),由图象知,点Q 在A ,B 之间,∴-1<n <2;(3)如图,△PAC 是等腰三角形有下面四种情况:①点P 在x 轴正半轴上,AC =P 1C 时,∵CO ⊥x 轴,∴OP 1=OA =1.∴BP 1=OB -OP 1=2-1=1.∵1÷1=1,∴t =1;②当P 2A =P 2C 时,易知点P 2与点O 重合,∴BP 2=OB =2.∵2÷1=2,∴t =2;③点P 在x 轴负半轴上,AP 3=AC 时,∵A(-1,0),C(0,1),∴AC = 2.∴AP 3= 2.∴BP 3=OB +OA +AP 3=3+ 2.∵(3+2)÷1=3+2,∴t =3+2;④当点P 在x 轴正半轴上且AC =AP 4时,∵AP 4=AC =2,∴OP 4=2-1,BP 4=OB -OP 4=2-(2-1)=3- 2.∵(3-2)÷1=3-2,∴t =3- 2.综上,满足条件的时间t 为1,2,3+2或3- 2.2.(2019·石家庄新华区模拟)如图,直线y =2x +2与x 轴、y 轴分别交于A ,B 两点,与反比例函数y =k x(x>0)的图象交于点M ,过M 作MH ⊥x 轴于点H ,且AB =BM ,点N(a ,1)在反比例函数y =k x(x>0)的图象上.(1)求k 的值;(2)在x 轴的正半轴上存在一点P ,使得PM +PN 的值最小,求点P 的坐标;(3)点N 关于x 轴的对称点为N′,把△ABO 向右平移m 个单位长度到△A′B′D′的位置,当N′A′+N′B′取得最小值时,请你在横线上直接写出m 的值,m =________.解:(1)把x =0代入y =2x +2,得y =2×0+2=2.∴B(0,2),即BO =2.∵BO ∥MH ,AB =BM ,∴MH =2BO =4.又∵点M 在直线y =2x +2上,∴4=2x +2,解得x =1.∴M(1,4).∵点M 在反比例函数y =k x(x >0)的图象上, ∴4=k 1,即k =4; (2)过点N 作关于x 轴的对称点N′,连接MN′,交x 轴的正半轴于点P ,则点P 即为所求,此时PM +PN 的值最小.∵点N(a ,1)是反比例函数y =4x (x >0)图象上的点,∴1=4a,即a =4.∴N(4,1),N′(4,-1). 设直线MN′的函数表达式为y =kx +b.把M(1,4),N′(4,-1)代入上式,得⎩⎪⎨⎪⎧4=k +b ,-1=4k +b.解得⎩⎨⎧k =-53,b =173.∴直线MN′的函数表达式为y =-53x +173. 当y =0时,x =175,∴P ⎝⎛⎭⎫175,0;(3)4.75.。

2021年中考数学复习之专题突破训练《专题五:二次函数》解析

2021年中考数学复习之专题突破训练《专题五:二次函数》参考答案与试题解析一、选择题1.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是( ) A .1m <-B .1m <C .1m >-D .2m >-【考点】3H :二次函数的性质【分析】由于原点是抛物线2(1)y m x =+的最高点,这要求抛物线必须开口向下,由此可以确定m 的范围.【解答】解:原点是抛物线2(1)y m x =+的最高点, 10m ∴+<,即1m <-. 故选:A .【点评】此题主要考查了二次函数的性质.2.将二次函数241y x x =--化为2()y x h k =-+的形式,结果为( ) A .2(2)5y x =++B .2(2)5y x =+-C .2(2)5y x =-+D .2(2)5y x =--【考点】9H :二次函数的三种形式 【专题】11:计算题【分析】把241y x x =--进行配方得到22445(2)y x x x =-+-=-,5-. 【解答】解:2241445y x x x x =--=-+-2(2)5x =--. 故选:D .【点评】本题考查了二次函数的三种形式:一般式2(y ax bx c a =++、b 、c 为常数,0)a ≠;顶点式2()y a x k h =-+,顶点坐标为(,)k h ;交点式12()()y x x x x =--,1x 、2x 为抛物线与x 轴交点的横坐标.3.将抛物线22y x =向左平移3个单位得到的抛物线的解析式是( )A .223y x =+B .223y x =-C .22(3)y x =+D .22(3)y x =-【考点】6H :二次函数图象与几何变换 【专题】1:常规题型【分析】根据“左加右减”的原则进行解答即可.【解答】解:将抛物线22y x =向左平移3个单位所得直线解析式为:22(3)y x =+; 故选:C .【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.如图,以(1,4)-为顶点的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( )A .23x <<B .34x <<C .45x <<D .56x <<【考点】HB :图象法求一元二次方程的近似根【分析】先根据图象得出对称轴左侧图象与x 轴交点横坐标的取值范围,再利用对称轴1x =,可以算出右侧交点横坐标的取值范围.【解答】解:二次函数2y ax bx c =++的顶点为(1,4)-,∴对称轴为1x =,而对称轴左侧图象与x 轴交点横坐标的取值范围是32x -<<-,∴右侧交点横坐标的取值范围是45x <<.故选:C .【点评】此题主要考查了图象法求一元二次方程的近似根,解答本题首先需要观察得出对称轴左侧图象与x 轴交点横坐标的取值范围,再根据对称性算出右侧交点横坐标的取值范围.5.二次函数21y x =-+的图象与x 轴交于A 、B 两点,与y 轴交于点C ,下列说法错误的是( )A .点C 的坐标是(0,1)B .线段AB 的长为2C .ABC ∆是等腰直角三角形D .当0x >时,y 随x 增大而增大【考点】3H :二次函数的性质;HA :抛物线与x 轴的交点【分析】判断各选项,点C 的坐标可以令0x =,得到的y 值即为点C 的纵坐标;令0y =,得到的两个x 值即为与x 轴的交点坐标A 、B ;且AB 的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.【解答】解:A ,令0x =,1y =,则C 点的坐标为(0,1),正确;B ,令0y =,1x =±,则(1,0)A -,(1,0)B ,||2AB =,正确;C ,由A 、B 、C 三点坐标可以得出AC BC =,且222AC BC AB +=,则ABC ∆是等腰直角三角形,正确;D ,当0x >时,y 随x 增大而减小,错误.故选:D .【点评】本题考查了二次函数的性质,需学会判定函数的单调性及由坐标判定线段或点之间连线构成的图形的形状等问题.6.已知二次函数2(1)4y x =--,当0y <时,x 的取值范围是( ) A .31x -<<B .1x <-或3x >C .13x -<<D .3x <-或1x >【考点】3H :二次函数的性质;HA :抛物线与x 轴的交点 【专题】1 :常规题型【分析】先求出方程2(1)40x --=的解, 得出函数与x 轴的交点坐标, 根据函数的性质得出答案即可 .【解答】解:二次函数2(1)4y x =--,∴抛物线的开口向上, 当0y =时,20(1)4x =--,解得:3x =或1-,∴当0y <时,x 的取值范围是13x -<<,故选:C .【点评】本题考查了二次函数与x 轴的交点和二次函数的性质, 能熟记二次函数的性质的内容是解此题的关键 .7.已知1(1,)A y -,2(1,)B y ,3(2,)C y 三点在抛物线22y x x m =-+上,则1y 、2y 、3y 的大小关系为( ) A .123y y y <<B .321y y y <<C .213y y y <<D .231y y y <<【考点】5H :二次函数图象上点的坐标特征 【专题】11:计算题【分析】分别计算自变量为1-、1和2所对应的函数值,然后比较函数值的大小即可. 【解答】解:当1x =-时,212123y x x m m m =-+=++=+;当1x =时,222121y x x m m m =-+=-+=-+;当2x =时,23244y x x m m m =-+=-+=, 所以231y y y <<. 故选:D .【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式. 8.共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,设该公司第二、三两个月投放单车数量的月平均增长率为x ,那么y 与x 的函数关系是( ) A .2(1)y a x =+B .2(1)y a x =-C .2(1)y x a =-+D .2y x a =+【考点】HD :根据实际问题列二次函数关系式 【专题】1:常规题型【分析】主要考查增长率问题,一般用增长后的量=增长前的量(1⨯+增长率),如果设该公司第二、三两个月投放单车数量的月平均增长率为x ,然后根据已知条件可得出方程. 【解答】解:设该公司第二、三两个月投放单车数量的月平均增长率为x , 依题意得第三个月第三个月投放单车2(1)a x +辆, 则2(1)y a x =+. 故选:A .【点评】此题主要考查了根据实际问题列二次函数关系式,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.9.二次函数2y x mx =-+的图象如图,对称轴为直线2x =,若关于x 的一元二次方程20(x mx t t -+-=为实数)在15x <<的范围内有解,则t 的取值范围是( )A .5t >-B .53t -<<C .34t <D .54t -<【考点】HA :抛物线与x 轴的交点;HB :图象法求一元二次方程的近似根 【专题】68:模型思想【分析】如图,关于x 的一元二次方程20x mx t -+-=的解就是抛物线2y x mx =-+与直线y t =的交点的横坐标,利用图象法即可解决问题.【解答】解:如图,关于x 的一元二次方程20x mx t -+-=的解就是抛物线2y x mx =-+与直线y t =的交点的横坐标,由题意可知:4m =,当1x =时,3y =, 当5x =时,5y =-,由图象可知关于x 的一元二次方程20(x mx t t -+-=为实数)在15x <<的范围内有解, 直线y t =在直线5y =-和直线4y =之间包括直线4y =,54t ∴-<.故选:D .【点评】本题考查抛物线与x 轴的交点、一元二次方程等知识,解题的关键是学会利用图象法解决问题,画出图象是解决问题的关键,属于中考选择题中的压轴题. 10.二次函数23(2)5y x =--与y 轴交点坐标为( )A .(0,2)B .(0,5)-C .(0,7)D .(0,3)【考点】5H :二次函数图象上点的坐标特征 【专题】2B :探究型【分析】根据题目中的函数解析式,令0x =,求出相应的y 的值,即可解答本题. 【解答】解:23(2)5y x =--∴当0x =时,7y =,即二次函数23(2)5y x =--与y 轴交点坐标为(0,7), 故选:C .【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确二次函数与y 轴交点的横坐标等于0.11.对于函数25y x =,下列结论正确的是( ) A .y 随x 的增大而增大 B .图象开口向下 C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【考点】3H :二次函数的性质 【专题】535:二次函数图象及其性质【分析】根据二次函数解析式结合二次函数的性质,即可得出结论. 【解答】解:二次函数解析式为25y x =,∴二次函数图象开口向上,当0x <时y 随x 增大而减小,当0x >时y 随x 增大而增大,对称轴为y 轴,无论x 取何值,y 的值总是非负. 故选:C .【点评】本题考查了二次函数的性质,根据二次函数的性质逐一对照四个选项即可得出结论. 12.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( ) A .(40)(50010)y x x =-- B .(40)(10500)y x x =--C .(40)[50010(50)]y x x =---D .(40)[50010(50)]y x x =---【考点】HD :根据实际问题列二次函数关系式 【专题】1:常规题型【分析】直接利用每千克利润⨯销量=总利润,进而得出关系式. 【解答】解:设销售单价为每千克x 元,月销售利润为y 元, 则y 与x 的函数关系式为:(40)[50010(50)]y x x =---. 故选:C .【点评】此题主要考查了根据实际问题抽象出二次函数关系式,正确表示出销量是解题关键. 13.如图,抛物线21y x =+与双曲线ky x=的交点A 的横坐标是1,则关于x 的不等式210kx x-->的解集是( )A .1x >B .1x <-C .01x <<D .10x -<<【考点】HC :二次函数与不等式若二次函数22(1)31y a x x a =-++-的图象经过原点,则a 的值必为( ) A .1或1-B .1C .1-D .0【考点】8H :待定系数法求二次函数解析式;1H :二次函数的定义【分析】先把原点坐标代入二次函数解析式得到a 的方程,解方程得到1a =或1a =-,根据二次函数的定义可判断1a =-.【解答】解:把(0,0)代入22(1)31y a x x a =-++-, 得210a -=,解得1a =或1a =-, 因为10a -≠, 所以1a ≠,即1a =-. 故选:C .【点评】本题考查了待定系数法求二次函数解析式,同时考查了二次函数的定义. 15.已知非负数a ,b ,c 满足2a b +=,34c a -=,设2S a b c =++的最大值为m ,最小值为n ,则m n -的值为( )A .9B .8C .1D .103【考点】7H :二次函数的最值【分析】用a 表示出b 、c 并求出a 的取值范围,再代入S 整理成关于a 的函数形式,然后根据二次函数的增减性求出m 、n 的值,再相减即可得解. 【解答】解:2a b +=,34c a -=, 2b a ∴=-,34c a =+, b ,c 都是非负数, ∴20340a a -⎧⎨+⎩①②,解不等式①得,2a , 解不等式②得,43a -, 423a ∴-, 又a 是非负数,02a ∴,22(2)34S a b c a a a =++=+-++, 226a a =++,∴对称轴为直线2121a =-=-⨯, 0a ∴=时,最小值6n =,2a =时,最大值2222614m =+⨯+=,1468m n ∴-=-=.故选:B .【点评】本题考查了二次函数的最值问题,用a 表示出b 、c 并求出a 的取值范围是解题的关键,难点在于整理出s 关于a 的函数关系式.16.如图,二次函数2(0)y ax bx c a =++≠的图象的顶点在第一象限,且过点(0,1)和(1,0)-,下列结论:①0ab <,②24b >,③02a b c <++<,④01b <<,⑤当1x >-时,0y >.其中正确结论的个数是( )A .2个B .3个C .4个D .5个【考点】4H :二次函数图象与系数的关系 【专题】31:数形结合【分析】利用抛物线开口方向得0a <,利用对称轴在y 轴的右侧得0b >,则可对①进行判断;根据二次函数图象上点的坐标特征得1c =,0a b c -+=,则1b a c a =+=+,所以01b <<,于是可对②④进行判断;由于1122a b c a a a ++=+++=+,利用0a <可得2a b c ++<,再根据抛物线的对称性得到抛物线与x 轴的另一个交点在(1,0)和(2,0)之间,则1x =时,函数值为正数,即0a b c ++>,由此可对③进行判断;观察函数图象得到1x >-时,抛物线有部分在x 轴上方,有部分在x 轴下方,则可对⑤进行判断.【解答】解:由抛物线开口向下, 0a ∴<,对称轴在y 轴的右侧, 0b ∴>,0ab ∴<,所以①正确;点(0,1)和(1,0)-都在抛物线2y ax bx c =++上, 1c ∴=,0a b c -+=,1b a c a ∴=+=+,而0a <,01b ∴<<,所以②错误,④正确; 1122a b c a a a ++=+++=+,而0a <,222a ∴+<,即2a b c ++<,抛物线与x 轴的一个交点坐标为(1,0)-,而抛物线的对称轴在y 轴右侧,在直线1x =的左侧,∴抛物线与x 轴的另一个交点在(1,0)和(2,0)之间,1x ∴=时,0y >,即0a b c ++>,02a b c ∴<++<,所以③正确;1x >-时,抛物线有部分在x 轴上方,有部分在x 轴下方,0y ∴>或0y =或0y <,所以⑤错误.故选:B .【点评】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;一次项系数b 和二次项系数a共同决定对称轴的位置:当a 与b 同号时当函数2(1)2y x =--的函数值y 随着x 的增大而减小时,x 的取值范围是( ) A .0x >B .1x <C .1x >D .x 为任意实数【考点】3H :二次函数的性质 【专题】31:数形结合【分析】利用二次函数的增减性求解即可,并画出了图形,可直接看出. 【解答】解:对称轴是:1x =,且开口向上,如图所示,∴当1x <时,函数值y 随着x 的增大而减小; 故选:B .【点评】本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质. 18.将抛物线2y x =平移得到抛物线2(3)y x =+,则这个平移过程正确的是( ) A .向左平移3个单位 B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位【考点】6H :二次函数图象与几何变换 【专题】46:几何变换【分析】先利用顶点式得到两抛物线的顶点坐标,然后通过点的平移情况判断抛物线平移的情况.【解答】解:抛物线2y x =的顶点坐标为(0,0),抛物线2(3)y x =+的顶点坐标为(3,0)-, 点(0,0)向左平移3个单位可得到(3,0)-,∴将抛物线2y x =向左平移3个单位得到抛物线2(3)y x =+.故选:A .【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 19.把160元的电器连续两次降价后的价格为y 元,若平均每次降价的百分率是x ,则y 与x 的函数关系式为( )A .320(1)y x =-B .320(1)y x =-C .2160(1)y x =-D .2160(1)y x =-【答案】D【考点】根据实际问题列二次函数关系式【分析】由原价160元可以得到第一次降价后的价格是160(1)x -,第二次降价是在第一次降价后的价格的基础上降价的,为160(1)(1)x x --,由此即可得到函数关系式. 【解答】解:第一次降价后的价格是160(1)x -, 第二次降价为2160(1)(1)160(1)x x x -⨯-=- 则y 与x 的函数关系式为2160(1)y x =-. 故选:D .【点评】此题考查从实际问题中得出二次函数解析式,需注意第二次降价是在第一次降价后的价格的基础上降价的,所以会出现自变量的二次,即关于x 的二次函数. 20.下列函数中是二次函数的为( ) A .31y x =-B .231y x =-C .22(1)y x x =+-D .323y x x =+-【考点】1H :二次函数的定义【分析】根据二次函数的定义,可得答案.【解答】解:A 、31y x =-是一次函数,故A 错误;B 、231y x =-是二次函数,故B 正确;C 、22(1)y x x =+-不含二次项,故C 错误;D 、323y x x =+-是三次函数,故D 错误;故选:B .【点评】本题考查了二次函数的定义,形如2(0)y ax bx c a =++≠是二次函数,要先化简再判断.21.函数21y ax =+和(y ax a a =+为常数,且0)a ≠,在同一平面直角坐标系中的大致图象可能是( )A .B .C .D .【答案】D【考点】二次函数的图象;一次函数的图象【专题】推理能力;几何直观;一次函数及其应用;二次函数图象及其性质【分析】由二次函数21y ax =+的图象顶点(0,1)可排除A 、B 答案;由一次函数y ax a =+的图象过点(1,0)-可排除C 答案.此题得解. 【解答】解:21y ax =+,∴二次函数21y ax =+的图象的顶点为(0,1),故A 、B 不符合题意;当0y ax a =+=时,1x =-,∴一次函数y ax a =+的图象过点(1,0)-,故C 不符题意.故选:D .【点评】本题考查了一次函数的图象以及二次函数的图象,利用一次函数图象经过定点排除A 、B 、C 选项是解题的关键.22.点(,)P m n 在以y 轴为对称轴的二次函数24y x ax =++的图象上.则m n -的最大值等于( ) A .154B .4C .154-D .174-【答案】C【考点】二次函数图象上点的坐标特征;二次函数的性质 【专题】二次函数图象及其性质;应用意识【分析】根据题意,可以得到a 的值,m 和n 的关系,然后将m 、n 作差,利用二次函数的性质,即可得到m n -的最大值,本题得以解决.【解答】解:点(,)P m n 在以y 轴为对称轴的二次函数24y x ax =++的图象上, 0a ∴=,24n m ∴=+,222115(4)4()24m n m m m m m ∴-=-+=-+-=---,∴当12m =时,m n -取得最大值,此时154m n -=-, 故选:C .【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.23.已知抛物线22(26)3y x m x m =+-+-与y 轴交于点A ,与直线4x =交于点B ,当2x >时,y 值随x 值的增大而增大.记抛物线在线段AB 下方的部分为G ,M 为G 上任意一点,设M 的纵坐标为t ,若3t -,则m 的取值范围是( ) A .32mB .332m C .3m D .13m【答案】A【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征 【专题】二次函数图象及其性质;应用意识【分析】根据题意,22bx a=-,2434ac b a --【解答】解:当对称轴在y 轴的右侧时,2226026224(3)(26)34m m m m ⎧⎪-<⎪-⎪-⎨⎪⎪----⎪⎩, 解得332m <, 当对称轴是y 轴时,3m =,符合题意,当对称轴在y 轴的左侧时,260m ->,解得3m >, 综上所述,满足条件的m 的值为32m . 故选:A .【点评】本题考查二次函数图形与系数的关系,二次函数图象上的点的坐标特征,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.24.若二次函数22y a x bx c =--的图象,过不同的六点(1,)A n -、(5,1)B n -、(6,1)C n +、D 1)y 、2(2,)E y 、3(4,)F y ,则1y 、2y 、3y 的大小关系是( )A .123y y y <<B .132y y y <<C .231y y y <<D .213y y y <<【答案】D【考点】二次函数图象上点的坐标特征;二次函数的图象 【专题】二次函数图象及其性质;推理能力【分析】由解析式可知抛物线开口向上,点(1,)A n -、(5,1)B n -、(6,1)C n +求得抛物线对称轴所处的范围,然后根据二次函数的性质判断可得.【解答】解:由题意22225513661a b c n a b c n a b c n ⎧+-=⎪--=-⎨⎪--=+⎩①②③②-①得,22461a b -=-④, ③-②得,2112a b -=⑤, ④6-⨯⑤得到,21342a =,可得5942b =, ∴抛物线的对称轴259226b x a -=-=, (2D ,1)y 、2(2,)E y 、3(4,)F y ,则213y y y <<, 故选:D .【点评】本题主要考查二次函数图象上点的坐标特征,根据题意得到抛物线的对称轴和开口方向是解题的关键.25.在同一平面直角坐标系中,若抛物线22y mx x n =+-与262y x x m n =--+-关于x 轴对称,则m ,n 的值为( )A .6m =-,3n =-B .6m =-,3n =C .6m =,3n =-D .6m =,3n =【答案】D【考点】6H :二次函数图象与几何变换;3H :二次函数的性质 【专题】535:二次函数图象及其性质;67:推理能力;69:应用意识 【分析】根据关于x 轴对称,函数y 是互为相反数即可求得.【解答】解:抛物线22y mx x n =+-与262y x x m n =--+-关于x 轴对称,22y mx x n ∴-=--+,22y mx x n ∴=--+与262y x x m n =--+-相同, 6m ∴-=-,n m n =-,解得6m =,3n =, 故选:D .【点评】本题考查了二次函数图象与几何变换,根据关于x 轴对称的坐标特征把抛物线22y mx x n =+-化成关于x 轴对称的抛物线的解析式是解题的关键.26.已知关于x 的二次函数24y x x m =-+在13x -的取值范围内最大值7,则该二次函数的最小值是( ) A .2- B .1-C .0D .1【答案】A【考点】二次函数的最值【专题】二次函数图象及其性质;运算能力【分析】先将二次函数写成顶点式,得出对称轴及开口方向,根据抛物线开口向上时离对称轴越远函数值越大,可知当1x =-时,7y =,从而可解得m 的值;再根据抛物线的顶点式可得其最小值. 【解答】解:24y x x m =-+2(2)4x m =-+-,∴对称轴为直线2x =,抛物线开口向上,二次函数在13x -的取值范围内最大值7, 当1x =-时,7y =,27(1)4(1)m ∴=--⨯-+, 解得:2m =,∴当2x =时,该二次函数有最小值,最小值为0242+-=-.故选:A .【点评】本题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键. 27.将二次函数2245y x x =-+的右边进行配方,正确的结果是( ) A .22(1)3y x =-- B .22(2)3y x =-- C .22(1)3y x =-+ D .22(2)3y x =-+【考点】9H :二次函数的三种形式【专题】66:运算能力;535:二次函数图象及其性质【分析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式. 【解答】解:提出二次项系数得,22(2)5y x x =-+, 配方得,22(21)52y x x =-++-, 即22(1)3y x =-+. 故选:C .【点评】本题考查了二次函数的三种形式,一般式:2y ax bx c =++,顶点式:2()y a x h k =-+;两根式:12()()y a x x x x =--.28.二次函数y =x 2﹣x +a ﹣4的图象与x 轴有两个公共点,a 取满足条件的最小整数,将图象在x 轴上方的部分沿x 轴翻折,其余部分保持不变,得到一个新图象,当直线y =kx ﹣2与新图象恰有三个公共点时,则k 的值不可能是 A .﹣1B .﹣2C .1D .2【考点】一次函数图象与系数的关系;一次函数图象上点的坐标特征;二次函数的性质;二次函数图象与几何变换;二次函数的最值;抛物线与x轴的交点.【专题】分类讨论;二次函数图象及其性质;数据分析观念.【答案】D【分析】由二次函数y=x2﹣x+a﹣4的图象与x轴有两个公共点,则△>0且a≠1,得到a=2.①当k>0时,直线y=kx﹣2与新图象恰有三个公共点时,此时直线过点B、C,故将点B的坐标代入y=kx﹣2,即可求解;②当k<0时,直线y=kx﹣2与新图象恰有三个公共点时,则此时直线过A、C点或直线与y=x2﹣x﹣2只有一个交点,进而求解.【解答】解:∵二次函数y=x2﹣x+a﹣4的图象与x轴有两个公共点,则△>0且a≠1,当△=2﹣4=8a﹣7>0时,解得a>,∵a取满足条件的最小整数,而a≠1,故a=2,当a=2时,y=x2﹣x+a﹣4=x2﹣x﹣2,设原抛物线交x轴于点A、B,交y轴于点C,将图象在x轴上方的部分沿x轴翻折,其余部分保持不变,得到一个新图象,如下图所示,对于y=x2﹣x﹣2,令y=0,则y=x2﹣x﹣2=0,解得x=﹣1或2,令x=0,则y=﹣2,故点A、B、C的坐标分别为、、,由直线y=kx﹣2知,该直线过点C,①当k>0时,∵直线y=kx﹣2与新图象恰有三个公共点时,则此时直线过点B、C,将点B的坐标代入y=kx﹣2得:0=2k﹣2,解得k=1;②当k<0时,∵直线y =kx ﹣2与新图象恰有三个公共点时,则此时直线过A 、C 点或直线与y =x 2﹣x ﹣2只有一个交点, 当直线过点A 、C 时,将点A 的坐标代入直线表达式得:0=﹣k ﹣2, 解得k =﹣2,当直线与y =x 2﹣x ﹣2只有一个交点时,联立直线和抛物线的表达式得:x 2﹣x ﹣2=kx ﹣2,即x 2﹣x =0, 则△=2﹣4×1×0=0, 解得k =﹣1,综上,k =1或﹣2或﹣1, 故选:D .【点评】本题考查的是抛物线与x 轴的交点,涉及到一次函数、根的判别式等知识点,分类求解是本题解题的关键.29.已知二次函数2y ax bx c =++与自变量x 的部分对应值如表,下列说法错误的是( )A .0a <B .方程22ax bx c ++=-的正根在4与5之间C .20a b +>D .若点1(5,)y 、3(2-,2)y 都在函数图象上,则12y y <【答案】B【考点】抛物线与x 轴的交点;图象法求一元二次方程的近似根;根的判别式;二次函数图象与系数的关系;根与系数的关系 【专题】推理能力;二次函数图象及其性质【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A 进行判断;利用抛物线的对称性可得1x =-和4x =的函数值相等,则可对B 进行判断;利用0x =和3x =时函数值相等可得到抛物线的对称轴方程,则可对C 进行判断;利用二次函数的性质则可对D 进行判断.【解答】解:二次函数值先由小变大,再由大变小,∴抛物线的开口向下,0a ∴<,故A 正确;1x =-时,3y =-,4x ∴=时,3y =-,∴二次函数2y ax bx c =++的函数值为2-时,10x -<<或34x <<,即方程22ax bx c ++=-的负根在1-与0之间,正根在3与4之间, 故B 错误;抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线32x =, 3122b a ∴-=>, 20a b ∴+>,故C 正确;3(2-,2)y 关于直线32x =的对称点为9(2,2)y ,952<, 12y y ∴<,故D 正确; 故选:B .【点评】本题考查了二次函数的图象与系数的关系,二次函数的性质.抛物线与x 轴的交点,熟练掌握二次函数的性质和抛物线的对称性是解决此题的关键. 30.在平面直角坐标系有一条抛物线241y x x =-+-,则在下列结论中: ①此抛物线的开口向下; ②此抛物线的对称轴是2x =; ③当12x x <时,则有12y y <;④当2x >时,若0m >,则有2()444x m x m -+++<; ⑤此抛物线中,当x 取任何实数时,y 值都不可能等于5; ⑥此抛物线与x 轴有两个交点.在下列给出的序号中,含有错误结论的是( ) A .①②③ B .①②④C .①②⑤D .①②⑥【答案】B【考点】抛物线与x 轴的交点;二次函数与不等式31.将函数224y x x =-+化为2()y a x h k =-+的形式为 2(1)3y x =-+ . 【考点】9H :二次函数的三种形式 【分析】利用配方法整理即可得解.【解答】解:2224(21)3y x x x x =-+=-++,2(1)3x =-+, 所以,2(1)3y x =-+. 故答案为:2(1)3y x =-+.【点评】本题考查了二次函数的三种形式,熟练掌握配方法是解题的关键.32.如果函数2(1)(y m x x m =-+是常数)是二次函数,那么m 的取值范围是 1m ≠ . 【考点】1H :二次函数的定义【专题】536:二次函数的应用;33:函数思想 【分析】依据二次函数的二次项系数不为零求解即可. 【解答】解:函数2(1)(y m x x m =-+为常数)是二次函数, 10m ∴-≠,解得:1m ≠,故答案为:1m ≠.【点评】本题主要考查的是二次函数的定义,掌握二次函数的特点是解题的关键. 33.如果函数232(3)1y x x -+=-++是二次函数,那么的值一定是 0 .【考点】二次函数的定义【分析】根据二次函数的定义,列出方程与不等式求解即可. 【解答】解:由题意得:2322-+=,解得0=或3=; 又30-≠,3∴≠.∴当0=时,这个函数是二次函数.故答案为:0.【点评】本题考查二次函数的定义,关键是掌握二次函数的定义:一般地,形如2(y ax bx c a =++、b 、c 是常数,0)a ≠的函数,叫做二次函数.34.设1(A x ,1)y 、2(B x ,2)y 是抛物线2242y x x =+-上的点,坐标系原点O 位于线段AB的中点处,则AB 的长为【考点】5H :二次函数图象上点的坐标特征【专题】11:计算题【分析】由于原点O 是线段AB 的中点得到A 点和B 点关于原点中心对称,则12x x =-,12y y =-,根据抛物线的位置可确定A 点和B 点在第一、三象限,设A 点在第一象限,再把点A 和B 点坐标代入解析式得到2111242y x x =+-,2111242y x x -=--,两式相加可得到11x =,则14y =,于是可确定A 点和B 点坐标,然后利用两点间的距离公式计算.【解答】解:原点是线段的中点,,与,关于原点中心对称,,,,抛物线的对称轴为直线,顶点坐标为,点和点在第一、三象限,设点在第一象限,点坐标为,,,,,,与,.O AB 1(A x ∴1)y 2(B x 2)y 12x x ∴=-12y y =-222422(1)4y x x x =+-=+-∴1x =-(1,4)--A ∴B A B ∴1(x -1)y -2111242y x x ∴=+-2111242y x x -=--11x ∴=14y ∴=(1,4)A ∴(1,4)B --AB ∴=故答案为.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了两点间的距离公式.35.在一幢高的大楼上掉下一个苹果,苹果离地面的高度与时间大致有如下关系:. 5 秒钟后苹果落到地面.【考点】:二次函数的应用【分析】苹果落到地面,即的值为0,代入函数解析式求得的值即可解决问题.【解答】解:把代入函数解析式得,,解得,;答:5秒钟后苹果落到地面.故答案为:5.【点评】此题主要考查二次函数与一元二次方程的关系,解答时注意结合图象解答.36.如图,抛物线的对称轴为,点,点是抛物线与轴的两个交点,若点的坐标为,则点的坐标为 .【考点】二次函数的性质;抛物线与轴的交点【专题】二次函数图象及其性质【分析】根据抛物线的对称轴结合点的横坐标,即可求出点的横坐标,此题得解.【解答】解:抛物线的对称轴为直线,点的坐标为,点的横坐标为,点的坐标为.故答案为:.【点评】本题考查了抛物线与轴的交点以及二次函数的性质,牢记抛物线的对称性是解题125m ()h m ()t s 21255h t =-HE h t 0h =21255h t =-212550t -=15t =25t =-2y ax bx c =++1x =P Q x P (4,0)Q (2,0)-x P Q 1x =P (4,0)∴Q 1242⨯-=-∴Q (2,0)-(2,0)-x的关键.37.如图,在平面直角坐标系中,菱形的顶点在轴负半轴上,顶点在轴正半轴上.若抛物线经过点、,则点的坐标为 .【考点】菱形的性质;二次函数的性质;二次函数图象上点的坐标特征【专题】二次函数图象及其性质【分析】根据抛物线经过点、和二次函数图象具有对称性,可以求得该抛物线的对称轴和的长,然后根据菱形的性质和勾股定理可以求得的长,从而可以求得的长,进而写出点的坐标.【解答】解:抛物线,该抛物线的顶点的横坐标是,当时,,点的坐标为:,,抛物线经过点、,轴,,,,,,,,,点的坐标为,故答案为:【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.ABCD A x B x 2108(0)y ax ax a =-+>C D B(4,0)2108(0)y ax ax a =-+>C D CD AO OB B 22108(5)258y ax ax a x a =-+=--+∴5x =0x =8y =∴D (0,8)8OD ∴=2108(0)y ax ax a =-+>C D ////CD AB x 5210CD ∴=⨯=10AD ∴=90AOD ∠=︒8OD =10AD=6AO ∴====10AB =101064OB AO ∴=-=-=∴B (4,0)(4,0)。

中考数学专题复习专题五取值范围探究测试题(共13页)

专题(zhuāntí)五初中数学取值范围一.选择题〔一共5小题〕1.〔2021•〕如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是〔〕1题图5题图A.x<﹣2或者x>2 B.x<﹣2或者0<x<2 C.﹣2<x<0或者0<x<﹣2 D.﹣2<x<0或者x>2解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或者x>2时函数y1=k1x的图象在y2=的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或者x>2.选D.2.〔2021•〕x=2是不等式〔x﹣5〕〔ax﹣3a+2〕≤0的解,且x=1不是这个不等式的解,那么实数a的取值范围是〔〕A.a>1 B.a≤2C.1<a≤2D.1≤a≤2解:∵x=2是不等式〔x﹣5〕〔ax﹣3a+2〕≤0的解,∴〔2﹣5〕〔2a﹣3a+2〕≤0,解得:a≤2,∵x=1不是这个不等式的解,∴〔1﹣5〕〔a﹣3a+2〕>0,解得:a>1,∴1<a≤2,选:C.3.〔2021•〕二次函数(hánshù)y=x2+〔m﹣1〕x+1,当x>1时,y随x的增大而增大,而m的取值范围是〔〕A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1解:抛物线的对称轴为直线x=﹣,∵当x>1时,y的值随x值的增大而增大,∴﹣≤1,解得m≥﹣1.选D.4.〔2021•〕在反比例函数y=图象上有两点A〔x1,y1〕,B 〔x2,y2〕,x1<0<x2,y1<y2,那么m的取值范围是〔〕A.m>B.m< C.m≥ D.m≤解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.选B.5.〔2021•〕如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的局部记作C1,将C1向右平移得C2,C2与x轴交于点B,D.假设直线y=x+m与C1、C2一共有3个不同的交点,那么m的取值范围是〔〕A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或者3,那么点A〔1,0〕,B〔3,0〕,由于将C1向右平移2个长度单位得C2,那么C2解析式为y=﹣2〔x﹣4〕2+2〔3≤x≤5〕,当y=x+m1与C2相切时,令y=x+m1=y=﹣2〔x﹣4〕2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2一共有3个不同的交点,选:D.二.填空题〔一共7小题〕6.〔2021•〕正比例函数(hánshù)y1=mx〔m>0〕的图象与反比例函数y2=〔k≠0〕的图象交于点A〔n,4〕和点B,AM⊥y轴,垂足为M.假设△AMB的面积为8,那么满足y1>y2的实数x的取值范围是﹣2<x<0或者x>2 .解:∵正比例函数y1=mx〔m>0〕的图象与反比例函数y2=〔k≠0〕的图象交于点A 〔n,4〕和点B,∴B〔﹣n,﹣4〕.∵△AMB的面积为8,∴×8×n=8,解得n=2,∴A〔2,4〕,B〔﹣2,﹣4〕.由图形可知,当﹣2<x<0或者x>2时,正比例函数y1=mx〔m>0〕的图象在反比例函数y2=〔k≠0〕图象的上方,即y1>y2.故答案为﹣2<x<0或者x>2.6题图7题图7.〔2021•〕在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为〔a,a〕.如图,假设曲线与此正方形的边有交点,那么a的取值范围是≤a.解:∵A点的坐标为〔a,a〕.根据题意C〔a﹣1,a﹣1〕,当C在双曲线时,那么a﹣1=,解得a=+1,当A在双曲线时,那么a=,解得a=,∴a的取值范围是≤a.答案为≤a.8.〔2021•〕如图,在Rt△AOB中,∠AOB=90°,AO=,BO=1,AB的垂直平分线交AB 于点E,交射线BO于点F.点P从点A出发沿射线AO以每秒2个单位的速度运动,同时点Q从点O出发沿OB方向以每秒1个单位的速度运动,当点Q到达点B 时,点P、Q同时停顿运动.设运动的时间是为t秒.〔1〕当t= 时,PQ∥EF;〔2〕假设P、Q关于点O的对称点分别为P′、Q′,当线段(xiànduàn)P′Q′与线段EF 有公一共点时,t的取值范围是≤t≤1.解:〔1〕如图1,当PQ∥EF时,那么∠QPO=∠ENA,又∵∠AEN=∠QOP=90°,∴△AEN∽△QOP,∵∠AOB=90°,AO=,BO=1,∴tanA===,∴∠A=∠PQO=30°,∴==,解得:t=,故当t=时,PQ∥EF;为:;〔2〕如图2,当P点介于P1和P2之间的区域时,P1′点介于P1′和P2′之间,此时线段P′Q′与线段EF有交点,当P运动到P1时,∵AE=AB=1,且易知△AEP1′∽△AOB,∴,∴AP1′=,∴P1O=P1′O=,∴AP1=AO+P1O=,∴此时P点运动的时间是t==s,当P点运动到P2时,∵∠BAO=30°,∠BOA=90°,∴∠B=60°,∵AB的垂直平分线交AB于点E,∴FB=FA,∴△FBA是等边三角形,∴当PO=OA=时,此时Q2′与F重合,A与P2′重合,∴PA=2,那么t=1秒时,线段P′Q′与线段EF有公一共点,故当t的取值范围是:≤t≤1.答案为:≤t≤1.9.〔2021•〕如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,假设要求另外(lìnɡ wài)三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,那么r的取值范围是3<r<5 .解:在直角△ABD中,CD=AB=4,AD=3,那么BD==5.由图可知3<r<5.答案为:3<r<5.三.解答题〔一共18小题〕1.〔2021•〕如图,点A〔a,3〕是一次函数y1=x+b图象与反比例函数y2=图象的一个交点.〔1〕求一次函数的解析式;〔2〕在y轴的右侧,当y1>y2时,直接写出x的取值范围.解:〔1〕将A〔a,3〕代入y2=得a=2,∴A〔2,3〕,将A〔2,3〕代入y1=x+b得b=1,∴y1=x+1;〔2〕∵A〔2,3〕,∴根据图象得在y轴的右侧,当y1>y2时,x>2.2.〔2021•〕如图,一次函数y=kx+b与反比例函数y=〔x>0〕的图象交于A〔m,6〕,B〔3,n〕两点.〔1〕求一次函数的解析式;〔2〕根据图象(tú xiànɡ)直接写出使kx+b<成立的x的取值范围;〔3〕求△AOB的面积.解:〔1〕∵点A〔m,6〕,B〔3,n〕两点在反比例函数y=〔x>0〕的图象上,∴m=1,n=2,即A〔1,6〕,B〔3,2〕.又∵点A〔m,6〕,B〔3,n〕两点在一次函数y=kx+b的图象上,∴.解得,解析式为:y=﹣2x+8;〔2〕根据图象可知使kx+b<成立的x的取值范围是0<x<1或者x>3;〔3〕分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D点.令﹣2x+8=0,得x=4,即D〔4,0〕.∵A〔1,6〕,B〔3,2〕,∴AE=6,BC=2,∴S△AOB=S△AOD﹣S△BOD=×4×6﹣×4×2=8.3.〔2021•〕如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P 是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.〔1〕假设∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB.〔2〕当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:﹣的值是否发生变化?假如变化,求出其取值范围;假如不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.解:〔1〕过P作PE⊥OA于E,∵PQ∥OA,PM∥OB,∴四边形OMPQ为平行四边形,∴PM=OQ=1,∠PME=∠AOB=60°,∴PE=PM•sin60°=,ME=,∴CE=OC﹣OM﹣ME=,∴tan∠PCE==,∴∠PCE=30°,∴∠CPM=90°,又∵PM∥OB,∴∠CNO=∠CPM=90°,那么(nà me)CN⊥OB;〔2〕①﹣的值不发生变化,理由如下:设OM=x,ON=y,∵四边形OMPQ为菱形,∴OQ=QP=OM=x,NQ=y﹣x,∵PQ∥OA,∴∠NQP=∠O,又∵∠QNP=∠ONC,∴△NQP∽△NOC,∴=,即=,∴6y﹣6x=xy.两边都除以6xy,得﹣=,即﹣=.②过P作PE⊥OA于E,过N作NF⊥OA于F,那么S1=OM•PE,S2=OC•NF,∴=.∵PM∥OB,∴∠PMC=∠O,又∵∠PCM=∠NCO,∴△CPM∽△CNO,∴==,∴==﹣〔x﹣3〕2+,∵0<x<6,那么根据二次函数的图象可知,0<≤.4.〔2021•〕在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:假设在射线CP上存在一点P′,满足CP+CP′=2r,那么称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.〔1〕当⊙O的半径为1时.①分别(fēnbié)判断点M〔2,1〕,N〔,0〕,T〔1,〕关于⊙O的反称点是否存在?假设存在,求其坐标;②点P在直线y=﹣x+2上,假设点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;〔2〕⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,假设线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.解:〔1〕当⊙O的半径为1时.①点M〔2,1〕关于⊙O的反称点不存在;N〔,0〕关于⊙O的反称点存在,反称点N′〔,0〕;T〔1,〕关于⊙O的反称点存在,反称点T′〔0,0〕;②∵OP≤2r=2,OP2≤4,设P〔x,﹣x+2〕,∴OP2=x2+〔﹣x+2〕2=2x2﹣4x+4≤4,∴2x2﹣4x≤0,x〔x﹣2〕≤0,∴0≤x≤2.当x=2时,P〔2,0〕,P′〔0,0〕不符合题意;当x=0时,P〔0,2〕,P′〔0,0〕不符合题意;∴0<x<2;〔2〕∵直线(zhíxiàn)y=﹣x+2与x轴、y轴分别交于点A,B,∴A〔6,0〕,B 〔0,2〕,∴=,∴∠OBA=60°,∠OAB=30°.设C〔x,0〕.①当C在OA上时,作CH⊥AB于H,那么CH≤CP≤2r=2,所以AC≤2,C 点横坐标x≥2〔当x=2时,C点坐标〔2,0〕,H点的反称点H′〔2,0〕在圆的内部〕;②当C在A点右侧时,C到线段AB的间隔为AC长,AC最大值为8,所以C点横坐标x≤10.综上所述,圆心C的横坐标的取值范围是2≤x≤8.5.〔2021•〕在平面直角坐标系xOy中,过点〔0,2〕且平行于x轴的直线,与直线y=x ﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.〔1〕求点A,B的坐标;〔2〕求抛物线C1的表达式及顶点坐标;〔3〕假设抛物线C2:y=ax2〔a≠0〕与线段AB恰有一个公一共点,结合函数的图象,求a的取值范围.解:〔1〕当y=2时,那么2=x﹣1,解得:x=3,∴A〔3,2〕,∵点A关于直线x=1的对称点为B,∴B〔﹣1,2〕.〔2〕把〔3,2〕,〔﹣2,2〕代入抛物线C1:y=x2+bx+c得:解得:∴y=x2﹣2x﹣1.顶坐标为〔1,﹣2〕.〔3〕如图,当C2过A点,B点时为临界,代入A〔3,2〕那么9a=2,解得:a=,代入B 〔﹣1,2〕,那么a〔﹣1〕2=2,解得:a=2,∴.6.〔2021•〕抛物线y=x2+c与x轴交于A〔﹣1,0〕,B两点,交y轴于点C.〔1〕求抛物线的解析(jiě xī)式;〔2〕点E〔m,n〕是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,假设∠CEF=∠CFG.求n的值并直接写出m的取值范围〔利用图1完成你的探究〕.〔3〕如图2,点P是线段OB上一动点〔不包括点O、B〕,PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长.解:〔1〕把A〔﹣1,0〕代入得c=﹣,∴抛物线解析式为〔2〕如图1,过点C作CH⊥EF于点H,∵∠CEF=∠CFG,FG⊥y轴于点G∴△EHC∽△FGC∵E〔m,n〕∴F〔m,〕又∵C〔0,﹣〕∴EH=n+,CH=﹣m,FG=﹣m,CG=m2又∵,那么∴n+=2∴n=当F点位于E点上方时,那么∠CEF>90°;又∠CFG肯定为锐角,故这种情形不符合题意.由此当n=时,代入抛物线解析式,求得m=±2,又E点位于第二象限,所以﹣2<m<0.〔3〕由题意可知P〔t,0〕,M〔t,〕∵PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,∴△OPM∽△QPB.∴.其中OP=t,PM=,PB=1﹣t,∴PQ=.BQ=∴PQ+BQ+PB=.∴△PBQ的周长为2.7.〔2021•如图,一次函数y=x﹣3与反比例函数y=的图象(tú xiànɡ)相交于点A〔4,n〕,与x轴相交于点B.〔1〕填空:n的值是 3 ,k的值是12 ;〔2〕以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;〔3〕观察反比函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.解:〔1〕把点A〔4,n〕代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A〔4,3〕代入反比例函数y=,可得3=,解得k=12.〔2〕∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为〔2,0〕,如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A〔4,3〕,B 〔2,0〕,∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD 是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF〔ASA〕,∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标(zuòbiāo)为〔4+,3〕.〔3〕当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时, x的取值范围是x≤﹣6或者x>0.答案为:3,12.8.〔2021•〕如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x〔0<x<3〕.把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.〔1〕求证:PQ∥AB;〔2〕假设点D在∠BAC的平分线上,求CP的长;〔3〕假设△PDE与△ABC重叠局部图形的周长为T,且12≤T≤16,求x的取值范围.〔1〕证明:∵在Rt△ABC中,AB=15,BC=9,∴AC===12.∵==,==,∴=.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB;〔2〕解:连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12﹣4x,∴12﹣4x=2x,解得x=2,∴CP=3x=6.〔3〕解:当点E在AB上时,∵PQ∥AB,∴∠DPE=∠PGB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PGB,∴PB=PG=5x,∴3x+5x=9,解得x=.①当0<x≤时,T=PD+DE+PE=3x+4x+5x=12x,此时(cǐ shí)0<T≤;②当<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥FQ,垂足为H,∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴==.∵PG=PB=9﹣3x,∴==,∴GH=〔9﹣3x〕,PH=〔9﹣3x〕,∴FG=DH=3x﹣〔9﹣3x〕,∴T=PG+PD+DF+FG=〔9﹣3x〕+3x+〔9﹣3x〕+[3x﹣〔9﹣3x〕]=x+,此时,<T<18.∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;TA=16时,即x+=16,解得x=.∵12≤T≤16,∴x的取值范围是1≤x≤.内容总结(1)∴0<x<2。

九年级二轮专题复习材料次函数与反比例函数

a5575(第24题图)九年级二轮专题复习材料专题五:一次函数与反比例函数【近3年临沂市中考试题】 1.(2011•临沂,T14,3分)甲、乙两同学同时从400m 环形跑道上的同一点出发,同向而行,甲的速度为6 m /s ,乙的速度为4 m /s .设经过x (单位:s )后,跑道上此两人间的较短部分的长度为y (单位m ),则y 与x (0≤x ≤300)之间的函数关系可用图象表示为AB CD2.(2012•临沂,T12,3分)如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数1(0)k y x x =>和2(0)ky x x=>的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( )A .∠POQ 不可能等于90°B .12k PM QM k = C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是()1212k k + 3.(2013山东临沂,24,9分)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y 与生产数量x 之间是一次函数关系,函数y 与自变量x 的部分对应值如下表:(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z (台)与售价a (万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)【知识点】一次函数(反比例函数)的定义、图象及其画法;一次函数的图象、性质与k 、b 的符号关系;用待定系数法求函数解析式;用一次函数解决实际问题等。

【规律方法】明确用待定系数法求函数的解析式的一般步骤,通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征;在熟悉函数图象的基础上,通过观察、分析函数图象的特征,来理解函数的增减性、条件极值等性质;利用图象来判别一次函数的系数 k 、b 的符号以及图象所经过的象限等问题 .借助图象能理解一次函数与一元一次不等式的关系,直线与不等式组的关系等。

人教版2023中考数学专题复习: 函数基础知识精讲精练

函数基础知识精讲精练学校:___________姓名:___________班级:___________考号:___________知识点精讲1、变量与常量变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数的概念一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

注意:要判断一个关系式是不是函数,首先看这个变化过程中是否只有两个变量,其次看每一个x的值是否对应唯一确定的y值.3、函数三种表示方法列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值)解析法:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

一般情况下,等号右边的变量是自变量,等号左边的变量是因变量。

用函数解析式表示函数关系的方法就是公式法。

图象法:一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.以上三种方法的特点(1):列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

(2):解析法:即函数解析式,简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

(3):图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

4、确定函数自变量取值范围的方法:(1)关系式为整式时,函数自变量取值范围为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数自变量取值范围还要和实际情况相符合,使之有意义5、求函数的值(1)当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.(2)函数表达式中只有两个变量,给定一个变量的值,将其代入函数表达式即可求另一个变量的值,即给自变量的值可求函数值,给函数值可求自变量的值.6、描点法画函数图形的一般步骤(通常选五点法)第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一. 教学目标:1. 会根据点的坐标描出点的位置,由点的位置写出它的坐标2. 会确定点关于x 轴,y 轴及原点的对称点的坐标3. 能确定简单的整式,分式和实际问题中的函数自变量的取值范围,并会求函数值。

4. 能准确地画出一次函数,反比例函数,二次函数的图像并根据图像和解析式探索并理解其性质。

5. 能用适当的函数表示法刻画某些实际问题中变量之间的关系并用函数解决简单的实际问题。

二. 教学重点、难点:重点:一次函数,反比例函数,二次函数的图像与性质及应用 难点:函数的实际应用题是中考的重点又是难点。

三.知识要点:知识点1、平面直角坐标系与点的坐标 一个平面被平面直角坐标分成四个象限,平面内的点可以用一对有序实数来表示平面内的点与有序实数对是一一对应关系,各象限内点都有自己的特征,特别要注意坐标轴上的点的特征。

点P (x 、y )在x 轴上⇔y =0,x 为任意实数,点P (x 、y )在y 轴上,⇔x =0,y 为任意实数,点P (x 、y )在坐标原点⇔x =0,y =0。

知识点2、对称点的坐标的特征点P (x 、y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称轴点P 2的坐标为(-x ,y );关于原点的对称点P 3为(-x ,-y )知识点3、距离与点的坐标的关系点P (a ,b )到x 轴的距离等于点P 的纵坐标的绝对值,即|b | 点P (a ,b )到y 轴的距离等于点P 的横坐标的绝对值,即|a |点P (a ,b )到原点的距离等于:22b a +知识点4、与函数有关的概念函数的定义,函数自变量及函数值;函数自变量的取值必须使解析式有意义当解析式是整式时,自变量取一切实数,当解析式是分式时,要使分母不为零,当解析式是根式时,自变量的取值要使被开方数为非负数,特别地,在一个函数关系中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分。

知识点5、已知函数解析式,判断点P (x ,y )是否在函数图像上的方法,若点P (x ,y )的坐标适合函数解析式,则点P 在其图象上;若点P 在图象上,则P (x ,y )的坐标适合函数解析式.知识点6、列函数解析式解决实际问题设x 为自变量,y 为x 的函数,先列出关于x ,y 的二元方程,再用x 的代数式表示y ,最后写出自变量的取值范围,要注意使自变量在实际问题中有意义。

知识点7、一次函数与正比例函数的定义:例如:y =kx +b (k ,b 是常数,k ≠0)那么y 叫做x 的一次函数,特别地当b =0时,一次函数y =kx +b 就成为y =kx (k 是常数,k ≠0)这时,y 叫做x 的正比例函数。

知识点8、一次函数的图象和性质教学准备专题复习之五 函数一次函数y =kx +b 的图象是经过点(0,b )和点(-kb,0)的一条直线,k 值决定直线自左向右是上升还是下降,b 值决定直线交于y 轴的正半轴还是负半轴或过原点。

知识点9、两条直线的位置关系设直线 1和 2的解析式为y =k 1x +b 1和y 2=k 2x +b 2则它们的位置关系由系数关系确定 k 1≠k 2⇔ 1与 2相交,k 1=k 2,b 1≠b 2⇔ 1与 2平行,k 1=k 2, b 1=b 2⇔ 1与 2重合。

知识点10、反比例函数的定义形如:y =xk 或y =kx -1(k 是常数且k ≠0)叫做反比例函数,也可以写成xy =k (k ≠0)形式,它表明在反比例函数中自变量x 与其对应的函数值y 之积等于已知常数k ,知识点11、反比例函数的图像和性质反比例函数的图像是双曲线,它是以原点为对称中心的中心对称图形,同时又是直线y =x 或y =-x 为对称轴的轴对称图形,当k >0时,图像的两个分支分别在一、三象限,在每个象限内y 随x 的增大而减小,当k <0时,图象的两个分支分别在二、四象限,在每个象限内,y 随x 的增大而增大。

知识点12、反比例函数中比例系数k 的几何意义。

过双曲线上任意一点P 作x 轴、y 轴的垂线PA 、PB 所得矩形的PAOB 的面积为|k|。

知识点13、二次函数的定义形如:y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)那么y 叫做x 的二次函数,它常用的三种基本形式。

一般式:y =ax 2+bx +c (a ≠0) 顶点式:y =a (x -h )2+k (a ≠0) 交点式:y =a (x -x 1)(x -x 2)( a ≠0,x 1、x 2是图象与x 轴交点的横坐标) 知识点14、二次函数的图象与性质二次函数y =ax 2+bx +c (a ≠0)的图象是以(ab ac a b 44,22--)为顶点,以直线y =a b 2-为对称轴的抛物线。

在a >0时,抛物线开口向上,在对称轴的左侧,即x <ab2-时,y 随x 的增大而减小;在对称轴的右侧,即当x >ab2-时,y 随着x 的增大而增大。

在a <0时,抛物线开口向下,在对称轴的左侧,即x <ab2-时,y 随着x 的增大而增大。

在对称轴的右侧,即当x >ab2-时,y 随着x 的增大而减小。

当a >0,在x =a b 2-时,y 有最小值,y 最小值=a b ac 442-,当a <0,在x =a b 2-时, y 有最大值,y 最大值=ab ac 442-。

知识点15、二次函次图象的平移二次函数图象的平移只要移动顶点坐标即可。

2(1)与y 轴永远有交点(0,c )(2)在b 2-4ac >0时,抛物线与x 轴有两个交点,A (x 1,0)、B (x 2,0)这两点距离为AB =|x 1-x 2|,(x 1、x 2是ax 2+bx +c =0的两个根)。

在b 2-4ac =0时,抛物线与x 轴只有一个交点。

在b 2-4ac <0时,则抛物线与x 轴没有交点。

知识点17、求二次函数的最大值常见的有两种方法:(1)直接代入顶点坐标公式(ab ac a b 44,22--)。

(2)将y =ax 2+bx +c 配方,利用非负数的性质进行数值分析。

两种方法各有所长,第一种方法过程简单,第二种方法有技巧。

例1. 若一次函数y =2x222m m --+m -2的图象经过第一、二、三象限,求m 的值.分析:这是一道一次函数概念和性质的综合题.一次函数的一般式为y =kx +b (k ≠0).首先要考虑m 2-2m -2=1.函数图象经过第一、二、三象限的条件是k >0,b >0,而k =2,只需考虑m -2>0.由222120m m m ⎧--=⎨->⎩便可求出m 的值. 所以m =3例2. 鞋子的“鞋码”和鞋长(cm )存在一种换算关系,•下表是几组“鞋码”与鞋长的对应数值: (1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数?(2)设鞋长为x ,“鞋码”为y ,求y 与x 之间的函数关系式;(3)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?分析:本题是以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.解:(1)一次函数,(2)设y =kx +b ,则由题意,得2216,22819,10k b k k b b =+=⎧⎧⎨⎨=+=-⎩⎩解得,∴y =2x -10, (3)当x =26时,y =2³26-10=42.答:应该买42码的鞋.例3. 某块试验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出当x ≤40和x ≥40时y 与x 之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?鞋长16 19 24 27 鞋码22 28 38 44 例题精讲分析:本题提供了一个与生产实践密切联系的问题情境,要求学生能够从已知条件和函数图象中获取有价值的信息,判断函数类型.建立函数关系.为学生解决实际问题留下了思维空间.解:(1)当x ≤40时,设y =kx +b .根据题意,得20001050300030,1500.k b k k b b =+=⎧⎧⎨⎨=+=⎩⎩解这个方程组,得, ∴当x •≤40时,y 与x 之间的关系式是y =50x +1500,∴当x =40时,y =50³40+1500=3500,当x ≥40•时,根据题意得,y =100(x -40)+3500,即y =100x -500. ∴当x ≥40时,y 与x 之间的关系式是y =100x -500.(2)当y ≥4000时,y 与x 之间的关系式是y =100x -500, 解不等式100x -500≥4000,得x ≥45, ∴应从第45天开始进行人工灌溉. 例4. 若函数y =(m 2-1)x 235m m +-为反比例函数,则m =________.分析:在反比例函数y =k x中,其解析式也可以写为y =k ²x -1,故需满足两点,一是m 2-1≠0,二是3m 2+m -5=-1 解:m =43- 点评:函数y =kx为反比例函数,需满足k ≠0,且x 的指数是-1,两者缺一不可. 例5. 已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y =•2x的图象上的三点,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A. y 3<y 2<y 1 B. y 1<y 2<y 3 C. y 2<y 1<y 3D. y 2<y 3<y 1解析:反比例函数y =2x的图象是双曲线、由k =2>0•知双曲线两个分支分别位于第一、三象限内,且在每一个象限内,y 的值随着x 值的增大而减小的,点P 1,P 2,P 3•的横坐标均为负数,故点P 1,P 2均在第三象限内,而P 3在第一象限.故y >0.•此题也可以将P 1,P 2,P 3三点的横坐标取特殊值分别代入y =2x中,求出y 1,y 2,y 3的值,再比较大小.解:C例6. 如图,一次函数y =kx +b 的图象与反比例函数y =mx图象交于A (-2,1),B (1,n )两点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.解析:(1)求反比例函数解析式需要求出m 的值.把A (-2,1)代入y =mx中便可求出m =-2.把B (1,n )代入y =2x中得n =-2.由待定系数法不难求出一次函数解析式.(2)认真观察图象,结合图象性质,便可求出x 的取值范围.解:(1)y =-2x,y =-x -1 (2)x <-2或0<x <1 例7. (1)二次函数y =ax 2+bx +c 的图像如图(1),则点M (b ,ca)在(D ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 (2)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图(2)所示,•则下列结论:①a 、b 同号;②当x =1和x =3时,函数值相等;③4a +b =0;④当y =-2时,x 的值只能取0.其中正确的个数是( B )A. 1个B. 2个C. 3个D. 4个(1) (2)点评:弄清抛物线的位置与系数a ,b ,c 之间的关系,是解决问题的关键. 例8. 已知抛物线y =12x 2+x -52.(1)用配方法求它的顶点坐标和对称轴. (2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.点评:本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.解:(1)顶点(-1,-3),对称轴x =-1,(2)例9. 已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.分析:本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好地考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.解:设矩形PNDM 的边为DN =x ,NP =y ,则矩形PNDM 的面积S =xy (2≤x ≤4)易知CN =4-x ,EM =4-y .且有NP BC BF CN AF -=(作辅助线构造相似三角形),即34y x --=12,∴y =-12x +5,S =xy =-12x 2+5x (2≤x ≤4), 此二次函数的图象开口向下,对称轴为x =5, ∴当x ≤5时,•函数的值是随x 的增大而增大, 对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12³42+5³4=12. 例10. 某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元? 解:(1)设此一次函数表达式为y =kx +b .则⎩⎨⎧=+=+20202515b k b k ,解得k =-1,b =40,•即一次函数表达式为y =-x +40.(2)设每件产品的销售价应定为x 元,所获销售利润为w 元w =(x -10)(40-x )=-x 2+50x -400=-(x -25)2+225. 产品的销售价应定为25元,此时每日获得最大销售利润为225元.点评:解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;(2)问的求解依靠配方法或最值公式,而不是解方程.例11. 已知点A (0,-6),B (-3,0),C (m ,2)三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式并画出其图象.(要求标出必要的点,可不写画法).点评:本题是一道一次函数和反比例函数图象和性质的小综合题,题目设计新颖、巧妙、难度不大,但能很好地考查学生的基本功.解:设直线AB 的解析式为y =k 1x +b ,则130,6,k b b -+=⎧⎨=-⎩解得k 1=-2,b =-6.•所以直线AB 的解析式为y =-2x -6.∵点C (m ,2)在直线y =-2x -6上,∴-2m -6=2, ∴m =-4,即点C 的坐标为C (-4,2), 由于A (0,6),B (-3,0)都在坐标轴上,反比例函数的图象只能经过点C (-4,2),设经过点C 的反比例函数的解析式为y =2k x .则2=24k-,∴k 2=-8.即经过点C •的反比例函数的解析式为y =-8x.例12. 某校九年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a 元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其他费用780元,其中,纯净水的销售价(元/桶)与年购买总量y (桶)之间满足如图所示关系. (1)求y 与x 的函数关系式;(2)若该班每年需要纯净水380桶,且a 为120时,请你根据提供的信息分析一下:•该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?(3)当a 至少为多少时,该班学生集体改饮桶装纯净水一定合算?从计算结果看,•你有何感想(不超过30字)?点评:这是一道与学生生活实际紧密联系的试题,由图象可知,一次函数图象经过点(4,400)、(5,320)可确定y 与x 的关系式,同时这也是一道确定最优方案的题,可利用函数知识分别比较学生个人购买饮料与改饮桶装纯净水的费用,分析优劣.解:(1)设y =kx +b ,∵x =4时,y =400;x =5时,y =320,∴400480,:3205720k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解之得 ∴y 与x 的函数关系式为y =-80x +720.(2)该班学生买饮料每年总费用为50³120=6000(元), 当y =380时,380=-80x +720,得x =4.25.该班学生集体饮用桶装纯净水的每年总费用为380³4.25+780=2395(元), 显然,从经济上看饮用桶装纯净水花钱少. (3)设该班每年购买纯净水的费用为W 元, 则W =xy =x (-80x +720)=-80(x -92)2+•1620. ∴当x =92时,W 最大值=1620.要使饮用桶装纯净水对学生一定合算, 则50a ≥W 最大值+780,•即50a •≥1620+780.解之得,a ≥48. 所以a 至少为48元时班级饮用桶装纯净水对学生一定合算,由此看出,饮用桶装纯净水不仅能省钱,而且能养成勤俭节约的好习惯.例13. 一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1•日起的50天内,它的市场售价y 1与上市时间x 的关系可用图(a )的一条线段表示;•它的种植成本y 2与上市时间x 的关系可用图(b )中的抛物线的一部分来表示.(1)求出图(a )中表示的市场售价y 1与上市时间x 的函数关系式. (2)求出图(b )中表示的种植成本y 2与上市时间x 的函数关系式.(3)假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?(市场售价和种植成本的单位:元/千克,时间单位:天)点评:本题是一道函数与图象信息有关的综合题.学生通过读题、读图.从题目已知和图象中获取有价值的信息,是问题求解的关键.解:(1)设y 1=mx +n ,因为函数图象过点(0,5.1),(50,2.1),∴0 5.150 2.1n m n +=⎧⎨+=⎩ 解得:m =-350,n =5.1,∴y 1=-350x +5.1(0≤x ≤50). (2)又由题目已知条件可设y 2=a (x -25)2+2.因其图象过点(15,3),∴3=a (15-25)2+2,∴a =1100, ∴y 2=1100x 2-12x +334(或y =1100(x -25)2+2)(0≤x ≤50)(3)设第x 天上市的这种绿色蔬菜的纯利润为:y 1-y 2=-1100(x 2-44x +315)(0≤x ≤55).依题意:y 1-y 2=0,即x 2-44x +315=0,∴(x -9)(x -35)=0,解得:x 1=9,x 2=35. 所以从5月1日起的第9天或第35天出售的这种绿色蔬菜,既不赔本也不赚钱.一. 选择题1. 如图,一次函数y =kx +b 的图象经过A 、B 两点,则kx +b >0的解集是( ) A. x >0 B. x >2 C. x >-3 D. -3<x <22. 如图,直线y =kx +b 与x 轴交于点(-4,0),则y >0时,x 的取值范围是( ) A. x >-4 B. x >0 C. x <-4 D. x <03. 已知矩形的面积为10,则它的长y 与宽x之间的关系用图象大致可表示为( )4. 某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例.如图表示的是该电路中电流I 与电阻R 之间关系的图像,则用电阻R 表示电流I 的函数解析式为( )A. I =2366...B I C I D I RRRR===-5. 如图,过原点的一条直线与反比例函数y =k x(k <0)的图像分别交于A 、B 两点,若A 点坐标为(a ,b ),则B 点的坐标为( )A. (a ,b )B. (b ,a )C. (-b ,-a )D. (-a ,-b )6. 反比例函数y =kx与正比例函数y =2x 图象的一个交点的横坐标为1,则反比例函数的图像大致为()7. 函数y =kx(k ≠0)的图象如图所示,那么函数y =kx -k 的图象大致是() 课后练习8. 已知点P 是反比例函数y =kx(k ≠0)的图像上的任一点,过P •点分别作x 轴,y 轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k 的值为( ) A. 2 B. -2 C. ±2 D. 49. 如图,梯形AOBC 的顶点A 、C 在反比例函数图象上,OA ∥BC ,上底边OA 在直线y =x 上,下底边BC 交x 轴于E (2,0),则四边形AOEC 的面积为( )A. 3B.C.1D.110. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:①a >0;②c >0;•③b 2-4ac >0,其中正确的个数是( )A. 0个B. 1个C. 2个D. 3个11. 根据下列表格中二次函数y =ax 2+bx +c 的自变量x 与函数值y •的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,cA. 6<x <6.17B. 6.17<x <6.18C. 6.18<x <6.19D. 6.19<x <6.20 二. 填空题1. 函数y 1=x +1与y 2=ax +b 的图象如图所示,•这两个函数的交点在y 轴上,那么y 1、y 2的值都大于零的x 的取值范围是_ ______.2. 经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是______ .3. 如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(-203,5),D是AB边上的一点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是________.4. 将抛物线y=x2向左平移4个单位后,再向下平移2个单位,•则此时抛物线的解析式是_____________5. 如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC•的三个顶点A,B,C,则ac的值是___ _____.三. 解答题1. 地表以下岩层的温度t(℃)随着所处的深度h(千米)的变化而变化.t与h之间在一定范围内近似地成一次函数关系.(1)根据下表,求t(℃)与h(千米)之间的函数关系式;(2)求当岩层温度达到2. 甲、乙两车从A地出发,沿同一条高速公路行驶至距A•地400千米的B地.L1、L2分别表示甲、乙两车行驶路程y(千米)与时间x(时)之间的关系(•如图所示),根据图象提供的信息,解答下列问题:(1)求L2的函数表达式(不要求写出x的取值范围);(2)甲、乙两车哪一辆先到达B地?该车比另一辆车早多长时间到达B地?3. 在平面直角坐标系XOY 中,直线y =-x 绕点O 顺时针旋转90°得到直线L ,直线L 与反比例函数y =k x的图象的一个交点为A (a ,3),试确定反比例函数的解析式.4. 某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了完全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,•构筑成一条临时通道,木板对地面的压强P (Pa )是木板面积S (m 2)的反比例函数,其图象如下图所示.(1)请直接写出反比例函数表达式和自变量的取值范围; (2)当木板面积为0.2m 2时,压强是多少?(3)如果要求压强不超过6000Pa ,木板的面积至少要多大? 5. 如图,已知反比例函数y 1=mx(m ≠0)的图象经过点A (-2,1),一次函数y 2=kx +b (k ≠0)的图象经过点C (0,3)与点A ,且与反比例函数的图象相交于另一点B .(1)分别求出反比例函数与一次函数的解析式;(2)求点B 的坐标.6. 如图,一次函数y=ax+b的图象与反比例函数y=mx的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA tan∠AOC=12,点B的坐标为(12,-4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.7. 观察下面的表格:(1)求a,b,c(2)求二次函数y=ax2+bx+c图象的顶点坐标与对称轴.8. 如图,P为抛物线y=34x2-32x+14上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB.若AP=1,求矩形PAOB的面积.9. 在平面直角坐标系中,已知二次函数y=a(x-1)2+k•的图像与x轴相交于点A、B,顶点为C,点D 在这个二次函数图像的对称轴上,若四边形ABCD•是一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式.10. 近几年,连云港市先后获得“中国优秀旅游城市”和“全国生态建设示范城市”等十多个殊荣.到连云港观光旅游的客人越来越多,花果山景点每天都吸引大量游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采用浮动门票价格的方法来控制游览人数.已知每张门票原价40元,现设浮动票价为x元,且40≤x≤70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.(1)根据图象,求y与x之间的函数关系式;(2)设该景点一天的门票收入为w元①试用x的代数式表示w;②试问:当票价定为多少时,该景点一天的门票收入最高?最高门票收入是多少?11. 某环保器材公司销售一种市场需求量较大的新型产品.已知每件产品的进价为40元.经销过程中测出销售量y(万件)与销售单价x(元),存在如图所示的一次函数关系.每年销售该种产品的总开支z(万元)(不含进价)与年销售量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式.(2)试写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价为x为何值的,年获利最大?最大值是多少?(3)若公司希望该种产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下使产品的销售量最大,你认为销售单价应为多少元?一. 选择题1. C2. A3. A4. C5. D6. B7. C8. C9. D 10. B 11. C 二. 填空题1. -1<x <22. y =x -2或y =-x +23. y =-12x4. y =(x +4)2-2(y =x 2+8x +14)5. -2 三. 解答题 1. 解:(1)t 与h 的函数关系式为t =35h +20.(2)当t =1770℃时,有1770=35h +20,解得:h =50千米.2. 解:(1)设L 2的函数表达式是y =k 2x +b ,则2230,419400.4k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩解之,得k 2=100,b =-75,∴L 2的函数表达式为y =100x -75. (2)乙车先到达B 地,∵300=100x -75,∴x =154. 设L 1的函数表达式是y =k 1x ,∵图象过点(154,300), ∴k 1=80.即y =80x .当y =400时,400=80x , ∴x =5,∴5-194=14(小时),∴乙车比甲车早14小时到达B 地. 3. 解:依题意得,直线L 的解析式为y =x .因为A (a ,3)在直线y =x 上,则a =3,即A (3,3),又因为(3,3)在y =k x 的图象上,可求得k =9,所以反比例函数的解析式为y =9x4. 解:(1)P =600S (S >0),(2)当S =0.2时,P =6000.2=3000.即压强是3000Pa .(3)由题意知,600S≤6000,∴S ≥0.1.即木板面积至少要有0.1m 2.5. 解:(1)反比例函数的解析式为y =-2x ,一次函数的解析式为y =x +3.(2)点B 的坐标为B (-1,2)6. 解:1)反比例函数的解析式为y =-2x ,一次函数的解析式为y =-2x -3.(2)S △AOB =154个平方单位.7. 解:(1)a =2,b =-3,c =4,0,8,3 (2)顶点坐标为(34,238),对称轴是直线x =348. 解.∵PA ⊥x 轴,AP =1,∴点P 的纵坐标为1.当y =1时,34x 2-32x +14=1,即x 2-2x -1=0,•解得x 1=1x 2=1 ∵抛物线的对称轴为x =1,点P 在对称轴的右侧,练习答案9. 解:本题共四种情况,设二次函数的图像的对称轴与x 轴相交于点E , (1)如图①,当∠CAD =60°时,因为ABCD 为菱形,一边长为2,所以DE =1,BE B的坐标为(10),点C 的坐标为(1,-1), 解得k =-1,a =13,所以y =13(x -1)2-1. (2)如图②,当∠ACB =•60°时,由菱形性质知点A 的坐标为(0,0), 点C的坐标为(1,解得kay =•x -1)2同理可得:y =-13(x -1)2+1,y x -1)2 所以符合条件的二次函数的表达式有: y =13(x -1)2-1,y x -1)2y =-13(x -1)2+1,y x -1)2 10. 解:(1)设函数解析式为y =kx +b ,由图象知:直线经过(50,3500)(60,3000)两点.则50350050,6030006000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解得,∴函数解析式为y =6000-50x . (2)①w =xy =x (6000-50x ),即w =-50x 2+6000x .②w =-50x 2+6000x =-50(x 2-120x )=-50(x -60)2+180000,∴当票价定为60元时,•该景点门票收入最高,此时门票收入为180000元 11. 解.(1)由题意,设y =kx +b ,图象过点(70,5),(90,3),∴1570,1039012k b k k b b ⎧=+=-⎧⎪⎨⎨=+⎩⎪=⎩解得 ∴y =-110x +12.(2)由题意,得w =y (x -40)-z =y (x -40)-(10y +42.5)=(-110x +12)(x -40)-10³(-110x +12)-42.5 =-0.1x 2+17x -642.5=-110(x -85)2+80.当x =85时,年获利的最大值为80万元.(3)令w =57.5,得-0.1x 2+17x -642.5=57.5,整理,得x 2-170x +7000=0.解得x 1=70,x 2=100.由图象可知,要使年获利不低于57.5万元,销售单价为70元到100元之间. 又因为销售单位越低,销售量越大,。

相关文档
最新文档