2013广西贵港中考数学
2013年中考数学解题方法及提分突破训练:因式分解法专题

解题方法及提分突破训练:因式分解法专题中学代数式的问题,可以概括为四大类:计算,求值,化简,论证.解代数式问题的关键是通过代数运算,把代数作恒等变形.代数式恒等变形的重要手段之一是因式分解.它贯穿、渗透在各种代数式问题之中.因式分解是在学习有理数和整式四则运算的基础上进行的.它为以后学习分式运算、解方程和方程组及代数式和三角函数式的恒等变形提供必要的基础.所以因式分解是中学代数教材的一个重要内容.它具有广泛的基础知识的功能.由于进行因式分解时要灵活综合运用学过的有关数学基础知识,并且因式分解的途径多,技巧性强,逆向思维对中学生来讲具有一定的深广度,所以因式分解又是发展学生智能、培养能力、深化学生逆向思维的良好载体.正因为因式分解具有良好的培养能力和思维的功能,所以因式分解又是中学代数教材的一个难点.一 真题链接1. (2011浙江杭州,12,4)当7x =-时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为 .2. (2011山东威海,16,3分)分解因式:2168()()x y x y --+-= . 3. (2011广东广州市,19,10分)分解因式8(x2-2y2)-x(7x +y)+xy .4. (2011 浙江湖州,18,6)8因式分解:39a a -5.(2012年山东泰安模拟)因式分解:93x x -= _________________;如果2x a =,3ya =,则23x ya+=______________.6.(2012年北京市顺义区一诊考试)分解因式:3225105x x y xy -+= 二 名词释义因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
广西贵港市中考数学试题及解析

2015年广西贵港市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,每小题四个选项,其中只有一个是正确的)1.(3分)(2015?贵港)3的倒数是()A.3B.﹣3 C.D.﹣2.(3分)(2015?贵港)计算×的结果是()A.B.C.3D.53.(3分)(2015?贵港)如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是()A.B.C.D.4.(3分)(2015?贵港)下列因式分解错误的是()A.2a﹣2b=2(a﹣b)B.x2﹣9=(x+3)(x﹣3)C.a2+4a﹣4=(a+2)2D.﹣x2﹣x+2=﹣(x﹣1)(x+2)5.(3分)(2015?贵港)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)(2015?贵港)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a 的最大值为()A.﹣1 B.0C.1D.27.(3分)(2015?贵港)下列命题中,属于真命题的是()A.三点确定一个圆B.圆内接四边形对角互余C.若a2=b2,则a=b D.若=,则a=b8.(3分)(2015?贵港)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.B.C.D.9.(3分)(2015?贵港)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF 的平分线与CD相交于点N.若∠1=63°,则∠2=()A.64°B.63°C.60°D.54°10.(3分)(2015?贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0B.1C.2D.311.(3分)(2015?贵港)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2,则x的取值范围是()A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>312.(3分)(2015?贵港)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=S△ABF,其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2015?贵港)若在实数范围内有意义,则x的取值范围是.14.(3分)(2015?贵港)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为.15.(3分)(2015?贵港)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频数是0.2,则第六组的频数是.16.(3分)(2015?贵港)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为.17.(3分)(2015?贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.18.(3分)(2015?贵港)如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A nB n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a2015=.三、解答题(本大题共8小题,满分66分,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2015?贵港)(1)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°;(2)解不等式组,并在数轴上表示不等式组的解集.20.(5分)(2015?贵港)如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C (4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.21.(7分)(2015?贵港)如图,一次函数y=x+b的图象与反比例函数y=的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA.(1)求一次函数和反比例函数的解析式;(2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.22.(8分)(2015?贵港)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.23.(8分)(2015?贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?24.(8分)(2015?贵港)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.25.(10分)(2015?贵港)如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y 轴交于点C(0,3),其对称轴I为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴I上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.26.(10分)(2015?贵港)已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)2015年广西贵港市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,每小题四个选项,其中只有一个是正确的)1.(3分)(2015?贵港)3的倒数是()A.3B.﹣3 C.D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数3的倒数是.故选:C.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2015?贵港)计算×的结果是()A.B.C.3D.5考点:二次根式的乘除法.分析:根据二次根式的乘法计算即可.解答:解:×=.故选B.点评:此题考查二次根式的乘法,关键是根据二次根式的乘法法则进行计算.3.(3分)(2015?贵港)如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上边看得到的图形,可得答案.解答:解:从上边看第一层一个小正方形,第二层在第一层的正上方一个小正方形,右边一个小正方形,故选:B.点评:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.(3分)(2015?贵港)下列因式分解错误的是()A.2a﹣2b=2(a﹣b)B.x2﹣9=(x+3)(x﹣3)C.a2+4a﹣4=(a+2)2D.﹣x2﹣x+2=﹣(x﹣1)(x+2)考点:因式分解-运用公式法;因式分解-提公因式法;因式分解-十字相乘法等.分析:根据公式法分解因式的特点判断,然后利用排除法求解.解答:解:A、2a﹣2b=2(a﹣b),正确;B、x2﹣9=(x+3)(x﹣3),正确;C、a2+4a﹣4不能因式分解,错误;D、﹣x2﹣x+2=﹣(x﹣1)(x+2),正确;故选C.点评:本题主要考查了因式分解,关键是对于完全平方公式和平方差公式的理解.5.(3分)(2015?贵港)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:关于原点对称的点的坐标.分析:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,则m=2且n=﹣3,从而得出点M(m,n)所在的象限.解答:解:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5∴点M(m,n)在第一象限,故选A.点评:本题考查了平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.6.(3分)(2015?贵港)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a 的最大值为()A.﹣1 B.0C.1D.2考点:根的判别式;一元二次方程的定义.分析:由关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则a﹣1≠0,且△≥0,即△=(﹣2)2﹣8(a﹣1)=12﹣8a≥0,解不等式得到a的取值范围,最后确定a的最大整数值.解答:解:∵关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,∴△=(﹣2)2﹣8(a﹣1)=12﹣8a≥0且a﹣1≠0,∴a≤且a≠1,∴整数a的最大值为0.故选:B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解.7.(3分)(2015?贵港)下列命题中,属于真命题的是()A.三点确定一个圆B.圆内接四边形对角互余C.若a2=b2,则a=b D.若=,则a=b考点:命题与定理.分析:根据确定圆的条件对A进行判断;根据圆内接四边形的性质对B进行判断;根据a2=b2,得出两数相等或相反对C进行判断;根据立方根对D进行判断.解答:解:A、任意不共线的三点确定一个圆,所以错误;B、圆的内接四边形的对角互补,错误;C、若a2=b2,则a=b或a=﹣b,错误;D、若=,则a=b,正确;故选D.点评:本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.8.(3分)(2015?贵港)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.B.C.D.考点:概率公式;中心对称图形.专题:计算题.分析:根据中心对称图形的定义得到平行四边形、菱形和正六边形是中心对称图形,于是利用概率公式可计算出抽到的图形属于中心对称图形的概率.解答:解:这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=.故选C.点评:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了中心对称图形.9.(3分)(2015?贵港)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF 的平分线与CD相交于点N.若∠1=63°,则∠2=()A.64°B.63°C.60°D.54°考点:平行线的性质.分析:先根据平行线的性质求出∠BEN的度数,再由角平分线的定义得出∠BEF的度数,根据平行线的性质即可得出∠2的度数.解答:解:∵AB∥CD,∠1=63°,∴∠BEN=∠1=63°.∵EN平分∠BEF,∴∠BEF=2∠BEN=126°,∴∠2=180°﹣∠BEF=180°﹣126°=54°.故选D.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等;两直线平行,同旁内角互补.也考查了角平分线定义.10.(3分)(2015?贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0B.1C.2D.3考点:点与圆的位置关系;三角形中位线定理;轨迹.专题:计算题.分析:取OP的中点N,连结MN,OQ,如图可判断MN为△POQ的中位线,则MN=OQ=1,则点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1.解答:解:取OP的中点N,连结MN,OQ,如图,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,在△OMN中,1<OM<3,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.11.(3分)(2015?贵港)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2,则x的取值范围是()A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>3考点:二次函数与不等式(组).分析:由二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),然后观察图象,即可求得答案.解答:解:∵二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),∴由图象得:若0<y1<y2,则x的取值范围是:2<x<3.故选C.点评:此题考查了二次函数与不等式的关系.注意掌握数形结合思想的应用是关键.12.(3分)(2015?贵港)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=S△ABF,其中正确的结论有()A.5个B.4个C.3个D.2个考点:相似三角形的判定与性质;矩形的性质.分析:①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②由AE=AD=BC,又AD∥BC,所以,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④而CD与AD的大小不知道,于是tan∠CAD的值无法判断,故④错误;⑤根据△AEF∽△CBF得到,求出S△AEF=S△ABF,S△ABF=S矩形ABCD S=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,即可得到S四边形四边形CDEFCDEF=S△ABF,故⑤正确.解答:解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴=,∴CF=2AF,故②正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正确;∵tan∠CAD=,而CD与AD的大小不知道,∴tan∠CAD的值无法判断,故④错误;∵△AEF∽△CBF,∴,∴S△AEF=S△ABF,S△ABF=S矩形ABCD∵S△ABE=S矩形ABCD,S△ACD=S矩形ABCD,∴S△AEF=S四边形ABCD,又∵S四边形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,∴S四边形CDEF=S△ABF,故⑤正确;故选B.点评:本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2015?贵港)若在实数范围内有意义,则x的取值范围是x≥﹣2.考点:二次根式有意义的条件.分析:根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.解答:解:∵二次根式在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.点评:此题主要考查了二次根式中被开方数的取值范围,关键把握二次根式中的被开方数是非负数.14.(3分)(2015?贵港)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 6.5×10﹣6.考点:科学记数法—表示较小的数.分析:根据科学记数法和负整数指数的意义求解.解答:解:0.0000065=6.5×10﹣6.故答案为6.5×10﹣6.点评:本题考查了科学记数法﹣表示较小的数,关键是用a×10n(1≤a<10,n为负整数)表示较小的数.15.(3分)(2015?贵港)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频数是0.2,则第六组的频数是5.考点:频数与频率.分析:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数.解答:解:∵一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第五组的频数是0.2×50=10,∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.故答案为:5.点评:此题考查频数与频率问题,关键是利用频数、频率和样本容量三者之间的关系进行分析.16.(3分)(2015?贵港)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为30°.考点:全等三角形的判定与性质;等腰三角形的性质;正方形的性质.分析:由正方形和等边三角形的性质得出∠ADE=∠BCE=150°,AD=DE=BC=CE,得出∠DEA=∠CEB=15°,即可得出∠AEB的度数.解答:解:∵四边形ABCD是正方形,∴∠BCD=∠ADC=90°,AD=BC=DC,∵△CDE是等边三角形,∴∠EDC=∠ECD=∠DEC=60°,DE=DC=CE,∴∠ADE=∠BCE=90°+60°=150°,AD=DE=BC=CE,∴∠DEA=∠CEB=(180°﹣150°)=15°,∴∠AEB=60°﹣15°﹣15°=30°;故答案为:30°.点评:本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.17.(3分)(2015?贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为15π.考点:圆锥的计算.分析:根据已知和勾股定理求出AB的长,根据扇形面积公式求出侧面展开图的面积.解答:解:∵OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6π×5=15π.故答案为:15π.点评:本题考查的是圆锥的计算,理解圆锥的侧面展开图是扇形,掌握扇形的面积的计算公式是解题的关键.18.(3分)(2015?贵港)如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a2015= 2.考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.专题:规律型.分析:首先根据a1=﹣1,求出a2=2,a3=,a4=﹣1,a5=2,…,所以a1,a2,a3,a4,a5,…,每3个数一个循环,分别是﹣1、、2;然后用2015除以3,根据商和余数的情况,判断出a2015是第几个循环的第几个数,进而求出它的值是多少即可.解答:解:∵a1=﹣1,∴B1的坐标是(﹣1,1),∴A2的坐标是(2,1),即a2=2,∵a2=2,∴B2的坐标是(2,﹣),∴A3的坐标是(,﹣),即a3=,∵a3=,∴B3的坐标是(,﹣2),∴A4的坐标是(﹣1,﹣2),即a4=﹣1,∵a4=﹣1,∴B4的坐标是(﹣1,1),∴A5的坐标是(2,1),即a5=2,…,∴a1,a2,a3,a4,a5,…,每3个数一个循环,分别是﹣1、、2,∵2015÷3=671…2,∴a2015是第672个循环的第2个数,∴a2015=2.故答案为:2.点评:(1)此题主要考查了反比例函数图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.(2)此题还考查了一次函数图象上的点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.三、解答题(本大题共8小题,满分66分,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2015?贵港)(1)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°;(2)解不等式组,并在数轴上表示不等式组的解集.考点:实数的运算;零指数幂;负整数指数幂;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.分析:(1)根据负整数指数幂、零指数幂、绝对值、特殊角的三角函数值四个考点进行计算结果即可;(2)先解每一个不等式,再把解集画在数轴上即可.解答:解:(1)原式=﹣+1+﹣2﹣2×=+﹣2﹣=﹣;(2),解①得x<1,解②得x≥﹣1,把解集表示在数轴上为:,不等式组的解集为﹣1≤x<1.点评:本题考查实数的综合运算能力,以及不等式组的解集,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(5分)(2015?贵港)如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C (4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.考点:作图-旋转变换;两条直线相交或平行问题;作图-平移变换.分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据旋转角度,旋转方向,分别找到A、B、C的对应点,顺次连接可得△A2B2C2;(3)由图形可知交点坐标;解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由图形可知:交点坐标为(﹣1,﹣4).点评:此题主要考查了平移变换以及旋转变换,得出对应点位置是解题关键.21.(7分)(2015?贵港)如图,一次函数y=x+b的图象与反比例函数y=的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA.(1)求一次函数和反比例函数的解析式;(2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)把C(﹣1,0)代入y=x+b,求出b的值,得到一次函数的解析式;再求出B 点坐标,然后将B点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)先将反比例函数与一次函数的解析式联立,求出A点坐标,再分①点P在x轴上;②点P在y轴上;两种情况进行讨论.解答:解:(1)∵一次函数y=x+b的图象与x轴交于点C(﹣1,0),∴﹣1+b=0,解得b=1,∴一次函数的解析式为y=x+1,∵一次函数y=x+1的图象过点B(﹣2,n),∴n=﹣2+1=﹣1,∴B(﹣2,﹣1).∵反比例函数y=的图象过点B(﹣2,﹣1),∴k=﹣2×(﹣1)=2,∴反比例函数的解析式为y=;(2)由,解得,或,∵B(﹣2,﹣1),∴A(1,2).分两种情况:①如果点P在x轴上,设点P的坐标为(x,0),∵PA=OA,∴(x﹣1)2+22=12+22,解得x1=2,x2=0(不合题意舍去),∴点P的坐标为(2,0);②如果点P在y轴上,设点P的坐标为(0,y),∵PA=OA,∴12+(y﹣2)2=12+22,解得y1=4,y2=0(不合题意舍去),∴点P的坐标为(0,4);综上所述,所求点P的坐标为(2,0)或(0,4).点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.利用待定系数法正确求出反比例函数与一次函数的解析式是解题的关键.22.(8分)(2015?贵港)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为54°;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.考点:条形统计图;扇形统计图;加权平均数;方差.分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;(4)根据方差的意义即可做出评价.解答:解:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20﹣6﹣3﹣6=5,统计图补充如下:(3)20﹣1﹣7﹣8=4,=85;(4)∵S甲2<S乙2,∴甲班20同名同学的成绩比较整齐.点评:本题主要考查的是统计图和统计表的应用,属于基础题目,解答本题需要同学们,数量掌握方差的意义、加权平均数的计算公式以及频数、百分比、数据总数之间的关系.23.(8分)(2015?贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?考点:分式方程的应用.分析:今年一月份生产量为:120(1+m%);二月份生产量:120(1+m%)+50;根据“二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍”列出方程并解答.解答:解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+.根据题意得:,解得:m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m的值是25.点评:本题主要考查的是分式方程的应用,表示出一月份和二月份的生产效率是解题的关键.24.(8分)(2015?贵港)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.考点:切线的性质;菱形的判定;弧长的计算.专题:计算题.分析:(1)连接OB,由E为OD中点,得到OE等于OA的一半,在直角三角形AOE中,得出∠OAB=30°,进而求出∠AOE与∠AOB的度数,设OA=x,利用勾股定理求出x的值,确定出圆的半径,利用弧长公式即可求出的长;(2)由第一问得到∠BAM=∠BMA,利用等角对等边得到AB=MB,利用SAS得到三角形OCM与三角形OBM全等,利用全等三角形对应边相等得到CM=BM,等量代换得到CM=AB,再利用全等三角形对应角相等及等量代换得到一对内错角相等,进而确定出CM与AB平行,利用一组对边平行且相等的四边形为平行四边形得到ABMC为平行四边形,最后由邻边相等的平行四边形为菱形即可得证.解答:(1)解:∵OA=OB,E为AB的中点,∴∠AOE=∠BOE,OE⊥AB,∵OE⊥AB,E为OD中点,∴OE=OD=OA,∴在Rt△AOE中,∠OAB=30°,∠AOE=60°,∠AOB=120°,设OA=x,则OE=x,AE=x,∵AB=4,∴AB=2AE=x=4,解得:x=4,则的长l==;(2)证明:由(1)得∠OAB=∠OBA=30°,∠BOM=∠COM=60°,∠AMB=30°,∴∠BAM=∠BMA=30°,∴AB=BM,∵BM为圆O的切线,∴OB⊥BM,在△COM和△BOM中,,∴△COM≌△BOM(SAS),∴CM=BM,∠CMO=∠BMO=30°,∴CM=AB,∠CMO=∠MAB,∴CM∥AB,∴四边形ABMC为菱形.点评:此题考查了切线的性质,菱形的判断,全等三角形的判定与性质,以及弧长公式,熟练掌握切线的性质是解本题的关键.25.(10分)(2015?贵港)如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y 轴交于点C(0,3),其对称轴I为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴I上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.考点:二次函数综合题.分析:(1)将已知点的坐标代入已知的抛物线的解析式,利用待定系数法确定抛物线的解析式即可;(2)①首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PE=OA,从而得到方程求得x的值即可求得点P的坐标;②用分割法将四边形的面积S四边形BCPA=S△OBC+S△OAC,得到二次函数,求得最值即可.解答:解:(1)∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1,∴,解得:.∴二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4);(2)令y=﹣x2﹣2x+3=0,解得x=﹣3或x=1,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在y=﹣x2﹣2x+3上,∴设点P(x,﹣x2﹣2x+3)①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD即y=﹣x2﹣2x+3=2,解得x=﹣1(舍去)或x=﹣﹣1,∴点P(﹣﹣1,2);②∵S四边形BCPA=S△OBC+S△OAC=2+S△APC∵S△AOC=,S△OCP=x,S△OAP=?3?|y P|=﹣x2﹣3x+∴S△APC=S△OAP+S△OCP﹣S△AOC=x+(﹣x2﹣3x+)﹣=﹣x2﹣x=﹣(x﹣)2+,∴当x=﹣时,S△ACP最大值=,此时M(﹣,﹣),。
2023年广西贵港中考数学真题及答案

2023年广西贵港中考数学真题及答案(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡.......一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.若零下2摄氏度记为2C -︒,则零上2摄氏度记为()A.2C -︒B.0C ︒C.2C +︒D.4C +︒2.下列数学经典图形中,是中心对称图形的是()A. B. C. D.3.若分式11x +有意义,则x 的取值范围是()A.1x ≠-B.0x ≠C.1x ≠D.2x ≠4.如图,点A 、B 、C 在O 上,40C ∠=︒,则AOB ∠的度数是()A.50︒B.60︒C.70︒D.80︒5.2x ≤在数轴上表示正确的是()A . B.C.D.6.甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:2 2.1S =甲,2 3.5S =乙,29S =丙,20.7S =丁,则成绩最稳定的是()A.甲B.乙C.丙D.丁7.如图,一条公路两次转弯后又回到与原来相同的方向,如果130A ∠=︒,那么B ∠的度数是()A.160︒B.150︒C.140︒D.130︒8.下列计算正确的是()A.347a a a += B.347a a a ⋅= C.437a a a ÷= D.()437a a =9.将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线是()A.2(3)4y x =-+ B.2(3)4y x =++C.2(3)4y x =+- D.2(3)4y x =--10.赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28mC.35mD.40m11.据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,依题意可列方程为()A.23.2(1) 3.7x -= B.23.2(1) 3.7x +=C.23.7(1) 3.2x -= D.23.7(1) 3.2x +=12.如图,过(0)k y x x =>的图象上点A ,分别作x 轴,y 轴的平行线交1y x=-的图象于B ,D 两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为1S ,2S ,3S ,4S ,若23452S S S ++=,则k 的值为()A.4B.3C.2D.1二、填空题(本大题共6小题,每小题2分,共12分.)13.=______.14.分解因式:a 2+5a =________________.15.函数3y kx =+的图象经过点()2,5,则k =______.16.某班开展“梦想未来、青春有我”主题班会,第一小组有2位男同学和3位女同学,现从中随机抽取1位同学分享个人感悟,则抽到男同学的概率是______.17.如图,焊接一个钢架,包括底角为37︒的等腰三角形外框和3m 高的支柱,则共需钢材约______m(结果取整数).(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)18.如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为______.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.计算:2(1)(4)2(75)-⨯-+÷-.20.解分式方程:211x x=-.21.如图,在ABC 中,30A ∠=︒,90B Ð=°.(1)在斜边AC 上求作线段AO ,使AO BC =,连接OB ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)若2OB =,求AB 的长.22.4月24日是中国航天日,为激发青少年崇尚科学、探索未知的热情,航阳中学开展了“航空航天”知识问答系列活动.为了解活动效果,从七、八年级学生的知识问答成绩中,各随机抽取20名学生的成绩进行统计分析(6分及6分以上为合格),数据整理如下:学生成绩统计表七年级八年级平均数7.557.55中位数8c 众数a 7合格率b85%根据以上信息,解答下列问题:(1)写出统计表中a ,b ,c 的值;(2)若该校八年级有600名学生,请估计该校八年级学生成绩合格的人数;(3)从中位数和众数中任选其一,说明其在本题中的实际意义.23.如图,PO 平分APD ∠,PA 与O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是O 的切线;(2)若O 的半径为4,5OC =,求PA 的长.24.如图,ABC 是边长为4的等边三角形,点D ,E ,F 分别在边AB ,BC ,CA 上运动,满足AD BE CF ==.(1)求证:ADF BED ≌;(2)设AD 的长为x ,DEF 的面积为y ,求y 关于x 的函数解析式;(3)结合(2)所得的函数,描述DEF 的面积随AD 的增大如何变化.25.【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:()0()m m l M a y +⋅=⋅+.其中秤盘质量0m 克,重物质量m 克,秤砣质量M 克,秤纽与秤盘的水平距离为l 厘米,秤纽与零刻线的水平距离为a 厘米,秤砣与零刻线的水平距离为y 厘米.【方案设计】目标:设计简易杆秤.设定010m =,50M =,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.任务一:确定l 和a 的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l ,a 的方程;(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l ,a 的方程;(3)根据(1)和(2)所列方程,求出l 和a 的值.任务二:确定刻线的位置.(4)根据任务一,求y 关于m 的函数解析式;(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.26.【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD 对折,使AD 与BC 重合,展平纸片,得到折痕EF ;折叠纸片,使点B 落在EF 上,并使折痕经过点A ,得到折痕AM ,点B ,E 的对应点分别为B ',E ',展平纸片,连接AB ',BB ',BE '.请完成:(1)观察图1中1∠,2∠和3∠,试猜想这三个角的大小关系....;(2)证明(1)中的猜想;【类比操作】如图2,N 为矩形纸片ABCD 的边AD 上的一点,连接BN ,在AB 上取一点P ,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ',P ',展平纸片,连接,P B ''.请完成:∠的一条三等分线.(3)证明BB'是NBC参考答案一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】A【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】B【11题答案】【答案】B【12题答案】【答案】C二、填空题(本大题共6小题,每小题2分,共12分.)【13题答案】【答案】3【14题答案】【答案】a (a+5)【15题答案】【答案】1【16题答案】【答案】25##0.4【17题答案】【答案】21【18题答案】【答案】三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)【19题答案】【答案】6【20题答案】【答案】=1x -【21题答案】【答案】(1)图见详解(2)AB =【22题答案】【答案】(1)8a =,80%b =,7.5c =(2)510人(3)用中位数的特征可知七,八年级学生成绩的集中趋势,表示了七,八年级学生成绩数据的中等水平.【23题答案】【答案】(1)见解析(2)12AP =【24题答案】【答案】(1)见详解(2)24y x =-+(3)当24x <<时,DEF 的面积随AD 的增大而增大,当02x <<时,DEF 的面积随AD 的增大而减小【25题答案】【答案】(1)5l a=(2)1015250l a -=(3) 2.5,0.5l a ==(4)120y m =(5)相邻刻线间的距离为5厘米【26题答案】【答案】(1)123∠=∠=∠(2)见详解(3)见详解。
中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式考点1二次根式一、单选题1.(2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解∶∵160020232025<<.即4045<,40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.2.(2023年江苏省无锡市中考数学真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.3=,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2023年重庆市中考数学真题(A卷)的值应在()A .7和8之间B .8和9之间C .9和10之间D .10和11之间【答案】B【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.4.(2019·广东·的结果是()A .4-B .4C .4±D .2【答案】B【分析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.5.(2020·广西贵港·在实数范围内有意义,则实数x 的取值范围是()A .1x <-B .1x ≥-C .0x ≥D .1x ≥【答案】B【分析】根据二次根式的被开方数为非负数即可得出的取值范围.∴x+1≥0∴x≥﹣1故选:B【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.6.(2020·山东聊城·÷).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.÷==1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.(2023年辽宁省大连市中考数学真题)下列计算正确的是()A.0=B.+=C=D)26=-【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=C.=D.)26=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.8.(2021·广东·统考中考真题)若0a =,则ab =()AB .92C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∵0a ≥0≥,且0a =∴0a =0==即0a =,且320a b -=∴a =b∴92ab ==故选:B .【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.9.(2022·河北·统考中考真题)下列正确的是()A23=+B 23=⨯CD 0.7=【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;=⨯,故正确;23=≠≠,故错误;0.7故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(2023()A.点P B.点Q C.点R D.点S【答案】B<<【详解】解:∵479<<,<<23Q,故选:B.11.(2023年河北省中考数学真题)若a b===()A.2B.4C D【答案】A【分析】把a b【详解】解:∵a b==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.12.(2019·四川资阳·统考中考真题)设x=x的取值范围是()A.23x<<B.34x<<C.45x<<D.无法确定【答案】B【分析】根据无理数的估计解答即可.【详解】解:∵91516<<,∴34<<,故选B.【点睛】此题考查估算无理数的大小,关键是根据无理数的估计解答.13.(2021·广东·统考中考真题)设6a,小数部分为b,则(2a b+的值是()A.6B.C.12D.【答案】A的整数部分可确定a的值,进而确定b的值,然后将a与b的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<<,∴62a=,∴小数部分624b==∴(((22244416106a b+=⨯+-=+-=-=.故选:A.【点睛】本题考查了二次根式的运算,正确确定6a与小数部分b的值是解题关键.二、填空题14.(2019·江苏苏州·x的取值范围为.【答案】6x≥【分析】根据根式有意义的条件,得到不等式,解出不等式即可.-60x≥,解出得到6x≥.【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键.15.(2020·广西·=.【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.16.(2021·天津·统考中考真题)计算1)的结果等于.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题的关键.17.(2023年湖北省武汉市数学真题)写出一个小于4的正无理数是.【分析】根据无理数估算的方法求解即可.<4<..【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.18.(2023x 的取值范围是.【答案】13x ≥-【分析】根据二次根式有意义的条件得到130x +≥,解不等式即可得到答案.∴130x +≥,解得13x ≥-,故答案为:13x ≥-【点睛】此题考查了二次根式有意义的条件,熟知被开方式为非负数是解题的关键.19.(2019·河南·12--==.【答案】112【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.12--122=-112=.故答案为11 2.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.20.(2021·安徽·统考中考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1-,它介于整数n和1n+之间,则n的值是.【答案】11即可完成求解.2.236≈;1 1.236≈;因为1.236介于整数1和2之间,所以1n=;故答案为:1.分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.21.(20231+=.【答案】3【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.22.(2023年上海市中考数学真题)已知关于x2=,则x=【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.23.(2023年黑龙江省绥化市中考数学真题)若式子x有意义,则x 的取值范围是.【答案】5x ≥-且0x ≠/0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.24.(2023年黑龙江省齐齐哈尔市中考数学真题)在函数12y x +-中,自变量x 的取值范围是.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x ->-≠,即可求解.【详解】解:依题意,10,20x x ->-≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.三、解答题25.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -21xx-),其中x【答案】1x x -,1+2【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式=(x−1)÷221x x x-+()()211xx x =-⋅-1x x =-当x +1时,12=+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.26.(2022·福建·统考中考真题)先化简,再求值:2111aa a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -.【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案.【详解】解:原式()()111a a a a a+-+=÷()()111a a a a a +=⋅+-11a =-.当1a =时,原式2=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.27.(2023年安徽中考数学真题)先化简,再求值:2211x x x +++,其中1x =.【答案】1x +【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解:2211x x x +++()211x x +=+1x =+,当1x =-时,∴原式11+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.28.(20232133-⎛⎫- ⎪⎝⎭【答案】6-【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=-+6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.29.(2023年吉林省长春市中考数学真题)先化简.再求值:2(1)(1)a a a ++-,其中3a =.【答案】31a +1+【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.30.(2023年内蒙古通辽市中考数学真题)计算:21tan 453-⎛⎫+︒-⎪⎝⎭【答案】0【分析】根据负整数次幂、特殊角的三角函数值、算术平方根化简,然后在计算即可.【详解】解:21tan 453-⎛⎫+︒-⎪⎝⎭9110=+-,0=.【点睛】本题主要考查了负整数次幂、特殊角的三角函数值、算术平方根等知识点,掌握基本的运算法则是解答本题的关键.31.(2019·河南·统考中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭322x x x-=⋅-3x=,当x ===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.32.(2023年辽宁省营口市中考数学真题)先化简,再求值:524223m m m m-⎛⎫++⋅⎪--⎝⎭,其中tan 45m =︒.【答案】26--m ,原式16=-【分析】先根据分式的混合计算法则化简,然后根据特殊角三角函数值和二次根式的性质求出m 的值,最后代值计算即可.【详解】解:524223m m m m-⎛⎫++⋅⎪--⎝⎭()22245223m m m m m-⎛⎫-=-⋅⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵tan 45m =︒,∴415m =+=,∴原式25610616=-⨯-=--=-.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,化简二次根式等等,正确计算是解题的关键.33.(2023·重庆九龙坡·的值应在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】A【分析】根据二次根式的乘法进行计算,以及估算无理数的大小的方法解答即可.=6=∵91416<<,∴34<,∴43-<<-,∴263<<,故选:A .【点睛】本题考查了估算无理数的大小和二次根式的运算.解题的关键是掌握二次根式的运算方法,以及估算无理数的大小的方法.34.(2023·辽宁丹东·统考二模)在函数y =x 的取值范围是()A .12x -<≤B .21x -<≤C .12x ≤≤D .12x <≤【答案】D【分析】根据函数有意义的条件得到2010x x -≥⎧⎨->⎩,解不等式组即可得到自变量x 的取值范围.【详解】解:由题意得2010x x -≥⎧⎨->⎩,解不等式组得12x <≤,故选:D .【点睛】此题考查了自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.35.(2023·安徽蚌埠·统考三模)下列运算正确的是()A 3=B .()3328a a -=-C =D .112235+=【答案】B【分析】根据二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则依次判断即可得出答案.【详解】解:A 333==B .()3328a a -=-,故此选项符合题意;CD .11522365+=≠,故此选项不符合题意.故选:B .【点睛】本题考查二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则.掌握相应的运算法则和性质是解题的关键.36.(2023·河北沧州·校考模拟预测)下列运算中,正确的是().A3=±B 2=C 2=D 8=-【答案】C【分析】利用二次根式的化简的法则对各项进行运算即可.【详解】解答:解:A 3=,故A 不符合题意;B 2=-,故B 不符合题意;C 2=,故C 符合题意;D 8=,故D 不符合题意;故选:C .【点睛】本题主要考查二次根式的化简,解答的关键是对相应的运算法则的掌握.37.(2023·四川泸州·四川省泸县第一中学校考三模)实数2的平方根为()A .2B .2±C D .【答案】D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是.故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.38.(2023·西南大学附中校考三模)估计(3-)A .0和1之间B .2和3之间C .3和4之间D .4和5之间【答案】A【分析】由题意知(34-,由1.4 1.5=<<=,可得4.2 4.5<<,0.240.5<<,然后判断作答即可.【详解】解:(34-⨯,∵1.4 1.5=<<=,∴4.2 4.5<<,∴0.240.5<<,∴估算(3-0和1之间,故选:A .39.(2023·河北石家庄·校联考一模)下列计算正确的是()A =B1=-C =D 23=【答案】C【分析】根据二次根式加法、二次根式减法、二次根式乘法、二次根式除法分别进行判断即可.【详解】解:AB 0-=,故选项错误,不符合题意;C =D 1=,故选项错误,不符合题意.故选:C .【点睛】此题考查了二次根式的加法、减法、乘法、除法,熟练掌握运算法则是解题的关键.40.(2023·江苏无锡·校考二模)函数y x的取值范围是()A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤【答案】C【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数x 50x 5-≥⇒≥.故选C.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.41.(2023·湖南长沙·校联考二模)4的算术平方根是()A .2B .2±C .8D .16【答案】A【分析】如果一个数x 的平方等于(0)a a ≥,那么这个数x 叫做a 的平方根,可以表示为平方根叫做a 的算术平方根.正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.【详解】解:42=,故选:A .【点睛】本题考查算术平方根的定义,明确平方根与算术平方根的区别与联系是本题的关键.42.(2023·重庆九龙坡·重庆市育才中学校考一模)x)A .0B .2C .3D .5【答案】D【分析】根据二次根式有意义的条件进行求解即可.∴40x -≥,即4x ≥,∴四个选项中只有D 选项中的5符合题意,故选:D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零是解题的关键.43.(2023·甘肃平凉·的结果是.【答案】2【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.44.(2021·黑龙江大庆·=【答案】4【分析】先算4(2)-,再开根即可.==4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.45.(2023·广东茂名·校考一模)已知实数x,y |4|0y -=,则1x y -=⎛⎫⎪⎝⎭.【答案】2【分析】根据算术平方根的非负性,绝对值的非负性得出24x y ==,,进而根据负整数指数幂进行计算即可求解.40y -=0≥,40y -≥,∴20x -=,40y -=,∴24x y ==,,∴11112422x y ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭===.故答案为:2.【点睛】本题主要考查了算术平方根和绝对值的非负性、负整数次幂等知识点,根据非负性正确求得x 、y 的值是解答本题的关键.46.(2023·福建福州·校考二模)已知2a =2b =22a b ab -的值等于.【答案】【分析】先求出a b -=1ab =,再由()22a b ab ab a b -=-进行求解即可.【详解】解:∵2a =2b =∴22a b -=++=((22431ab =+⨯-=-=,∴22a b ab -()ab a b =-1=⨯=故答案为:【点睛】本题主要考查了二次根式的混合运算、求代数式的值,正确得到a b -=1ab =是解题的关键47.(2023·山东聊城·x 的取值范围是.【答案】12x ≥【分析】根据二次根式有意义的条件可得210x -≥,即可.【详解】解:由题意得:210x -≥,解得:12x ≥,故答案为:12x ≥.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.48.(2023·安徽滁州·校考模拟预测)计算)11-的结果等于.【答案】22【分析】直接利用平方差公式进行简便运算即可.【详解】解:)2211123122=-=-=,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.49.(2023·陕西西安·校考模拟预测)-64的立方根是.【答案】-4【分析】直接利用立方根的意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.50.(2023·云南昭通·x 的取值范围是.【答案】x>8【分析】由分式的分母不等于零和二次根式的被开方数是非负数得到x﹣8>0.【详解】解:由题意,得x﹣8>0,解得x>8.故答案是:x>8.【点睛】考查了分式有意义的条件和二次根式有意义的条件,注意,二次根式在分母上,所以不能取到0.51.(2023·四川泸州·四川省泸县第一中学校考三模)函数y=x的取值范围是.【答案】x>3【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.x30x3x>3x30x3-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩.52.(2023·河南洛阳·统考一模)计算:22-=.【答案】74-【分析】先计算22-,再算减法.【详解】解:原式17244=-=-.故答案为:74-.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键.53.(2023·安徽蚌埠·统考三模)计算:212022--=.【答案】2023【分析】根据有理数的乘方,二次根根式的性质,化简绝对值进行计算即可求解.【详解】解:212022--=122022-++2023=,故答案为:2023.【点睛】本题考查了有理数的乘方,二次根根式的性质,化简绝对值,正确的计算是解题的关键.54.(2022·新疆·x的取值范围是.【答案】x≥3【分析】直接利用二次根式有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x—3≥0,解得:x≥3,故答案为:x≥3【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.55.(2023·黑龙江哈尔滨·统考三模)计算=.【答案】【分析】先根据二次根式的性质化简,然后根据二次根式的加减法则求解即可.【详解】解:=-2=-=故答案为:【点睛】本题主要考查了二次根式的性质、二次根式的加减运算等知识点,灵活运用二次根式的的性质化简是解题的关键.x的取值范围是.56.(2023·云南昆明·一模)要使式子3有意义,x≥【答案】5【分析】二次根式中的被开方数是非负数,依此即可求解.x-≥,【详解】解:依题意有:50x≥.解得5x≥.故答案为:5【点睛】本题考查了二次根式有意义的条件,关键是熟悉二次根式中的被开方数是非负数的知识点.57.(云南省丽江市华坪县2020-2021=.【答案】6【分析】利用二次根式的乘法法则进行求解即可.==.6故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.58.(2023·山西·模拟预测)计算:=.【答案】【分析】先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:3=⨯=+=故答案为:【点睛】本题主要考查了二次根式的加减计算,二次根式的化简,正确计算是解题的关键.59.(2023·重庆沙坪坝·重庆八中校考模拟预测)如果2y=+,那么yx的值是.【答案】225【分析】根据二次根式有意义的条件,求出,x y的值,进而求出y x的值即可.【详解】解:∵2y=,∴150,150x x -≥-≥,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.【点睛】本题考查二次根式有意义的条件,代数式求值.熟练掌握二次根式的被开方数是非负数,是解题的关键.60.(江西省崇仁县第二中学2016-2017学年八年级上学期第二次月考数学试题)计算:=【答案】61.(2015年初中毕业升学考试(山东滨州卷)数学(带解析))计算的结果为.【答案】﹣1【分析】此题用平方差公式计算即可.【详解】22=-23=-1=-62.(2023·黑龙江哈尔滨·=.【答案】3【分析】根据二次根式的化简方法和运算法则进行计算.【详解】解:原式33==【点睛】本题考查二次根式的计算,在化简二次根式的基础上再把同类二次根式合并.63.(福建省永春县第一中学2017【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.64.(2023·广东茂名·校考一模)先化简,再求值:2121211x x x x +⎛⎫÷+ ⎪-+-⎝⎭其中1x +.【答案】11x -;2【分析】先通分算括号内的,把除化为乘,再约分,化简后将x 的值代入计算.【详解】解:212(1)211x x x x +÷+-+-211(1)1x x x x ++=÷--211(1)1x x x x +-=⋅-+11x =-,当1x =+时,原式=2=.【点睛】本题考查了分式化简求值,掌握分式的基本性质,将分式通分和约分进行化简是关键.65.(2023·四川泸州·011+()3-23-【答案】【分析】根据实数的混合运算法则即可求解.011+()3-23-=(1+32-=1+32-+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及运算法则.66.(2023·安徽六安·1+【分析】先计算算术平方根.化简绝对值,求解立方根,再合并即可.1+=+-413=【点睛】本题考查是算术平方根的含义,化简绝对值,求解立方根,实数的混合运算,掌握“算术平方根与立方根的含义”是解本题的关键.67.(2022·新疆·统考中考真题)计算:20-+(2)|(3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=++=【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是=.解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a。
秋季七年级数学上册期中试题

秋季七年级数学上册期中试题大家学习好期中的知识之后肯定可以和学习好期末的知识,下面小编就给大家整理一下七年级数学,希望大家来收藏一下哦秋七年级数学上册期中试题一、选择题(每小题3分,共30分)1.(贵港中考)如图是一个空心圆柱体,从左边看得到的图形是(B)2.(天水中考)若x与3互为相反数,则|x+3|等于(A)A.0B.1C.2D.33.单项式-3ay25的系数和次数分别是(A)A.-35和3B.35和3C.-35和2D.35和24.(绥化中考)下列运算正确的是(C)A.3a+2a=5a2B.3a+3b=3abC.2a2bc-a2bc=a2bcD.a5-a2=a35.(潍坊中考)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为(C)A.1×103B.1000×108C.1×1011D.1×10146.一个两位数,十位上的数字是a,个位上的数字是b,如果把十位上的数与个位上的数对调,所得的两位数是(C)A.baB.b+aC.10b+aD.10a+b7.(河北中考)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b-a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0.其中正确的是(C)A.甲乙B.丙丁C.甲丙D.乙丁8.化简-[-(-m+n)]-[+(-m-n)]等于(B)A.2mB.2nC.2m-2nD.-2m-2n9.(达州期中)如图所示的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是(B)10.(德州中考)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为(C)A.121B.362C.364D.729二、填空题(每小题3分,共18分)11.若|x-3|+(y+2)2=0,则x2y的值为-18.12.(达州期中)如果13xa+2y3与-3x3y2b-1是同类项,那么|3a-2b|的值是1.13.某几何体从三个方向看到的图形分别如图,则该几何体的体积为3π.14.如图,在宽为20 m,长为40 m的长方形地面上修建两条宽都是1 m的道路,余下部分种植花草,那么种植花草的面积为741 m2.15.(达州期中)王老师为了帮助班级里家庭困难的x个孩子(x<10),购买了一批课外书,如果给每个家庭困难的孩子发5本,那么剩下4本;如果给每个家庭困难的孩子发6本,那么最后一个孩子只能得到(10-x)本.16.当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于n2+4n.(用含n的代数式表示,n是正整数)三、解答题(共72分)17.(8分)计算下列各题:(1)[1-(1-0.5×13)]×[2-(-3)2];解:-76(2)-14-(1-0.5)×13×[10-(-2)2]-(-1)3.解:-118.(8分)化简:(1)3x2-3(13x2-2x+1)+4;解:2x2+6x+1(2)3a2+4(a2-2a-1)-2(3a2-a+1).解:a2-6a-619.(8分)先化简,再求值:(1)2a+3(a2-b)-2(2a2+a-12b),其中a=13,b=-2;解:389(2)(m-5n+4mn)-2(2m-4n+6mn),其中m-n=4,mn=-3.解:1220.(6分)由一些大小相同的小正方体搭成的几何体的从上面看到的图形,如图所示,其中正方形中的数字表示该位置上的小正方体的个数,请画出该几何体从正面与左面看到的图形.解:从正面看从左面看21.(6分) (达州期中)a与b互为相反数,c与d互为倒数,x的倒数是它本身,求x2-(a+b+cd)x+(a+b)2019+(-cd)2018的值.解:因为a与b互为相反数,c与d互为倒数,x的倒数是它本身,所以a+b=0,cd=1,x=±1,所以原式=x2-x+1,所以当x=1时,原式=1;当x=-1时,原式=322.(7分)(达州期中)王明在计算一个多项式减去2b2-b-5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b-1.据此你能求出这个多项式并算出正确的结果吗?解:根据题意得:(b2+3b-1)+(2b2+b+5)=b2+3b-1+2b2+b+5=3b2+4b+4.即原多项式是3b2+4b+4,所以(3b2+4b+4)-(2b2-b-5)=3b2+4b+4-2b2+b+5=b2+5b+9,即算出正确的结果是b2+5b+923.(8分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示).(2)若x=30,通过计算说明此时按哪种方案购买较为合算?解:(1)40x+3200 3600+36x(2)当x=30时,方案①:40x+3200=4400元,方案②:3600+36x=4680元,因为4400<4680,所以选择方案①购买合算24.(9分)邮递员骑车从邮局出发,先向南骑行2 km,到达A村,继续向南骑行3 km到达B村,然后向北骑行9 km到达C村,最后回到邮局.(1)以邮局为原点,以向北为正方向,用0.5 cm表示1 km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置.(2)C村离A村有多远?(3)邮递员一共骑了多少千米?解:(1)略(2)6 km(3)18 km25.(12分)探究题.用棋子摆成的“T”字形图如图所示:(1)填写下表:图形序号① ② ③ ④ … ⑩每个图案中棋子个数5 8 …(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?) 解:(1)11 14 32(2)3n+2 (3)3n+2=3×20+2=62(个) (4)(5+62)×202=670(个)关于七年级数学上册期中检测卷一、选择题(本大题共10小题,每小题4分,满分40分)1.6的相反数是( )A.-6B.16C.-16D.62.下列各组单项式中,为同类项的是( )A.a3与a2B.12a2与2a2C.2xy与2xD.-3与a3.如果x=1是方程x+2m-5=0的解,那么m的值是( )A.-4B.4C.-2D.25.下列说法正确的是( )A.2不是代数式B.x+13是单项式C.x-32的一次项系数是1D.1是单项式6.下列各组数中,结果相等的是( )A.-12与(-1)2B.233与233C.-|-2|与-(-2)D.(-3)3与-337.当x-y=-3时,代数式-4-x+y的值等于( )A.-1B.7C.-7D.18.某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的售价是( )A.a元B.0.99a元C.1.21a元D.0.81a元10.整理一批图书,由一个人做要40h完成,现计划由一部分人先做4h,然后增加2人与他们一起做8h完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?设安排x人先做4h,下列四个方程中正确的是( )A.4(x+2)40+8x40=1B.4x40+8(x+2)40=1C.4x40+8(x-2)40=1D.4x40+8x40=1二、填空题(本大题共4小题,每小题5分,满分20分)11.2017年安徽人口数量约为5950.05万人,其中城镇人口2674万人,乡村人口占安徽总人口的55.1%.用科学记数法表示数据5950.05万为.12.已知-13a3n-2b2n+3是六次单项式,则n= .13.若方程2x+1=3和2-a-x3=0的解相同,则a的值是.14.对于有理数a,b,规定一种新运算:a⊕b=ab+b,如2⊕3=2×3+3=9.下列结论:①(-3)⊕4=-8;②a⊕b=b⊕a;③方程(x-4)⊕3=6的解为x=5;④(4⊕3)⊕2比4⊕(3⊕2)小8.其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.计算:(1)-32×-29-42÷(-2)3; (2)-34-29+512÷136.四、(本大题共2小题,每小题8分,满分16分)17.已知x,y互为相反数,且|y-3|=0,求2(x3-2y2)-(x-3y)-(x-3y2+2x3)的值.18.已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x 项,求a的值.五、(本大题共2小题,每小题10分,满分20分)19.小明的妈妈在菜市场买回2斤萝卜和1斤排骨,准备做萝卜排骨汤,如图所示是他的爸爸和妈妈的一段对话.小明根据爸爸、妈妈的对话,很快就知道了今天买的萝卜和排骨的单价.请你通过计算分别求出今天萝卜和排骨的单价.20.用长度相等的小火柴棒摆出下列一组图形(图中最小正方形的边长即为一根火柴棒的长).(1)填写下表:图形编号 (1) (2) (3) (4)图形中火柴棒的根数 7(2)照这样的方式摆下去,写出摆第(n)个图形所需火柴棒的根数(用含n的代数式表示,直接写出答案);(3)小丽说:“照这样的方式摆下去,总会有相邻两个图形所用火柴棒的总数恰好等于2018”.你同意她的说法吗?为什么?六、(本题满分12分)21.某大型超市上周日购进新鲜黄瓜1000公斤,进价为每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周内黄瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格与进价比较,单位:元):星期一二三四五六每公斤销售价涨跌(与前一天比较) +0.3 +0.4 -0.5 -0.6 -0.7 +0.1(1)到星期二时,每公斤黄瓜的售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出,不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏,盈亏是多少.七、(本题满分12分)22.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x,y的代数式表示地面总面积;(2)已知客厅面积比卫生间面积大21m2,且地面总面积是卫生间面积的15倍.如果铺1m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?八、(本题满分14分)23.某中学举行数学竞赛,计划用A、B两台复印机复印试卷.如果单独用A机器需要90分钟印完,如果单独用B机器需要60分钟印完,为了保密,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.(1)两台复印机同时复印,共需多少分钟才能印完?(2)若两台复印机同时复印30分钟后,B机器出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机器单独完成剩下的复印任务,会不会影响按时发卷考试?(3)在(2)的问题中,B机器经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?参考答案与解析1.A2.B3.D4.D5.D6.D7.A8.B9.D 10.B11.5.95005×10712.1 13.714.①③④解析:根据题中的新运算得(-3)⊕4=(-3)×4+4=-8,所以①正确;a⊕b=ab+b,b⊕a=ab+a,因为a与b不一定相等,所以②错误;方程整理得3(x-4)+3=6,去括号,得3x-12+3=6,移项、合并同类项,得3x=15,解得x=5,所以③正确;(4⊕3)⊕2=(12+3)⊕2=15⊕2=30+2=32,4⊕(3⊕2)=4⊕(6+2)=4⊕8 =32+8=40,则(4⊕3)⊕2比4⊕(3⊕2)小8,所以④正确.故答案为①③④.15.解:(1)原式=0.(4分) (2)原式=-20.(8分)16.解:(1)x=-165.(4分) (2)x=6,y=-3.(8分)17.解:原式=2x3-4y2-x+3y-x+3y2-2x3=-y2-2x+3y.(4分)因为x,y互为相反数,且|y-3|=0,所以y=3,x=-3.(6分)当x=-3,y=3时,原式=-32-2×(-3)+3×3=6.(8分)18.解:A+B=(3x2-ax+6x-2)+(-3x2+4ax-7)=3x2-ax+6x-2-3x2+4ax-7=(3a+6)x-9.(4分)因为A+B的值不含x项,所以3a+6=0,解得a=-2.(8分)19.解:设上个星期萝卜的单价是x元/斤,排骨的单价是y元/斤,根据题意得2x+y=17,2(1+30%)x+(1+40%)y=23.6,(3分)解得x=1,y=15.(6分)则(1+30%)x=1.3,(1+40%)y=21.(9分)答:今天萝卜的单价是1.3元/斤,排骨的单价是21元/斤.(10分)20.解:(1)12 17 22(3分)(2)摆第(n)个图形所需火柴棒的根数为5n+2.(6分)(3)不同意.(7分)理由如下:假设存在满足题意的整数n,则有5n+2+5(n+1)+2=2018,解得n=200910.此时n不是整数,所以不存在相邻的两个图形所用火柴棒的总数恰好等于2018.(10分)21.解:(1)1.5+0.3+0.4=2.2(元).答:到星期二时,每公斤黄瓜的售价是2.2元.(3分)(2)1.5+0.3+0.4-0.5-0.6-0.7=0.4(元).答:本周最低售价是每公斤0.4元.(7分)(3)周六每公斤黄瓜的售价是0.4+0.1=0.5(元),本周获利为(1000-700)×0.5+935-1000×1.5=-415(元).(11分)答:该超市本周销售黄瓜亏了415元.(12分)22.解:(1)地面总面积为(6x+2y+18)m2.(4分)(2)由题意得6x-2y=21,6x+2y+18=15×2y,解得x=4,y=32.(8分)所以地面总面积为15×2y=15×2×32=45(m2),所以铺地砖的总费用为80×45=3600(元).(11分)答:铺地砖的总费用为3600元.(12分)23.解:(1)设共需x分钟才能印完,根据题意得190+160x=1,解得x=36.答:两台复印机同时复印,共需36分钟才能印完.(4分)(2)设由A机器单独完成剩下的复印任务需要y分钟才能印完,根据题意得190+160×30+y90=1,解得y=15.因为15>13,所以会影响学校按时发卷考试.(9分)(3)设当B机器恢复使用时,两台复印机又共同复印了z分钟印完试卷,根据题意得190+160×30+990+190+160z=1,解得z=2.4.因为9+2.4=11.4<13,所以学校可以按时发卷考试.表达七年级数学上学期期中试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1. 下面几何体的截面图可能是圆的是 ( )A. 正方体B. 圆锥C. 长方体D. 棱柱2. 相反数是最大负整数的数是 ( )A. 1B. -1C. 0D.23. 下列图形经过折叠不能围成棱柱的是( )A B C D4. 已知,则的值为( )A.6B.-4C.-6或4D.6或-45. 数轴上与-3的距离等于2个单位的点表示的数是 ( )A.0和2B. -1和-3C. -1和-5D. -2和26. 有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是( )A. 3B.C.D. -3二、填空题(本大题共6小题,每小题3分,共18分.)7. 比较大小:0________-2 (填“>”“<”或“=”)8. 代数式系数是________,代数式的系数是__ _,次数是_______.9. 某风力发电站每天能发电约74850000度,该数据用科学记数法表示为度.10. 米长的小棒,第1次截去一半,第二次截去剩下的一半,如此截下去,第4次后剩下的小棒长_______________米.11.如果图中的平面展开图折叠成正方体后,相对面上的两个数互为相反数,则=__________.12.观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是三、解答题(本大题共5小题,每小题6分,共30分)13.计算或化简:14. 画出数轴,把下列各数分别在数轴上表示出来,并用“<”连接起来:,2, 0,,,,15. 已知,求代数式的值.16.探索规律:按照如图方式摆放餐桌和椅子.完成问题:1 2 3(1)填写下表:图形编号1 2 3 4 ... 10 (100)图中座位总数6 10 ... (402)(2)照这样的方式摆下去,写出摆第个图形座位的总数;解:第个图形共有座位:个17.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.四、(本大题共3小题,每小题8分,共24分)18.某校分为初中部和高中部,做广播操时,两部分别站两个不同的操场上进行,站队时,做到了整齐化一,高中部排成的是一个规范的长方形方阵,每排40人,站有排;初中部站的方阵更特别,排数和每排人数都是 .⑴试求该校初中部比高中部多多少学生(用含的代数式表示)?⑵当=10,=2时,试求该学校共有多少学生?19.张强在南城某房地产公司买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米),解答下列问题:(1)用含的代数式表示这所住宅的总面积.(2)若铺1平方米地砖平均费用120元,求当=6时,这套住宅铺地砖总费用为多少元?20.如图用一边长为16 cm的正方形纸片,在其四个角上剪掉四个边长相同的小正方形可做成无盖的长方体盒子.若剪掉的小正方形的边长为 cm,做成的无盖长方体盒子的容积为.⑴ 要使做成的长方体盒子底面周长为48 cm,那么剪掉的正方形边长为_ cm;⑵ 用含的式子表示 ;(cm) 1 2 3 4 5()⑶填表:观察表格中的结果,你能得到哪些信息?(写出一条)五、(本大题共2小题,每小题9分,共18分)21.先化简再求值:已知①求A﹣3B ;②若A=﹣1,B= 时,求的值.22.某城市按以下规定收取每月煤气费:用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.例如,甲用户5月份用煤气80立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72(元).(1)设甲用户某月用煤气立方米,用含的代数式表示甲用户该月的煤气费.若,则费用表示为;若,则费用表示为.(2)若甲用户10月份用去煤气90立方米,求甲用户10月份的煤气费是多少元?六、(本大题共12分)23.在学习了有理数的加减法之后,老师讲解了例题-1+2-3+4+……-2017+2018的计算思路为:将两个加数组合在一起作为一组;其和为1,共有1009组,所以结果为+1009.根据这个思路学生改编了下列几题:(1)计算:① 1-2+3-4+……+2017-2018=② 1-3+5-7+……+2017-2019=(2)蚂蚁在数轴的原点O处,第一次向右爬行1个单位,第二次向右爬行2个单位,第三次向左爬行3个单位,第四次向左爬行4个单位,第五次向右爬行5个单位,第六次向右爬行6个单位,第七次向左爬行7个单位……按照这个规律,第1024次爬行后蚂蚁在数轴什么位置?参考答案1-6、BABCCC7、>8、-2 69、7.485×10710、11、-412、53。
贵港中考数学试题及答案

贵港中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 2/3答案:B2. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的面积是多少?A. 12B. 15C. 18D. 20答案:B3. 函数y=2x+3的图象与x轴的交点坐标是?A. (-3/2, 0)B. (3/2, 0)C. (0, 3)D. (0, -3)答案:B4. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 以上都是答案:A5. 一个圆的半径为3,那么它的周长是多少?A. 6πB. 9πC. 12πD. 18π答案:C6. 以下哪个选项是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 正弦曲线答案:B7. 一个长方体的长宽高分别为2,3,4,那么它的体积是多少?A. 24B. 26C. 28D. 30答案:A8. 一个等差数列的首项为2,公差为3,那么它的第5项是多少?A. 17B. 14C. 11D. 8答案:A9. 一个直角三角形的两直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 6C. 7D. 8答案:A10. 函数y=x^2-4x+4的最小值是多少?A. 0B. 1C. 4D. 5答案:A二、填空题(每题3分,共15分)11. 一个数的立方根是它本身,这个数是____。
答案:0或1或-112. 一个等腰直角三角形的斜边长为5,那么它的直角边长是____。
答案:5√2/213. 一个正五边形的内角和是____。
答案:540°14. 一个数的相反数是-3,那么这个数是____。
答案:315. 一个圆的直径为10,那么它的面积是____。
答案:25π三、解答题(每题5分,共55分)16. 已知一个三角形的两边长分别为8和15,求第三边长的取值范围。
答案:第三边长x的取值范围是7 < x < 23。
几何图形初步常考知识点专题备战2023年中考数学考点微专题

考向4.1 几何图形初步常考知识点专题例1、(2021·江苏泰州·中考真题)互不重合的A 、B 、C 三点在同一直线上,已知AC =2a +1,BC =a +4,AB =3a ,这三点的位置关系是( )A .点A 在B 、C 两点之间B .点B 在A 、C 两点之间 C .点C 在A 、B 两点之间D .无法确定解:①当点A 在B 、C 两点之间,则满足BC AC AB =+,即4213a a a +=++, 解得:34a =,符合题意,故选项A 正确; ②点B 在A 、C 两点之间,则满足AC BC AB =+,即2143a a a +=++, 解得:32a =-,不符合题意,故选项B 错误; ③点C 在A 、B 两点之间,则满足AB BC AC =+,即3421a a a =+++,解得:a 无解,不符合题意,故选项C 错误;故选项D 错误; 故选:A .例2、(2021·山东济宁·中考真题)研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.(1)阅读材料:立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.例如,正方体ABCD A B C D ''''-(图1).因为在平面AA C C ''中,//CC AA '',AA '与AB 相交于点A ,所以直线AB 与AA '所成的BAA '∠就是既不相交也不平行的两条直线AB 与CC '所成的角.解决问题如图1,已知正方体ABCD A B C D ''''-,求既不相交也不平行的两条直线BA '与AC 所成角的大小.(2)如图2,M ,N 是正方体相邻两个面上的点.①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是 ; ②在所选正确展开图中,若点M 到AB ,BC 的距离分别是2和5,点N 到BD ,BC 的距离分别是4和3,P 是AB 上一动点,求PM PN +的最小值.解:(1)连接BC ',∵//AC A C '',BA '与A C ''相交与点A ',即既不相交也不平行的两条直线BA '与AC 所成角为BAC ''∠,根据正方体性质可得:A B BC A C ''''==,∴A BC ''△为等边三角形,∴=60BA C ''∠︒,即既不相交也不平行的两条直线BA '与AC 所成角为60︒;(2)①根据正方体展开图可以判断,甲中与原图形中对应点位置不符,乙图形不能拼成正方体,故答案为丙;②如图:作M 关于直线AB 的对称点M ',连接NM ',与AB交于点P ,连接MP ,则PM PN PN PM NM ''+=+=,过点N 作BC 垂线,并延长与M M '交于点E ,∵点M 到BC 的距离是5,点N 到BC 的距离是3,∴8NE =,∵点M 到AB 的距离是2,点N 到BD 的距离是4,∴6EM '=,∴22226810NM EM NE ''=+=+=,故PM PN +最小值为10.【点拨】本题主要考查正方形的性质、正方体的侧面展开图、根据对称关系求最短距离、勾最小时的情况是解题的关键.股定理等知识点,读懂题意,明确PM PN1、《几何初步知识》几何重要的必考点是直线的性质公理、线段公理、垂线段公理、互补、互余的运用,在复习阶段的主要任务是把此知识点与后面的知识综合加以运用上;2、例题1运用了分讨论思想,例题2是线段公理的运用,这此知识点都将在中考中作为常考知识点出现。
(精品中考卷)广西贵港市中考数学真题(解析版)

2022年贵港市初中学业水平考试试卷数学(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间120分钟)注意:答案一律填写在答题卡上,在试卷上作答无效,考试结束将本试卷和答题卡一并交回.第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题都给出标号为A ,B ,C ,D .的四个选项,其中只有一个是正确的,请考生用2B 铅笔在答题卡上将选定的答案标号涂黑)1. 2-倒数是( )A. 2B. 12C. 2-D. 12- 【答案】D【解析】【分析】根据倒数的定义求解即可.【详解】解:-2的倒数是12-,故D 正确. 故选:D .【点睛】本题主要考查了倒数的定义,熟练掌握乘积为1的两个数互为倒数,是解题的关键.2. 一个圆锥如右图所示放置,对于它的三视图,下列说法正确的是( )A. 主视图与俯视图相同B. 主视图与左视图相同C. 左视图与俯视图相同D. 三个视图完全相同【答案】B【解析】【分析】根据三视图的定义即可求解. 【详解】解:主视图为等腰三角形,左视图为等腰三角形,俯视图为有圆心的圆, 故主视图和左视图相同,主视图俯视图和左视图与俯视图都不相同,的故选:B .【点睛】本题考查了几何体的三视图,掌握三视图的定义,会看得出三视图是解题的关键.3. 一组数据3,5,1,4,6,5众数和中位数分别是( )A. 5,4.5B. 4.5,4C. 4,4.5D. 5,5 【答案】A【解析】【分析】把这组数按照从小到大的顺序排列,第3、4两个数的平均数是中位数,在这组数据中出现次数最多的是5,从而得到这组数据的众数.【详解】解:把这组数按照从小到大的顺序排列为:1,3,4,5,5,6,第3、4两个数的平均数是45 4.52+=, 所以中位数是4.5,在这组数据中出现次数最多的是5,即众数是5.故选:A .【点睛】此题属于基础题,考查了确定一组数据的中位数和众数的能力,找中位数时一定要先从小到大或从大到小排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个时,则正中间的数字即为所求,如果是偶数个时则找中间两位数的平均数,熟练掌握相关知识是解题关键.4. 据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm .已知91nm 10m -=,则28nm 用科学记数法表示是( )A. 92810m -⨯B. 92.810m -⨯C. 82.810m -⨯D. 102.810m -⨯【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:∵91nm 10m -=,∴28nm=2.8×10-8m .故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5. 下例计算正确的是( )的A. 22a a -=B. 2222a b a b +=C. 33(2)8a a -=D. ()236a a -=【答案】D【解析】【分析】分别根据合并同类项、单项式除以单项式、同底数幂的乘法、幂的乘方法则进行计算即可求解.【详解】解:A. 2a −a =a ,故原选项计算错误,不符合题意;B. 2222a b a b +≠,不是同类项不能合并,故原选项计算错误,不符合题意;C. 33(2)-8a a -=,故原选项计算错误,不符合题意;D. (-a 3)2=a 6,故原选项计算正确,符合题意.故选:D .【点睛】本题考查了合并同类项、单项式除以单项式、同底数幂的乘法、幂的乘方等运算,熟知运算法则是解题关键.6. 若点(,1)A a -与点(2,)B b 关于y 轴对称,则-a b 的值是( )A. 1-B. 3-C. 1D. 2【答案】A【解析】【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数解答即可.【详解】∵点(,1)A a -与点(2,)B b 关于y 轴对称,∴a =-2,b =-1,∴a -b =-1,故选A .【点睛】本题考查了关于y 轴对称的点坐标的关系,代数式求值,解题的关键在于明确关于y 轴对称的点纵坐标相等,横坐标互为相反数.7. 若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A. 0,2-B. 0,0C. 2-,2-D. 2-,0 【答案】B【解析】【分析】直接把2x =-代入方程,可求出m 的值,再解方程,即可求出另一个根.【详解】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根,把2x =-代入220x x m ++=,则2(2)2(2)0m -+⨯-+=,解得:0m =;∴220x x +=,∴(2)0x x +=,∴12x =-,0x =,∴方程的另一个根是0x =;故选:B【点睛】本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算.8. 下列命题为真命题的是( )a =B. 同位角相等C. 三角形的内心到三边的距离相等D. 正多边形都是中心对称图形【答案】C【解析】【分析】根据判断命题真假的方法即可求解.【详解】解:当0a <a =-,故A 为假命题,故A 选项错误;当两直线平行时,同位角才相等,故B 为假命题,故B 选项错误;三角形的内心为三角形内切圆的圆心,故到三边的距离相等,故C 为真命题,故C 选项正确;三角形不是中心对称图形,故D 为假命题,故D 选项错误,故选:C .【点睛】本题考查了真假命题的判断,熟练掌握其判断方法是解题的关键.9. 如图,⊙O 是ABC 的外接圆,AC 是⊙O 的直径,点P 在⊙O 上,若40ACB ∠=︒,则BPC ∠的度数是( )A. 40︒B. 45︒C. 50︒D. 55︒【答案】C【解析】 【分析】根据圆周角定理得到90ABC ∠=︒,BPC A ∠=∠,然后利用互余计算出∠A 的度数,从而得到BPC ∠的度数.【详解】解:∵AB 是⊙O 的直径,∴90ABC ∠=︒,∴90904050A ACB ∠=︒-∠=︒-︒=︒,∴50BPC A ∠=∠=︒,故选:C .【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10. 如图,某数学兴趣小组测量一棵树CD 的高度,在点A 处测得树顶C 的仰角为45︒,在点B 处测得树顶C 的仰角为60︒,且A ,B ,D 三点在同一直线上,若16m AB =,则这棵树CD 的高度是( )A. 8(3-B. 8(3+C. 6(3D.6(3+【答案】A【解析】【分析】设CD =x ,在Rt △ADC 中,∠A =45°,可得CD =AD =x ,BD =16-x ,在Rt △BCD 中,用∠B 的正切函数值即可求解.【详解】设CD =x ,在Rt △ADC 中,∠A =45°,∴CD =AD =x ,∴BD =16-x ,在Rt △BCD 中,∠B =60°,∴tan CD B BD=,即:16x x=-解得8(3x =,故选A .【点睛】本题考查三角函数,根据直角三角形的边的关系,建立三角函数模型是解题的关键.11. 如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC 的顶点均是格点,则cos BAC ∠的值是( )D. 45【答案】C【解析】【分析】过点C 作AB 的垂线,构造直角三角形,利用勾股定理求解即可.【详解】解:过点C 作AB 的垂线交AB 于一点D ,如图所示,∵每个小正方形的边长为1,∴5AC BC AB ===,设AD x =,则5BD x =-,在Rt ACD △中,222DC AC AD =-,在Rt BCD 中,222DC BC BD =-,∴2210(5)5x x --=-,解得2x =,∴cosADBACAC∠===,故选:C.【点睛】本题考查了解直角三角形,勾股定理等知识,解题的关键是能构造出直角三角形.12. 如图,在边长为1的菱形ABCD中,60ABC∠=︒,动点E在AB边上(与点A、B 均不重合),点F在对角线AC上,CE与BF相交于点G,连接,AG DF,若AF BE=,则下列结论错误的是()A. DF CE= B. 120BGC∠=︒ C. 2AF EG EC=⋅ D. AG的【答案】D【解析】【分析】先证明△BAF≌△DAF≌CBE,△ABC是等边三角形,得DF=CE,判断A项答案正确,由∠GCB+∠GBC=60゜,得∠BGC=120゜,判断B项答案正确,证△BEG∽△CEB得BE CEGE BE=,即可判断C项答案正确,由120BGC∠=︒,BC=1,得点G在以线段BC 为弦的弧BC上,易得当点G在等边△ABC的内心处时,AG取最小值,由勾股定理求得AG,即可判断D项错误.【详解】解:∵四边形ABCD菱形,60ABC∠=︒,∴AB=AD=BC=CD,∠BAC=∠DAC=12∠BAD=12(180)ABC⨯︒-∠=60ABC︒=∠,∴△BAF≌△DAF≌CBE,△ABC是等边三角形,∴DF=CE,故A项答案正确,∠ABF=∠BCE,∵∠ABC=∠ABF+∠CBF=60゜,∴∠GCB+∠GBC=60゜,∴∠BGC=180゜-60゜=180゜-(∠GCB+∠GBC)=120゜,故B项答案正确,∵∠ABF=∠BCE,∠BEG=∠CEB,是∴△BEG ∽△CEB , ∴BE CE GE BE= , ∴2BE GE CE = ,∵AF BE =,∴2AF GE CE = ,故C 项答案正确,∵120BGC ∠=︒,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF AC ⊥,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴2221122AG AG ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 解得AG ,故D 项错误, 故应选:D【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.第Ⅱ卷(非选择题)二、填空题(本大题共6小题)13. 在实数范围内有意义,则实数x 的取值范围是________.【答案】1x ≥-【解析】【分析】二次根式要有意义,则二次根式内的式子为非负数.【详解】解:由题意得:10x +≥,解得1x ≥-,故答案为:1x ≥-.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.14. 因式分解:3a a -=________.【答案】a (a +1)(a -1)【解析】【分析】先找出公因式a ,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:3a a -()2=1a a -(1)(1)a a a =+-故答案为:(1)(1)a a a +-.【点睛】本题考查了用提公因式法分解因式,准确找出公因式是解题的关键. 15. 从3-,2-,2这三个数中任取两个不同的数,作为点的坐标,则该点落在第三象限的概率是___. 【答案】13【解析】【分析】列举出所有情况,看在第三象限的情况数占总情况数的多少即可.【详解】解:∵从3-,2-,2这三个数中任取两个不同的数,作为点的坐标, ∴所有的点为:(3-,2-),(3-,2),(2-,2),(2-,3-),(2,3-),(2,2-),共6个点;在第三象限的点有(3-,2-),(2-,3-),共2个; ∴该点落在第三象限的概率是2163=; 故答案为:13. 【点睛】本题考查了列举法求概率,解题的关键是正确的列出所有可能的点,以及在第三象限上的点,再由概率公式进行计算,即可得到答案.16. 如图,将ABC 绕点A 逆时针旋转角()0180αα︒<<︒得到ADE ,点B 的对应点D 恰好落在BC 边上,若,25DE AC CAD ⊥∠=︒,则旋转角α的度数是______.【答案】50︒【解析】【分析】先求出65ADE ∠=︒,由旋转的性质,得到65∠=∠=︒B ADE ,AB AD =,则65ADB ∠=︒,即可求出旋转角α的度数.【详解】解:根据题意,∵,25DE AC CAD ⊥∠=︒,∴902565ADE ∠=︒-︒=︒,由旋转的性质,则65∠=∠=︒B ADE ,AB AD =,∴65ADB B ∠=∠=︒,∴180665550BAD ︒-∠=︒=︒-︒;∴旋转角α的度数是50°;故答案为:50°.【点睛】本题考查了旋转的性质,三角形的内角和定理,解题的关键是熟练掌握旋转的性质进行计算.17. 如图,在ABCD 中,2,453AD AB BAD =∠=︒,以点A 为圆心、AD 为半径画弧交AB 于点E ,连接CE ,若AB =_______.【答案】π-【解析】【分析】过点D 作DF ⊥AB 于点F ,根据等腰直角三角形的性质求得DF ,从而求得EB ,最后由S 阴影=S ▱ABCD −S 扇形ADE −S △EBC 结合扇形面积公式、平行四边形面积公式、三角形面积公式解题即可.【详解】解:过点D 作DF ⊥AB 于点F ,∵2,453AD AB BAD =∠=︒,AB =∴AD=23⨯=∴DF=ADsin45°= ,∵ ,∴EB=AB −AE= ,∴S 阴影=S ▱ABCD −S 扇形ADE −S △EBC122=π故答案为:π-.【点睛】本题考查等腰直角三角形、平行四边形的性质、扇形的面积公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.18. 已知二次函数2(0)y ax bx c a =++≠,图象的一部分如图所示,该函数图象经过点(2,0)-,对称轴为直线12x =-.对于下列结论:①0abc <;②240b ac ->;③0a b c ++=;④21(2)4am bm a b +<-(其中12m ≠-);⑤若()11,A x y 和()22,B x y 均在该函数图象上,且121x x >>,则12y y >.其中正确结论的个数共有_______个.【答案】3【解析】【分析】根据抛物线与x 轴的一个交点(-2,0)以及其对称轴12x =-,求出抛物线与x 轴的另一个交点(1,0),代入可得:2b a c a =⎧⎨=-⎩,再根据抛物线开口朝下,可得0a <,进而可得0b <,0c >,再结合二次函数的图象和性质逐条判断即可. 【详解】∵抛物线的对称轴为:12x =-,且抛物线与x 轴的一个交点坐标为(-2,0), ∴抛物线与x 轴的另一个坐标为(1,0),∴代入(-2,0)、(1,0)得:4200a b c a b c -+=⎧⎨++=⎩, 解得:2b a c a =⎧⎨=-⎩,故③正确; ∵抛物线开口朝下,∴0a <,∴0b <,0c >,∴0abc >,故①错误;∵抛物线与x 轴两个交点,∴当y =0时,方程20y ax bx c =++=有两个不相等的实数根,∴方程的判别式240b ac ∆=->,故②正确;∵2b a c a =⎧⎨=-⎩, ∴22211(24am bm am am a m a +=+=+-,()(111)22444a b a a a -==--, ∴2211[2]42()(am bm a b a m +--=+, ∵12m ≠-,0a <, ∴2211[2](04()2am bm a b a m +--=+<, 即2124()am bm a b +-<,故④正确; ∵抛物线的对称轴为:12x =-,且抛物线开口朝下, ∴可知二次函数2y ax bx c =++,在12x ->时,y 随x 的增大而减小, ∵12112x x >>->,∴12y y <,故⑤错误,故正确的有:②③④,故答案为:3.【点睛】本题考查了二次函数的图象与性质、二次函数和一元二次方程的关系等知识,掌握二次函数的性质,特别是根据对称轴求出抛物线与x 轴的交点是解答本题的关键.三、解答题(本大题共8小题,解答应写出文字说明、证明过程或演算步骤) 19. (1)计算:()20112022tan 602π-⎛⎫--+--︒ ⎪⎝⎭; (2)解不等式组:250245132x x x -<⎧⎪⎨---≤⎪⎩①② 【答案】(1)4;(2)512x -≤<【解析】【分析】(1)根据绝对值的意义、零指数幂、负整数指数幂的运算法则以及特殊角的三角函数值进行计算即可;(2)先分别求解出不等式①和不等式②的解集,再找这个两个解集的公共部分即可.【详解】(1)解:原式1144=-++=;(2)解不等式①,得:52x <, 解不等式②,得:1x ≥-, ∴不等式组的解集为512x -≤<. 【点睛】本题考查了绝对值的意义、零指数幂、负整数指数幂的运算法则、特殊角的三角函数值以求解不等式组的解集的知识,熟记特殊角的三角函数值是解答本题的关键. 20. 尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m ,n .求作ABC ,使90,,A AB m BC n ∠=︒==.【答案】见解析【解析】【分析】作直线l 及l 上一点A ;过点A 作l 的垂线;在l 上截取AB m =;作BC n =;即可得到ABC .【详解】解:如图所示:ABC 为所求.注:(1)作直线l 及l 上一点A ;(2)过点A 作l 的垂线;(3)在l 上截取AB m =;(4)作BC n =.【点睛】本题考查作图——复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.21. 如图,直线AB 与反比例函数(0,0)k y k x x=>>的图像相交于点A 和点()3,2C ,与x 轴的正半轴相交于点B .(1)求k 的值;(2)连接,OA OC ,若点C 为线段AB 的中点,求AOC △的面积.【答案】(1)6(2)92 【解析】【分析】(1)直接把点C 的坐标代入反比例函数的解析式,即可求出答案;(2)由题意,先求出点A 的坐标,然后求出直线AC 的解析式,求出点B 的坐标,再求出AOC △的面积即可.【小问1详解】解:∵点()3,2C 在反比例函数k y x =的图象上, ∴23k =, ∴6k =;【小问2详解】解:∵()3,2C 是线段AB 的中点,点B 在x 轴上,∴点A 的纵坐标为4,∵点A 在6(0)y x x=>上, ∴点A 的坐标为3,42⎛⎫⎪⎝⎭, ∵3,4,(3,2)2A C ⎛⎫ ⎪⎝⎭, 设直线AC 为y kx b =+,则34232k b k b ⎧+=⎪⎨⎪+=⎩,解得436k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 为463y x =-+, 令0y =,则92x =, ∴点B 的坐标为902,⎛⎫⎪⎝⎭, ∴11199422222AOC AOB S S ==⨯⨯⨯=△△.【点睛】本题考查了反比例函数的图像和性质,一次函数的图像和性质,解题的关键是熟练掌握反比例函数与一次函数的图像和性质进行解题.22. 在贯彻落实“五育并举”的工作中,某校开设了五个社团活动:传统国学(A)科技兴趣(B)、民族体育(C)、艺术鉴赏(D)、劳技实践(E),每个学生每个学期只参加一个社团活动,为了了解本学期学生参加社团活动的情况,学校随机抽取了若干名学生进行调查,并将调查结果绘制成如下两幅尚不完整的统计图,请根据统计图提供的信息,解答下列问题:(1)本次调查的学生共有________人;(2)将条形统计图补充完整;(3)在扇形统计图中,传统国学(A)对应扇形的圆心角度数是_______;(4)若该校有2700名学生,请估算本学期参加艺术鉴赏(D)活动的学生人数.【答案】(1)90 (2)见解析(3)120︒(4)300人【解析】【分析】(1)用劳技实践(E)社团人数除以所占的百分比求解;(2)先用总人数分别减去传统国学(A)、科技兴趣(B)、艺术鉴赏(D)、劳技实践(E)社团的人数计算出民族体育(C)社团的人数,再补全条形统计图即可;(3)用360度乘传统国学(A)社团所占的比例来求解;(4)用2700乘艺术鉴赏(D)社团所占的比例来求解.【小问1详解】解:本次调查的学生人数为:1820%90÷=(人).故答案为:90;【小问2详解】----=(人),解:民族体育(C)社团人数为:903010101822补全条形统计图如下:【小问3详解】解:在扇形统计图中,传统国学(A)社团对应扇形的圆心角度数是30360120︒⨯=︒.90故答案为:120︒;【小问4详解】解:该校有2700名学生,本学期参加艺术鉴赏(D)社团活动的学生人数为102700300⨯=(人).90【点睛】本题主要考查了条形统计图和扇形统计图,理解先求出本次调查人数是解答关键.23. 为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?【答案】(1)绳子的单价为7元,实心球的单价为30元(2)购买绳子的数量为30条,购买实心球的数量为10个【解析】x+元,根据“84元购买绳子【分析】(1)设绳子的单价为x元,则实心球的单价为(23)的数量与360元购买实心球的数量相同”列出分式方程,解分式方程即可解题;(2)根据“总费用为510元,且购买绳子的数量是实心球数量的3倍”列出一元一次方程即可解题.【小问1详解】解:设绳子的单价为x 元,则实心球的单价为(23)x +元, 根据题意,得:8436023x x =+, 解分式方程,得:7x =,经检验可知7x =是所列方程的解,且满足实际意义,∴2330x +=,答:绳子的单价为7元,实心球的单价为30元.【小问2详解】设购买实心球的数量为m 个,则购买绳子的数量为3m 条,根据题意,得:7330510m m ⨯+=,解得10m =∴330m =答:购买绳子的数量为30条,购买实心球的数量为10个.【点睛】本题考查分式方程和一元一次方程的应用,根据题目中的等量关系列出方程是解题的关键.24. 图,在ABC 中,90ACB ∠=︒,点D 是AB 边的中点,点O 在AC 边上,⊙O 经过点C 且与AB 边相切于点E ,12FAC BDC ∠=∠.(1)求证:AF 是⊙O 的切线;(2)若6BC =,4sin 5B =,求⊙O 的半径及OD 的长.【答案】(1)见解析(2)3r =,OD =【解析】 【分析】(1)作OH FA ⊥,垂足为H ,连接OE ,先证明AC 是FAB ∠的平分线,然后由切线的判定定理进行证明,即可得到结论成立;(2)设4,5AC x AB x ==,由勾股定理可求8,10AC AB ==,设O 的半径为r ,然后证明Rt AOE Rt ABC ∽,结合勾股定理即可求出答案.【小问1详解】证明:如图,作OH FA ⊥,垂足为H ,连接OE ,∵90ACB ∠=︒,D 是AB 的中点, ∴12CD AD AB ==, ∴CAD ACD ∠=∠,∵2BDC CAD ACD CAD ∠=∠+∠=∠, 又∵12FAC BDC ∠=∠, ∴∠BDC =2∠FAC ,∴FAC CAB ∠=∠,即AC 是FAB ∠的平分线,∵O 在AC 上,O 与AB 相切于点E ,∴OE AB ⊥,且OE 是O 的半径,∵AC 平分∠FAB ,OH ⊥AF ,∴,OH OE OH =是O 的半径,∴AF 是O 的切线.【小问2详解】 解:如(1)图,∵在Rt ABC 中,490,6,sin 5AC ACB BC B AB ∠=︒===, ∴可设4,5AC x AB x ==,∴222(5)(4)6,2x x x -==,则8,10AC AB ==,设O 的半径为r ,则OC OE r ==,∵=90∠=∠︒ACB AEO ,∠=∠CAB EAO∴Rt AOE Rt ABC ∽, ∴OE BC AO AB=,即6810r r =-,则3r =, 在Rt △AOE 中,AO =5,OE =3, 由勾股定理得4AE =,又152AD AB ==, ∴1DE =,在Rt ODE △中,由勾股定理得:OD =.【点睛】本题考查了三角函数,切线的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行证明. 25. 如图,已知抛物线2y x bx c =-++经过(0,3)A 和79,24B ⎛⎫- ⎪⎝⎭两点,直线AB 与x 轴相交于点C ,P 是直线AB 上方的抛物线上的一个动点,PD x ⊥轴交AB 于点D .(1)求该抛物线的表达式;(2)若PE x ∥轴交AB 于点E ,求PD PE +的最大值;(3)若以A ,P ,D 为顶点的三角形与AOC △相似,请直接写出所有满足条件的点P ,点D 的坐标.【答案】(1)2y x 2x 3=-++(2)最大值为24548(3)(2,3),(2,0)P D 或435,39P ⎛⎫ ⎪⎝⎭,4,13D ⎛⎫ ⎪⎝⎭【解析】【分析】(1)直接利用待定系数法,即可求出解析式;(2)先求出点C 的坐标为(2,0),然后证明Rt DPE Rt AOC △∽△,设点P 的坐标为()2,23m m m -++,其中0m >,则点D 的坐标为3,32m m ⎛⎫-+ ⎪⎝⎭,分别表示出PD 和PE ,再由二次函数的最值性质,求出答案;(3)根据题意,可分为两种情况进行分析:当AOC ∆∽APD ∆时;当AOC ∆∽DAP ∆时;分别求出两种情况点的坐标,即可得到答案.【小问1详解】解:(1)∵抛物线2y x bx c =-++经过(0,3)A 和79,24B ⎛⎫- ⎪⎝⎭两点, ∴23779()224c b c =⎧⎪⎨-++=-⎪⎩ 解得:2b =,3c =,∴抛物线的表达式为2y x 2x 3=-++.【小问2详解】解:∵79(0,3),,24A B ⎛⎫- ⎪⎝⎭, ∴直线AB 表达式为332y x =-+, ∵直线AB 与x 轴交于点C ,∴点C 的坐标为(2,0),∵PD x ⊥轴,PE x 轴,∴Rt DPE Rt AOC △∽△, ∴32PD OA PE OC ==, ∴23PE PD =, 则2533PD PE PD PD PD +=+=, 设点P 的坐标为()2,23m m m -++,其中0m >,则点D 的坐标为3,32m m ⎛⎫-+ ⎪⎝⎭, 的∵()2237492332416PD m m m m ⎛⎫⎛⎫=-++--+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴2572453448PD PE m ⎛⎫+=--+ ⎪⎝⎭, ∵503-<, ∴当74m =时,PD PE +有最大值,且最大值为24548. 【小问3详解】解:根据题意, 在一次函数332y x =-+中,令0y =,则2x =, ∴点C 的坐标为(2,0);当AOC ∆∽APD ∆时,如图此时点D 与点C 重合,∴点D 的坐标为(2,0);∵PD x ⊥轴,∴点P 的横坐标为2,∴点P 的纵坐标为:222233y =-+⨯+=,∴点P 的坐标为(2,3);当AOC ∆∽DAP ∆时,如图,则AP AB ⊥,设点3,32D m m ⎛⎫-+ ⎪⎝⎭,则点P ()2,23P m m m -++, ∴223320AP m m k m m -++-==-+-, ∵AP AB ⊥,∴1AP AB k k ∙=-,32AB k =-, ∴3(2)()12m -+⨯-=-, ∴43m =, ∴点D 的坐标为4,13⎛⎫ ⎪⎝⎭,点P 的坐标为435,39⎛⎫ ⎪⎝⎭; ∴满足条件的点P ,点D 的坐标为(2,3),(2,0)P D 或435,39P ⎛⎫⎪⎝⎭,4,13D ⎛⎫ ⎪⎝⎭. 【点睛】本题考查了二次函数的图像和性质,坐标与图形,相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质,二次函数的图像和性质,运用数形结合的思想进行分析.26. 已知:点C ,D 均在直线l 的上方,AC 与BD 都是直线l 的垂线段,且BD 在AC 的右侧,2BD AC =,AD 与BC 相交于点O .为(1)如图1,若连接CD ,则BCD △的形状为______,AO AD的值为______; (2)若将BD 沿直线l 平移,并以AD 为一边在直线l 的上方作等边ADE . ①如图2,当AE 与AC 重合时,连接OE ,若32AC =,求OE 的长; ②如图3,当60ACB ∠=︒时,连接EC 并延长交直线l 于点F ,连接OF .求证:OF AB ⊥.【答案】(1)等腰三角形,13(2)①OE =;②见解析【解析】【分析】(1)过点C 作CH ⊥BD 于H ,可得四边形ABHC 是矩形,即可求得AC =BH ,进而可判断△BCD 的形状,AC 、BD 都垂直于l ,可得△AOC ∽△BOD ,根据三角形相似的性质即可求解.(2)①过点E 作EF AD ⊥于点H ,AC ,BD 均是直线l 的垂线段,可得//AC BD ,根据等边三角形的性质可得30BAD ∠=︒,再利用勾股定理即可求解.②连接CD ,根据//AC BD ,得60CBD ACB ∠=∠=︒,即BCD △是等边三角形,把ABD △旋转得90ECD ABD ∠=∠=︒,根据30°角所对的直角边等于斜边的一般得到13AF AO AB AD ==,则可得AOF ADB △∽△,根据三角形相似的性质即可求证结论. 【小问1详解】解:过点C 作CH ⊥BD 于H ,如图所示:∵AC ⊥l ,DB ⊥l ,CH ⊥BD ,∴∠CAB =∠ABD =∠CHB =90°,∴四边形ABHC 是矩形,∴AC =BH ,又∵BD =2AC ,∴AC=BH=DH,且CH⊥BD,∴BCD △的形状为等腰三角形,∵AC 、BD 都垂直于l ,∴△AOC ∽△BOD ,122AO AC AC DO DB AC ∴===,即2DO AO =, 133AO AO AD AO DO A AO O ∴===+, 故答案为:等腰三角形,13. 【小问2详解】①过点E 作EF AD ⊥于点H ,如图所示:∵AC ,BD 均是直线l 的垂线段,∴//AC BD ,∵ADE 是等边三角形,且AE 与AC 重合,∴∠EAD =60°,∴60ADB EAD ∠=∠=︒,∴30BAD ∠=︒,∴在Rt ADB 中,2AD BD =,=AB , 又∵2BD AC =,32AC =,∴6,AD AB == ∴132AH DH AD ===, 又Rt ADB ,∴EH ===又由(1)知13AO AD =, ∴123AO AD ==,则1OH =,∴在Rt EOH △中,由勾股定理得:OE =②连接CD ,如图3所示:∵//AC BD ,∴60CBD ACB ∠=∠=︒,∵BCD △是等腰三角形,∴BCD △是等边三角形,又∵ADE 是等边三角形,∴ABD △绕点D 顺时针旋转60︒后与ECD 重合,∴90ECD ABD ∠=∠=︒,又∵60BCD ACB ∠=∠=︒,∴30ACF FCB FBC ∠=∠=∠=︒,∴2FC FB AF ==, ∴13AF AO AB AD ==, 又OAF DAB ∠=∠,∴AOF ADB △∽△,∴90AFO ABD ∠=∠=︒,∴OF AB ⊥.【点睛】本题考查了矩形的判定及性质、三角形相似的判定及性质、等边三角形的判定及性质、勾股定理的应用,熟练掌握三角形相似的判定及性质和勾股定理的应用,巧妙借助辅助线是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年广西贵港市初中毕业生学业水平测试数学(本试卷分第I 卷和第II 卷,考试时间120分钟,赋分120分)第I 卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)每题的选项中,只有一项是符合题目要求。
1. (2013广西贵港市,1,3分)3-的绝对值是( )A .13-B .13C .3-D . 3【答案】D2. (2013广西贵港市,2,3分)纳米是非常小的长度单位,1纳米=910-米. 某种病菌的长度约为50纳米, 用科学记教法表示该病菌的长度,结果正确的是( ) A .10510-⨯米B .9510-⨯米C .8510-⨯米D .7510-⨯米【答案】C3.下列四种调查:①调查某班学生的身高情况;②调查某城市的空气质量;②调查某风景区全年的游客流量;④调查某批汽车的抗撞击能力,其中适合用全面调查方式的是( ) A .① B .② C .③ D .④ 【答案】A4. (2013广西贵港市,4,3分)下列四个式子中,x 的取值范围为2x ≥的是( )ABCD【答案】C5. (2013广西贵港市,5,3分)下列计算结果正确的是( )A .3()2a a a --=B .325()a a a ⨯-=C .55a a a ÷= D .236()a a -=【答案】B6. (2013广西贵港市,6,3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共”字一面的相对面上的字是( )A .美B .丽C .家D .园【答案】D7. (2013广西贵港市,7,3分)下列四个命题中,属于真命题的是( ) Am =,则a m =。
B .若a b >,则am bm >。
C .两个等腰三角形必定相似D .位似图形一定是相似图形【答案】D共 建 美 丽 家园8. (2013广西贵港市,8,3分)关于x 的分式方程11mx =-+的解是负数,则m 的取值范围是( ) A .1m >-(5,9)- B .10m m >-≠且C .1m ≥-D .10m m ≥-≠且【答案】B9. (2013广西贵港市,9,3分)如图,直线a //b ,直线c 与a 、b 都相交,从所标识的∠1、∠2、 ∠3、 ∠4、 ∠5这五个角中任意选取两个角,则所选取的两个角是互为补角的概率是 ( )A .35B .25C .15D .23【答案】A10. (2013广西贵港市,10,3分)如图,己知圆锥的母线长为6. 圆锥的高与母线所夹的角为θ,且1sin 3θ=, 则该圆锥侧面积是( )A.B .24πC .16πD .12π【答案】D11.(2013广西贵港市,11,3分)如图,点A (,1)a 、B (1,)b -都在双曲线3(0)y x x=-<上,点P 、Q 分别是x 轴、y 轴上的动点,当四边形P ABQ 的周长取最小值时,PQ 所在直线的解析式是( )A .y x =B .1y x =+C .2y x =+D .3y x =+【答案】C12.(2013广西贵港市,12,3分)如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F .将△DEF 沿EF 折叠,点D 恰好落在BE 上M 点处,延长BC 、EF 交于点N ,有下列四个结论:① DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF . 其中,将正确结论的序号全部选对的是( )A .①②③B .①②④C .②③④D .①②③④ 【答案】D第II 卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.) 13.(2013广西贵港市,13,3分)若超出标准质量0.05克记作+0.05克,则低于标准质量 0.03克记作_____克. 【答案】0.03-第9题图 ab c12 345第10题图第11题图ACDE第12题图14.(2013广西贵港市,14,3分)分解因式:231827x x -+=__________________.【答案】23(3x -)15.(2013广西贵港市,15,3分)若一组数据1、7、8、a 、4的平均数是5,、中位数是m ,极差是n ,则m n +=_____. 【答案】1216.(2013广西贵港市,16,3分)如图,AB 是⊙O 的弦,OH ⊥AB 于点H ,点P 是优弧上一点,若AB =1OH =则∠APB 的度数是__________. 【答案】60° 17.(2013广西贵港市,17,3分)如图,△ABC 和△FPQ 均是等边三角形,点D 、E 、F 分别是△ABC 三边的中点,点P 在AB 边上,连接EF 、QE .若6AB =,1PB =,则QE =__________. 【答案】218.(2013广西贵港市,18,3分)如图,在平面直角坐标系xOy 中,若动点P 在抛物线2y ax =上, ⊙P 恒过点(0,)F n .且与直线y n =-始终保持相切,则n =____________(用含a 的代数式表示).【答案】14n a=三、解答题(本大题共8小题,满分66分. 解答时应写出文字说明、证明过程或演算步骤.) 19. (2013广西贵港市,19,本题满分10分,每小题5分) (1).101()(22cos 602-+-︒【答案】解:原式132122=-+-⨯32111=-+-=(2)先化简:21111x x x ⎛⎫-÷⎪+-⎝⎭,然后选择一个适当的x 值代入求值. 【答案】解:原式1111(1)(1)x x x x x x +⎛⎫=-÷⎪+++-⎝⎭ A第16题图AB D 第17题图第18题图1(1)(1)(1)1x x x x x-++-=⋅+1x =-+ 当2x =时,原式211=-+=-20. (2013广西贵港市,20,5分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为 A(4-,3),B(3-,1),C(1-,3). (1)请按下列要求画图:①将△ABC 先向右平移4个单位长度、再向上平移2个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1; ②△A 2B 2C 2与△ABC 关于原点O 成中心对称,画出△A 2B 2C 2.(2)在(1)中所得的△A 1B 1C 1和△A 2B 2C 2关于点M 成中心对称,请直接写出对称中心M 点的坐标.【答案】解:(1)如图。
(2)如图,对称中心M 点的坐标(2,1)21. (2013广西贵港市,21,7分)如图,在平面直角坐标系xOy 中,△ABC 的边AC 在x :轴上,边BC ⊥x 轴,双曲线(0)ky x x=>与边BC 交于点D (4,m ),与边AB 交于点E (2, n ). (1)求n 关于m 的函数关系式; (2)若2BD =,tan ∠BAC =12,求k 的值和点B 的坐标.【答案】解:(1)∵双曲线(0)ky x x=>与边BC 交于点D (4,m ),与边AB交于点E (2, n ). 4m k =,2n k =∴24n m =∴n 关于m 的函数关系式:2n m =(2)如图,作EF ⊥x 轴,垂足为F .∵tan ∠BAC =12∴21421222m OA n OA n m+⎧=⎪+⎪⎪=⎨+⎪=⎪⎪⎩解得:122m n OA =⎧⎪=⎨⎪=⎩ ∴D (4,1) 3BC BD CD =+= ∴4k =,点B 的坐标(4,3).22. (2013广西贵港市,22,8分)在以“关爱学生、安全第一”为主题的安全教育宜传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A 一结伴步行、B 一自行乘车、C —家人接送、D 一其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人? (2)请补全条形统计图;m )(3)请补全扇形统计图,并在图中标出“自行乘车”对应扇形的圆心角的度数; (4)如果该校学生有2080人,请你估计该校“家人接送”上学的学生约有多少人?【答案】 解:(1)本次抽查的学生人数是:3025%÷=120(人) (2) 补全条形统计图A : 120-(42+30+18)=30 (3) 补全扇形统计图A : 30÷120=25%,B : 42÷120=35% , “自行乘车”对应扇形的圆心角的度数:36035%126︒⨯=︒ (4) 估计该校“家人接送”上学的学生约有:208025%⨯=520(人)23. (2013广西贵港市,23,7分)如图.在直角梯形ABCD 中,AD //BC ,∠B =90°,AG //CD 交BC 于点G ,点E 、 F 分别为AG 、CD 的中点,连接DE 、 FG . (1)求证:四边形DEGF 是平行四边形;(2)当点G 是BC 的中点时,求证:四边形DEGF 是菱形.【答案】 解:(1)证明:∵AD ∥BC ,A G ∥CDG学生上学方式扇形统计图学生上学方式扇形统计图G∴四边形AGCD 是平行四边形 ∴AG =CD∵点E 、 F 分别为AG 、CD 的中点 ∴DF =12CD GE =12AG ∴DF=GE又DF ∥GE∴四边形DEGF 是平行四边形.(2)如图,连接DG ∵点G 是BC 的中点 ∴BG =CG=12BC ∵四边形DEGF 是平行四边形. ∴AD =CG ∴AD =BG 又AD ∥BG∴四边形ABGD 是平行四边形. ∵∠B =90°∴四边形ABGD 是矩形. ∴∠ADG =90°在Rt △ADG 中,∵点E 是AG 的中点 ∴DE =GE=12AG ∴四边形DEGF 是菱形.24. (2013广西贵港市,24,8分)在校园文化建设中,某学校原计划按每班5幅订购了“名人字画”共90幅.由于新学期班数增加,决定从阅览室中取若干幅“名人字画”一起分发,如果每班分4幅,则剩下17幅;如果每班分5幅,则最后一个班不足3幅,但不少于1辐.(1)该校原有的班数是多少个? (2)新学期所增加的班数是多少个? 【答案】解:(1)该校原有的班数是:905=18÷(个) (2)设新学期所增加的班数是x 个.由题意得:()()4(18)175(181)34(18)175(181)1x x x x ++-+-<⎧⎪⎨++-+-≥⎪⎩解得:13x <≤∵x 为整数 ∴23x =或∴新学期所增加的班数是2个班或3个班.25. (2013广西贵港市,25,10分)如图,在边长为2的正方形ABCD 中,以点D 为圆心、DC 为半径作AC , 点E 在AB 上,且与A 、B 两点均不重合,点M 在AD 上,且ME =MD ,过点E 作EF ⊥ME ,交BC 于点F ,连接DE 、MF .(1)求证:EF是AC所在⊙D的切线;(2)当MA=34时,求MF的长;(3)试探究:△MFE能否是等腰直角三角形?若是,请直接写出MF的长度;若不是,请说明理由.【答案】解:(1)如图,作DG⊥EF,垂足为G,则∠DAE=∠DGE=90°∴∠DEA+∠1=90°∵EF⊥ME∴∠DEG+∠2=90°∵ME=MD∴∠1=∠2∴∠DEA=∠DEG在△DEA与△DEG中∵90DAE DGEDEA DEGDE DE∠=∠=︒∠=∠=⎧⎪⎨⎪⎩∴△DEA≌△DEG(AAS)∴DA DG=又DG⊥EF∴EF是AC所在⊙D的切线(到圆心的距离等于圆半径的直线是圆的切线)(2)∵AD=2,MA=34∴ME=MD = AD-MA=54在Rt△MEA中,由勾股定理得:1AE==∴EB=AB-AD=2-1=1∵EF⊥ME∴∠MEA+∠BEF=90°∵∠MEA+∠EFB=90°∴∠MEA =∠EFB∵∠MAE=∠EBF=90°∴△MAE∽△EBF∴ME MAEF EB=FA BEMA BEFMFM3454∴5154334ME EBEFMA⋅⋅===在Rt△MFE中,由勾股定理得:2512EF===(3)△MFE不能是等腰直角三角形.理由如下:假如△MFE是等腰直角三角形,则EM=FE∵∠MEA =∠EFB,∠MAE=∠EBF=90°∴△MEA≌△EFB∴MA=EB设ME=MD=x,则MA=EB =2-x∴AE=AB- EB =2-(2-x)即AE=MB= x,这与“直角三角形中,斜边大于任何一条直角边”相矛盾,所以假设不成立。