必修5 解三角形、数列、不等式
高考数学考点解析及分值分布

高考数学考点解析1.集合与简易逻辑:10-18分主要章节:必修1第一章《集合》、第三章《函数的应用》选修1-1(文)2-1(理)《常用逻辑用语》考查的重点是抽象思维实力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展。
简易逻辑多为考查“充分与必要条件”及命题真伪的判别。
2.函数与导数:30分+主要章节:必修1其次章《基本初等函数》、第三章《函数的应用》必修4第一章《三角函数》必修2第三章《直线与方程》、第四章《园与方程》选修1-1(文)2-1(理)《圆锥曲线与方程》、《导数》选修4-4《极坐标方程》《参数方程》函数是中学数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。
以指数函数、对数函数、复合函数为载体,结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数生成考题,作为选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。
函数与导数的结合的解答题,以切线、极值、最值问题、单调性问题、恒成立问题为设置条件,结合不等式、数列综合成题,也是解答题拉分关键。
3.不等式:5-12分主要章节:必修5第三章《不等式》选修4-5全书一般不会单独命题,会在其他题型中“隐藏”出现,不等式作为一种工具广泛地应用在涉及函数、数列、解几等学问的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。
选择题和填空题主要考查不等式性质、解法及均值不等式。
解答题会与其它学问的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等。
4.数列:20-28分主要章节:必修5其次章《数列》数列是中学数学的重要内容,是初等数学与高等数学的重要连接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,另外一个与其它学问的综合题。
高一数学教学计划(15篇)

高一数学教学计划(15篇)高一数学教学计划1一、教材分析(结构系统、单元内容、重难点)必修5第一章:解三角形。
重点是正弦定理与余弦定理。
难点是正弦定理与余弦定理的应用。
第二章:数列。
重点是等差数列与等比数列的前n项的和。
难点是等差数列与等比数列前n项的和与应用。
第三章:不等式。
重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式。
难点是二元一次不等式(组)与简单的线性规划问题及应用。
必修2第一章:空间几何体。
重点是空间几何体的三视图和直观图及表面积与体积。
难点是空间几何体的三视图。
第二章:点、直线、平面之间的位置关系。
重点与难点都是直线与平面平行及垂直的判定及其性质。
第三章:直线与方程。
重点是直线的倾斜角与斜率及直线方程。
难点是如何选择恰当的直线方程求解题目。
第四章:圆与方程。
重点是圆的方程及直线与圆的位置关系。
难点是直线与圆的位置关系。
二、学生分析(双基智能水平、学习态度、方法、纪律)较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求1、通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2、通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数。
理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3、理解不等式(组)对于刻画不等关系的意义和价值。
掌握求解一元二次不等式的基本方法,并能解决一些实际问题。
能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4、几何学研究现实世界中物体的形状、大小与位置的学科。
直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。
先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法。
高中数学必修5解三角形、数列、不等式测试题

高中数学必修5解三角形、数列、不等式测试题(考试时间120分钟,总分150分)一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上)1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab2C .2a-2b<0 D.1a >1b2.sin15°cos45°+cos15°sin45°等于( ) A .0B .21 C .23 D .13.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23 C.1 D.34.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 1015.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .6 6.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3B. 4C. 5D. 67.不等式20(0)ax bx c a ++<≠的解集为R ,那么( )A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D. 0,0a >∆>8.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 9.若)4πtan(α-=3,则tan α 等于( ) A .-2 B .21-C .21 D .210.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( )A .1B .-1C .2D .-211.下列各式中,值为23的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°12.关于x 的方程2210ax x +-=至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-1二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =14. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为15.不等式21131x x ->+的解集是 . 16. 已知数列{}n a 满足23123222241n n n a a a a ++++=-,则{}n a 的通项公式 三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤,并把正确解答过程写在答题卡上)17. (10分)(1) 解不等式0542<++-x x ,(2)求函数的定义域:5y =18.(12分)等差数列{}n a 满足 212=a ,155=a ,求通项n a 及前n 项和的最大值.19.(12分)在△ABC 中,BC =a ,AC =b ,a ,b是方程220x -+=的两个根, 且2()1coc A B +=。
高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案【导语】高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。
这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。
为了助你一臂之力,无忧考网高中频道为你精心准备了《高三数学必修五《不等关系与不等式》教案》助你金榜题名!教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0��a>b;a-b=0��a=b;a-b<0��a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差――变形――判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y<0时,x-yy<0,即xy-1<0.∴xy<1;当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m b-a b b+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3―1A组3;习题3―1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的�C明二【基�A��】1.若,,�t下列不等始�K正�_的是()2.�Oa,b����担�且,�t的最小值是()4.求�C:�θ魏问��x,y,z,下述三��不等式不可能同�r成立。
高中数学数列、解三角形、不等式综合复习

本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。
在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。
考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。
(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。
(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。
分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。
通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。
再对m取特值验证。
也可利用二次函数的图像解决。
(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。
或取特值验证。
(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。
解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。
(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。
故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。
首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。
(4)由方程得:-(4+a)=.故此命题错误。
考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。
高二数学常考题型的总结(学生版)

高二数学常考题型的总结(必修五)第一章 解三角形考点一 正弦定理的应用例1:在中,60,10,15===A b a ,则=B cos考点二 余弦定理的应用例2:在∆ABC 中,已知32=a ,26+=c , 60=B ,求b 的值考点三 正、余弦定理的混合应用例3:设ABC ∆的内角,,A B C 所对边的长别离为,,a b c 。
若2b c a +=,则3sin 5sin ,A B =则角C =_____.考点四 三角形的面积问题例4:在ABC ∆中,角C B A 、、所对应的边别离为c b a 、、,若B C A 2=+,且,3,1==b a 求ABCS ∆的值考点五 最值问题例5:在ABC ∆中,的最大值为考点六 三角形形状的判断例6:已知ABC ∆中,B b A a cos cos =,判断三角形的形状考点七 三角形个数的判断例7:在ABC ∆中,角C B A 、、所对应的边别离为c b a 、、,若 30=A ,且,3,1==b a 求c 的值考点八 大体不等式在解三角形上的应用例8:在ABC ∆中,角C B A 、、所对应的边别离为c b a 、、,若2,4==b a π,求ABC ∆的面积的最大值。
例9:设ABC △的内角A B C ,,所对的边长别离为a b c ,,,且3cos cos 5a Bb Ac -=,求tan()A B -的最大值。
考点九 平面向量在解三角形上的应用例10:在ABC ∆中,6,AC AB ⋅=ABC ∆的面积AABC ∆60,B AC =2AB BC +例11:在ABC ∆中,边c 所对的角为C ,向量)2sin ,2(cos ),2sin ,2(cos CC n C C m -==,且向量m 与n 的夹角是3π,求角C 的大小 考点十 数列在解三角形上的应用例12:设ABC △的内角A B C ,,所对的边长别离为a b c ,,,若a b c ,,依次成等比数列,角B 的取值范围.考点十一 解三角形的实际应用例13:如图,D C B A 、、、都在同一个与水平面垂直的平面内,D B 、为两岛上的两座灯塔的塔顶。
[高中数学新课程标准]高中数学新课程标准
![[高中数学新课程标准]高中数学新课程标准](https://img.taocdn.com/s3/m/e283c5d8a0c7aa00b52acfc789eb172dec639945.png)
[高中数学新课程标准]高中数学新课程标准篇一: 高中数学新课程标准高中数学新课程标准第一部分前言数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。
[]数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。
数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。
数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。
数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
数学教育作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面、在推动社会进步和发展的进程中起着重要的作用。
在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。
数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。
一、课程性质高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。
高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。
高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。
高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。
同时,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。
二、课程的基本理念1.构建共同基础,提供发展平台高中教育属于基础教育。
[]高中数学课程应具有基础性,它包括两方面的含义:第一,在义务教育阶段之后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;第二,为学生进一步学习提供必要的数学准备。
高二数学必修五 第一章 解三角形

高二数学必修五 第一章解三角形一、本章知识结构:二、基础要点归纳1、三角形的性质: ①.A+B+C=π,222A B Cπ+=-⇒sin()sin A B C +=, cos()cos A B C +=-,sincos 22A B C+= ②.在ABC ∆中,a b +>c , a b -<c ; A >B ⇔sin A >sin B ,A >B ⇔cosA <cosB, a >b ⇔A >B③.假设ABC ∆为锐角∆,那么A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C === (2R 为ABC ∆外接圆的直径) 111sin sin sin 222ABCS ab C bc A ac B ∆=== ②.余弦定理:2222cos a b c bc A =+-222cos 2b c a A bc +-=2222cos b a c ac B =+-222cos 2a c b B ac+-=2222cos c a b ab C =+-222cos 2a b c C ab+-=〔必修五〕第二章、数列一、本章知识结构:二、本章要点归纳:1、数列的定义及数列的通项公式:①.()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值。
②.n a 的求法:i.归纳法。
ii.11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 假设00S =,那么n a 不分段;假设00S ≠,那么n a 分段。
iii. 假设1n n a pa q +=+,那么可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +。
iv. 假设()n n S f a =,那么先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式.2.等差数列:① 定义:1n n a a +-=d 〔常数〕,证明数列是等差数列的重要工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 解三角形例1 某地出土一块类似三角形刀状的古代玉佩,其一角已破损,现测得如下数据:BC=2.57cm,CE=3.57cm,BD=4.38cm,B=450,C=1200.为了复原,请计算原玉佩两边的长(结果精确到0.01cm )例2台风中心位于某市正东方向300km 处,正以40km/h 的 速度向西北方向移动,距离台风中心250km 范围内将会受到其影响。
如果台风速度不变,那么该市从何时起要遭受台风影响?这种影响持续多长时间(结果精确到0.1h )?例3如图 在△ABC 中,=(x,y ),AC =(u,v),求证:△ABC 的面积S=21︱xv-yu ︱.例4 如图所示,有两条直线AB 和CD 相交成800角,交点是O,甲、乙两人同时从点O 分别沿OA,OC 方向出发,速度分别是4km/h,4.5km/h,3时后两人相距多远(结例5 如图 是公元前约400年古希腊数学家泰特托斯用来构造无理数2,3,5,、、、的图形,试计算图中线段BD 的长度及∠DA B 的大小(长度精确到0.1,角度精确到10)。
例6如图,在梯形ABCD 中,A D ∥BC,AB=5,AC=9,∠BCA=300,∠ADB=450,求BD 的长。
例7 一次机器人足球比赛中,甲队1号机器人由点A 开始作匀速直线运动,到达点B 时,发现足球在点D 处正以2倍于自己的速度向点A 作匀速直线滚动。
如图,已知AB=42dm,AD=17dm,∠BAC=450.若忽略机器人原地旋转所需的时间,则该机器人最快可在何处截住足球?例8 如图所示,已知⊙O 的半径是1,点C 在直径AB○1若∠POB=θ,试将四边形OPDC的面积y表示成θ的函数。
○2求四边形OPDC面积的最大值。
例9自动卸货汽车采用液压机构。
设计时需要计算油泵顶杠BC的长度,如图,已知车厢的最大仰角为600,(指车厢AC与水平线的夹角),油泵顶点B与车厢支点A 之间的距离为 1.95m,AB与水平线之间的夹角为6020/,AC长为 1.40m.计算BC的长度(结果精确到0.01m)。
例10如图所示,两点C,D与烟囱底部在同一水平直线上,在点C1,D1,利用高为1.5m的测角仪器,测得烟囱的仰角分别是α=450和β=600,C,D间的距离是12m,计算烟囱的高AB(结果精确到0.01m)。
例11图是曲柄连杆机构的示意图。
当曲柄CB绕点C旋转时,通过连杆AB的传递,活塞作直线往复运动。
当曲柄在CB0位置时,曲柄和连杆成一条直线,连杆的端○1当曲柄自CB0按顺时针方向旋转角为θ时,其中00≤θ<3600,求活塞移动的距离(即连杆的端点A移动的距离A0A).○2当l=340mm,r=85mm,θ=800时,求A0A的长(结果精确到0.01mm)。
例12如图所示,a是海面上一条南北方向的海防警戒线,在a上点A处有一个水声监测点,另两个水声监测点B,C 分别在A的正东方20km处和54km处。
某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A,20s后监测点C相继收到这一信号,在当时气象条件下,声波在水中的传播速度是1.5km/s. ○1设A到P的距离为xkm,用x表示B,C到P的距离,并求x的值。
○2求静止目标P到海防警戒线a的距离(结果精确到0.01km)。
第二章 数列例1根据下面的通项公式,分别写出数列的前5项。
(1)a n =2n +n (2) a n =(-1)n cos 4n例2写出下列数列的一个通项公式。
(1)3,5,7,9,… (2)1,2,4,8… (3)9,99,999,9999,…例3判断下列无穷数列的增减性。
(1)2,1,0,-1, …,3-n, … (2) 2 1,3 2,43,…,1n n +, …例3作出数列-2 1,4 1,-8 1,161,…,(-21)n ,…的图像,并分析数列的增减性。
例4一辆邮车每天从A 地往B 地运送邮件,沿途(包括A,B )共有8站,从A 地出发时,装上发往后面7站的邮件各一个,到达后面各站后卸下前面各站发往该站的一个邮件,同时装上该站发往下面各站的邮件各一个。
试写出邮车在各站装卸完毕后剩余邮件个数所成的数列,画出该数列的图像,并判断该数列的增减性。
例5判断下列数列是否为等差数列。
(1)a n =2n-1 ; (2) a n =(-1)n .例6已知等差数列{a n },a 1=1,d=2,求通项a n .例7(1)求等差数列9,5,1,的第10项;(2)已知等差数列{a n },a n =4n-3,求首项a 1和公差d.例8已知在等差数列{a n }中,a 5=-20,a 20=-35,试求出数列的通项公式。
例9已知(1,1),(3,5)是等差数列{a n }图像上的两点。
(1)求这个数列的通项公式。
(2)画出这个数列的图像。
(3)判断这个数列的单调性。
例10一个木制梯形架的上、下两底边分别为33cm,75cm,把梯形的两腰各6等分,用平行木条连接各对应分点,构成梯形架的各级,试计算梯形架中间各级的宽度。
例11求前n个正奇数的和。
例12在我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9有关的设计。
例如,北京天坛圆丘的地面由扇环形的石板铺成(如图),最高一层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共9圈,请问:(1)第九圈共有多少块石板?(2) 前9圈一共有多少块石板?例13在数列{a n}中,a n=2n+3,求这个数列自第100项到第200项之和S的值。
例14 在新城大道一侧A处,运来20棵新树苗,一名工人从A处起沿大道一侧路边每隔10米栽一棵树苗,这名工人每次只能运一棵,要栽完这20棵树苗,并返回A 处,植树工人共走了多少路程?例15九江抗洪指挥部接到预报,24h后有一洪峰到达,第二道防线,经计算,需调用20台同型号翻斗车,平均每车工作24h后方可筑成第二道防线。
但目前只有一辆车投入施工,其余的需从昌九高速公路沿线抽调,每隔20min能有一辆车到达。
指挥部最多可调集25辆车,那么在24h内能否构筑成第二道防线?例16以下数列中,那些是等比数列?(1)1,-21,41,-81,161,(2)1,1,1,…,1;(3)1,2,4,8,12,16,20;(4)a, a2, a3,…, a n.例17一个等比数列的首项是2,第2项与第3项的和是12,求它的第8项的值。
例18在各项为负数的数列{a n}中,已知2a n=3a n+1,且a2·a5=278.(1)求证:{a n}是等比数列,并求出通项。
(2)试问-8116是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由。
例19 据报载,中美洲地区毁林严重。
据统计,在20世纪80年代末,每时平均毁林约48hm 2,森林面积每年以3.6%~3.9%的速度减少,迄今被毁面积已达1.3×107hm 2,目前还剩1.9×107hm 2,请你回答以下几个问题; (1)如果以每时平均毁林约48hm 2计算,剩下的森林经过多少年将被毁尽?(2)根据以上计算出的年数n ,如果以每年3.6%~3.9%的速度减少,计算n 年后的毁林情况;(3)若按3.6%的速度减少,估算经过150年后,200年后,250年后及经过300年后森林面积的情况,经过多少年森林将被毁尽?例20○1已知等比数列{a n },a 1=2,q=3,求S3. ○2求等比数列1,2 1,4 1,81,…的前10项的和。
例21五洲电扇厂去年实现利税300万元,计划在以后的5年中每年比上年利税增长10%,问从今年起第5年的利税是多少?这5年的总利税是多少(结果精确到万元)?例22一个热气球在第一分上升了25m的高度,在以后的每一分里,它上升的高度都是它在前一分上升高度的80%。
这个热气球上升的高度能超过125m吗?例23如图所示,作边长为a的正三角形的内切圆,在这个圆内作内接正三角形,然后,再作新三角形的内切圆,如此下去,求前n个内切圆的面积和。
例24银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取,规定每次存入的钱不计复利(暂不考虑利息税)。
(1)若每月存入金额为x元,月利率r保持不变,存期为n个月,试推导出到期整取时本利和的公式。
(2) 若每月初存入金额为500元,月利率为0.3%,到第36个月末,整取时的本利和是多少?(3) 若每月初存入一定金额,月利率是0.3%,希望到12个月末整取时取得本利和2000元,那么每月初应存入的金额是多少?例25定期自动转存模型银行有另一种储蓄业务为定期存款自动转存。
例如,储户某日存入一笔1年期定期存款,1年后,如果储户不取出本利和,则银行自动办理转存业务,第2年的本金就是第1年的本利和。
按照定期存款自动转存的储蓄业务(暂不考虑利息税),我们来讨论以下问题:(1)如果储户存入定期为1年的P元存款,定期年利率为r,连存n年后,再取出本利和。
试求出储户n年后所得本利和的公式;(2) 如果存入1万元定期存款,存期为1年,年利率为2.79%,那么5年后共得本利和多少万元(精确到0.001)?例26 分期付款模型小华准备购买一台售价为5000元的电脑,采用分期付款方式,并在1年内将款全部付清。
商场提出的付款方式为:购买后2个月第1次付款,再过2个月第2次付款、、、购买后12个月第6次付款,每次付款金额相同,约定月利率为0.8%,每月利息按复利计算,求小华每期付的金额是多少?第三章 不等式例1 2003年10月15日9时,我国“神舟”五号载人飞船在酒泉卫星发射中心发射成功,实现了中华民族千年的飞天梦想。
这是自1970年4月24日成功发射“东方红一号”人造卫星以来,我国航天史上又一座新的里程碑,我国已成为继俄、美之后,世界上第三个掌握载人航天技术、成功发射载人飞船的国家。
“东方红一号”例2 《铁路旅行常识》规定:“一、随同成人旅行身高1.2~1.5米的儿童,享受半价客票(以下称儿童票),超过1.5米时应买全价票。
每一成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票。
……十、旅客每人免费携带品的体积和质量是每件物品的外部尺寸长、宽、高之和不超过160厘米,杆状物品不超过200厘米,质量不超过20k g ……”设儿童身高为h (单位:m ),物品外部尺寸长、宽、高之和为p (单位:cm ),请在表空格内填上对应的数学例3如图y=f(x)反映了某公司产品的销售收入y 万元与销售量x/t 的函数关系,y=g(x) 反映了该公司产品的销售成本与销售量的函数关系,试问: (1)当销售量为多少时,该公司赢利(收入大于成本); (2)当销售量为多少时,该公司亏损(收入小于成本)。