必修5 解三角形、数列、不等式
高考数学考点解析及分值分布

高考数学考点解析1.集合与简易逻辑:10-18分主要章节:必修1第一章《集合》、第三章《函数的应用》选修1-1(文)2-1(理)《常用逻辑用语》考查的重点是抽象思维实力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展。
简易逻辑多为考查“充分与必要条件”及命题真伪的判别。
2.函数与导数:30分+主要章节:必修1其次章《基本初等函数》、第三章《函数的应用》必修4第一章《三角函数》必修2第三章《直线与方程》、第四章《园与方程》选修1-1(文)2-1(理)《圆锥曲线与方程》、《导数》选修4-4《极坐标方程》《参数方程》函数是中学数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。
以指数函数、对数函数、复合函数为载体,结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数生成考题,作为选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。
函数与导数的结合的解答题,以切线、极值、最值问题、单调性问题、恒成立问题为设置条件,结合不等式、数列综合成题,也是解答题拉分关键。
3.不等式:5-12分主要章节:必修5第三章《不等式》选修4-5全书一般不会单独命题,会在其他题型中“隐藏”出现,不等式作为一种工具广泛地应用在涉及函数、数列、解几等学问的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。
选择题和填空题主要考查不等式性质、解法及均值不等式。
解答题会与其它学问的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等。
4.数列:20-28分主要章节:必修5其次章《数列》数列是中学数学的重要内容,是初等数学与高等数学的重要连接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,另外一个与其它学问的综合题。
高一数学教学计划(15篇)

高一数学教学计划(15篇)高一数学教学计划1一、教材分析(结构系统、单元内容、重难点)必修5第一章:解三角形。
重点是正弦定理与余弦定理。
难点是正弦定理与余弦定理的应用。
第二章:数列。
重点是等差数列与等比数列的前n项的和。
难点是等差数列与等比数列前n项的和与应用。
第三章:不等式。
重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式。
难点是二元一次不等式(组)与简单的线性规划问题及应用。
必修2第一章:空间几何体。
重点是空间几何体的三视图和直观图及表面积与体积。
难点是空间几何体的三视图。
第二章:点、直线、平面之间的位置关系。
重点与难点都是直线与平面平行及垂直的判定及其性质。
第三章:直线与方程。
重点是直线的倾斜角与斜率及直线方程。
难点是如何选择恰当的直线方程求解题目。
第四章:圆与方程。
重点是圆的方程及直线与圆的位置关系。
难点是直线与圆的位置关系。
二、学生分析(双基智能水平、学习态度、方法、纪律)较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求1、通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2、通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数。
理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3、理解不等式(组)对于刻画不等关系的意义和价值。
掌握求解一元二次不等式的基本方法,并能解决一些实际问题。
能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4、几何学研究现实世界中物体的形状、大小与位置的学科。
直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。
先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法。
高中数学必修5解三角形、数列、不等式测试题

高中数学必修5解三角形、数列、不等式测试题(考试时间120分钟,总分150分)一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上)1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab2C .2a-2b<0 D.1a >1b2.sin15°cos45°+cos15°sin45°等于( ) A .0B .21 C .23 D .13.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23 C.1 D.34.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 1015.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .6 6.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3B. 4C. 5D. 67.不等式20(0)ax bx c a ++<≠的解集为R ,那么( )A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D. 0,0a >∆>8.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 9.若)4πtan(α-=3,则tan α 等于( ) A .-2 B .21-C .21 D .210.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( )A .1B .-1C .2D .-211.下列各式中,值为23的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°12.关于x 的方程2210ax x +-=至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-1二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =14. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为15.不等式21131x x ->+的解集是 . 16. 已知数列{}n a 满足23123222241n n n a a a a ++++=-,则{}n a 的通项公式 三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤,并把正确解答过程写在答题卡上)17. (10分)(1) 解不等式0542<++-x x ,(2)求函数的定义域:5y =18.(12分)等差数列{}n a 满足 212=a ,155=a ,求通项n a 及前n 项和的最大值.19.(12分)在△ABC 中,BC =a ,AC =b ,a ,b是方程220x -+=的两个根, 且2()1coc A B +=。
高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案【导语】高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。
这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。
为了助你一臂之力,无忧考网高中频道为你精心准备了《高三数学必修五《不等关系与不等式》教案》助你金榜题名!教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0��a>b;a-b=0��a=b;a-b<0��a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差――变形――判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y<0时,x-yy<0,即xy-1<0.∴xy<1;当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m b-a b b+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3―1A组3;习题3―1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的�C明二【基�A��】1.若,,�t下列不等始�K正�_的是()2.�Oa,b����担�且,�t的最小值是()4.求�C:�θ魏问��x,y,z,下述三��不等式不可能同�r成立。
高中数学数列、解三角形、不等式综合复习

本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。
在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。
考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。
(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。
(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。
分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。
通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。
再对m取特值验证。
也可利用二次函数的图像解决。
(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。
或取特值验证。
(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。
解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。
(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。
故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。
首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。
(4)由方程得:-(4+a)=.故此命题错误。
考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。
高二数学常考题型的总结(学生版)

高二数学常考题型的总结(必修五)第一章 解三角形考点一 正弦定理的应用例1:在中,60,10,15===A b a ,则=B cos考点二 余弦定理的应用例2:在∆ABC 中,已知32=a ,26+=c , 60=B ,求b 的值考点三 正、余弦定理的混合应用例3:设ABC ∆的内角,,A B C 所对边的长别离为,,a b c 。
若2b c a +=,则3sin 5sin ,A B =则角C =_____.考点四 三角形的面积问题例4:在ABC ∆中,角C B A 、、所对应的边别离为c b a 、、,若B C A 2=+,且,3,1==b a 求ABCS ∆的值考点五 最值问题例5:在ABC ∆中,的最大值为考点六 三角形形状的判断例6:已知ABC ∆中,B b A a cos cos =,判断三角形的形状考点七 三角形个数的判断例7:在ABC ∆中,角C B A 、、所对应的边别离为c b a 、、,若 30=A ,且,3,1==b a 求c 的值考点八 大体不等式在解三角形上的应用例8:在ABC ∆中,角C B A 、、所对应的边别离为c b a 、、,若2,4==b a π,求ABC ∆的面积的最大值。
例9:设ABC △的内角A B C ,,所对的边长别离为a b c ,,,且3cos cos 5a Bb Ac -=,求tan()A B -的最大值。
考点九 平面向量在解三角形上的应用例10:在ABC ∆中,6,AC AB ⋅=ABC ∆的面积AABC ∆60,B AC =2AB BC +例11:在ABC ∆中,边c 所对的角为C ,向量)2sin ,2(cos ),2sin ,2(cos CC n C C m -==,且向量m 与n 的夹角是3π,求角C 的大小 考点十 数列在解三角形上的应用例12:设ABC △的内角A B C ,,所对的边长别离为a b c ,,,若a b c ,,依次成等比数列,角B 的取值范围.考点十一 解三角形的实际应用例13:如图,D C B A 、、、都在同一个与水平面垂直的平面内,D B 、为两岛上的两座灯塔的塔顶。
[高中数学新课程标准]高中数学新课程标准
[高中数学新课程标准]高中数学新课程标准篇一: 高中数学新课程标准高中数学新课程标准第一部分前言数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。
[]数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。
数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。
数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。
数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
数学教育作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面、在推动社会进步和发展的进程中起着重要的作用。
在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。
数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。
一、课程性质高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。
高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。
高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。
高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。
同时,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。
二、课程的基本理念1.构建共同基础,提供发展平台高中教育属于基础教育。
[]高中数学课程应具有基础性,它包括两方面的含义:第一,在义务教育阶段之后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;第二,为学生进一步学习提供必要的数学准备。
高二数学必修五 第一章 解三角形
高二数学必修五 第一章解三角形一、本章知识结构:二、基础要点归纳1、三角形的性质: ①.A+B+C=π,222A B Cπ+=-⇒sin()sin A B C +=, cos()cos A B C +=-,sincos 22A B C+= ②.在ABC ∆中,a b +>c , a b -<c ; A >B ⇔sin A >sin B ,A >B ⇔cosA <cosB, a >b ⇔A >B③.假设ABC ∆为锐角∆,那么A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C === (2R 为ABC ∆外接圆的直径) 111sin sin sin 222ABCS ab C bc A ac B ∆=== ②.余弦定理:2222cos a b c bc A =+-222cos 2b c a A bc +-=2222cos b a c ac B =+-222cos 2a c b B ac+-=2222cos c a b ab C =+-222cos 2a b c C ab+-=〔必修五〕第二章、数列一、本章知识结构:二、本章要点归纳:1、数列的定义及数列的通项公式:①.()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值。
②.n a 的求法:i.归纳法。
ii.11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 假设00S =,那么n a 不分段;假设00S ≠,那么n a 分段。
iii. 假设1n n a pa q +=+,那么可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +。
iv. 假设()n n S f a =,那么先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式.2.等差数列:① 定义:1n n a a +-=d 〔常数〕,证明数列是等差数列的重要工具。
(压轴题)高中数学必修五第二章《解三角形》测试(有答案解析)(3)
一、选择题1.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos 8AOB ∠=-,则此山的高PO =( )A .1 kmB .2km 2C . 3 kmD . 2 km2.如图,四边形ABCD 中,CE 平分ACD ∠,23AE CE ==,3DE =,若ABC ACD ∠=∠,则四边形ABCD 周长的最大值( )A .24B .1233+C .183D .(3533.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1B .2C .4D .64.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π5.设,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=与sin sin 0b x y B C ⋅-⋅+=位置关系是( ) A .平行B .重合C .垂直D .相交但不垂直6.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106 m (如图),则旗杆的高度为( )A .10 mB .30 mC .103 mD .106 m7.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .53km8.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos cos a B b A B =,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定9.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线79BD =△ABC 的周长为( ) A .15 B .14C .16D .12 10.在ABC 中,若2a =,3b =30A =︒,则B 等于( )A .30B .30或150︒C .60︒D .60︒或120︒11.在钝角ABC ∆中,角A B C ,,的对边分别是a b c ,,,若3013C c a =︒==,,ABC ∆的面积为A 3B 3C .34D .3212.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .23D .43二、填空题13.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭,则角B =______.14.在ABC 中,3A π∠=,D 是BC 的中点.若34AD BC ≤,则sin sin B C 的最大值为____________.15.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________16.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +c =2b ,3sin B =5sin A ,则C =_____.17.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22212b c a -=,则tan B =________.18.在相距3千米的A ,B 两个观察点观察目标点C ,其中观察点B 在观察点A 的正东方向,在观察点A 处观察,目标点C 在北偏东15︒方向上,在观察点B 处观察,目标点C 在西北方向上,则A ,C 两点之间的距离是______千米.19.在ABC 中,cos cos 3A B +=23AB =sin sin A B +取最大值时,ABC 的外接圆半径为________.20.如图,在ABC 中,点D 是边BC 上的一点,1DC =,2AC =,3BD =,120BAD ∠=︒,则AB 的长为________.三、解答题21.已知在△ABC 3sin (A +B )=1+2sin 22C . (1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.22.已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,22(sin sin )sin sin sin A B C A B -=-.(Ⅰ)求角C 的大小;(Ⅱ)若3a b =,求cos(2)B C +的值.23.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()sin sin sin b c CB A b a-=-+.(1)求A ; (2)若2a =,求11tan tan B C+的最小值. 24.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A 为锐角,22sin cos 2c a B C ab--=. (1)求A ;(2)若34b =,且BC 边上的高为3ABC 的面积. 25.已知ABC 中,角,,A B C 所对的边分别为,,a b c ,且()2cos cosA cosC b 0a C c ++=(1)求角C 的大小;(2)求22sin sin A B +的取值范围.26.在①2222b ac a c =+,②cos sin a B b A =,③sin cos 2B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,___________,3A π=,2b =ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以)2222.532333h h h h =+-⨯⎛ ⎝⎭⨯,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.2.D解析:D 【分析】ACD △和CDE △中,结合正弦定理可求得6ACE DCE π∠=∠=,这样可得,DC AC ,在ABC 中,由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,应用基本不等式可得AB BC +的最大值,从而可得四边形ABCD 周长的最大值.【详解】设ABC ACD ∠=∠2θ=,(0,)2πθ∈,∵CE 平分ACD ∠,∴DCE ACE θ∠=∠=, 又AE CE =,∴EAC ACE θ∠=∠=,AE CE ==DE =AD =ACD △中,由正弦定理得sin sin CD AD DAC ACD =∠∠,则CD ==, CDE △中,2DEC EAC ECA θ∠=∠+∠=,由正弦定理得sin sin CD DE CED DCE =∠∠,则2sin CD θθθ==,∴2cos θθ=,解得cos θ=,6πθ=,∴3CD ==,ACD △中,由角平分线定理得AC AE CD DE ==,得236AC =⨯=. ABC 中,23ABC πθ∠==,由余弦定理得2222cos 3AC AB BC AB BC π=+-⋅,即2222223136()3()()()44AB BC AB BC AB BC AB BC AB BC AB BC AB BC =+-⋅=+-⋅≥+-+=+,当且仅当AB BC =时等号成立,12AB BC +≤,此时ABC 为等边三角形.∴AB BC CD DA +++的最大值为12315++=+ 故选:D . 【点睛】本题主要考查正弦定理、余弦定理的应用,考查基本不等式求最值,在平面图形中充分利用平面几何的知识可减少计算量.本题解题关键是求出6ACE π∠=.3.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.4.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,2R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.C解析:C 【解析】,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=斜率为:sin Aa-, sin sin 0b x y B C ⋅-⋅+=的斜率为:sin bB, ∵sin sin A ba B -=﹣1,∴两条直线垂直.故选C .6.B解析:B 【分析】作图,分别求得∠ABC ,∠ACB 和∠BAC ,然后利用正弦定理求得AC ,最后在直角三角形ACD 中求得AD . 【详解】 解:如图,依题意知∠ABC =30°+15°=45°,∠ACB =180°﹣60°﹣15°=105°, ∴∠BAC =180°﹣45°﹣105°=30°, 由正弦定理知BC ACsin BAC sin ABC=∠∠,∴AC BC sin BAC=∠•sin ∠ABC1062122=⨯=3m ), 在Rt △ACD 中,AD 32=•AC 32=⨯3=30(m ) 即旗杆的高度为30m . 故选B . 【点睛】本题主要考查了解三角形的实际应用.结合了正弦定理等基础知识,考查了学生分析和推理的能力.7.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=, 在ABP ∆中,利用正弦定理得30sin 30103sin120PB ==即这时船与灯塔的距离是103km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.8.B解析:B 【分析】根据正弦定理得到2sin sin sin cos cos A B B A B =,化简得到()sin cos 0B A B -+=,计算得到答案. 【详解】2sin cos cos a B b A B =,所以2sin sin sin cos cos A B B A B =,所以()sin sin sin cos cos 0B A B A B -=,即()sin cos 0B A B -+=. 因为0A π<<,0B π<<,所以2A B π+=,故ABC ∆是直角三角形.故选:B 【点睛】本题考查了正弦定理和三角恒等变换,意在考查学生对于三角公式的综合应用.9.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.10.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.11.A解析:A 【分析】根据已知求出b 的值,再求三角形的面积. 【详解】在ABC ∆中,301C c a =︒==,, 由余弦定理得:2222cos c a b a b C =+-⋅⋅, 即2320b b -+=, 解得:1b =或2b =.∵ABC ∆是钝角三角形,∴2b =(此时为直角三角形舍去).∴ABC ∆的面积为111sin 1222ab C =⨯=. 故选A . 【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.12.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=, 设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为故选:C.【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题. 二、填空题13.【分析】由正弦定理及可得结合两角差余弦公式可得进而可得到值【详解】由正弦定理及可得:在中∴即∴又B 为三角形内角∴=故答案为:【点睛】本题考查三角形中求角的问题涉及到正弦定理两角差余弦公式考查计算能力 解析:π3B =【分析】 由正弦定理及πsin cos 6b A a B ⎛⎫=-⎪⎝⎭可得πsin sin sin cos 6B A A B ⎛⎫=- ⎪⎝⎭,结合两角差余弦公式可得tanB =B 值. 【详解】 由正弦定理及πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭可得:πsin sin sin cos 6B A A B ⎛⎫=- ⎪⎝⎭,在ABC 中,sin 0A ≠, ∴πsin cos 6B B ⎛⎫=-⎪⎝⎭,即ππsin cos cos sin sin 66B B B =+ ∴tanB =B 为三角形内角,∴B =3π 故答案为:3π. 【点睛】本题考查三角形中求角的问题,涉及到正弦定理,两角差余弦公式,考查计算能力,属于基础题.14.【分析】设三角形三条边长分别为先分析得到再利用余弦定理得到最后利用正弦定理即得解【详解】设三角形三条边长分别为那么因为所以故由题意得故答案为:【点睛】本题主要考查正弦定理和余弦定理解三角形意在考查学 解析:1532【分析】设AD x =,三角形三条边长分别为,,a b c ,先分析得到222138b c a +≤,再利用余弦定理得到258bc a ≤,最后利用正弦定理即得解. 【详解】设AD x =,三角形三条边长分别为,,a b c ,那么2243,169x a x a ≤∴≤,因为cos cos 0ADB ADC ∠+∠=所以2222422+=+x a b c , 故2222222213168849,8x b c a a b c a =+-≤∴+≤ 由题意得222222221135cos ,,2288b c a A b c bc a a bc a bc +-==∴+=+≤∴≤ 255315sin sin sin =88432B C A ∴≤=⨯. 故答案为:1532【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平. 15.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值.【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =.设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BC B A =∠∠,即32sin(3)sin παα=-, 整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=,结合sin 0α≠得222(2cos 12cos )3αα-+=, 即258cos α=,显然α是锐角,所以cos αα=∴sin 22sin cos ααα==. 再由ABC 得:2sin sin 2AB αα=,∴= 解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.16.【分析】由正余弦定理可得的余弦值进而求出的值【详解】因为则由正弦定理可得所以又所以由余弦定理可得又因为所以故答案为:【点睛】本题主要考查了正余弦定理的应用考查了运算能力属于中档题解析:23π 【分析】由正余弦定理可得C 的余弦值,进而求出C 的值.【详解】因为3sin 5sin B A =,则由正弦定理可得35b a =,所以35a b =, 又2a c b +=,所以725c b a b =-=, 由余弦定理可得22222294912525cos 32225b b b a b c C ab b b +-+-===-⋅⋅, 又因为(0,)C π∈,所以23C π=, 故答案为:23π.【点睛】本题主要考查了正余弦定理的应用,考查了运算能力,属于中档题.17.3【分析】由题意结合余弦定理得进而可得再由余弦定理即可求得利用平方关系求得进而求得【详解】由余弦定理可得即又所以所以所以所以所以所以故答案为:3【点睛】本题考查了余弦定理的综合应用考查了同角三角函数 解析:3【分析】由题意结合余弦定理得3c =,进而可得3a b =,再由余弦定理即可求得cos 10B =,利用平方关系求得sin 10B =,进而求得sin tan 3cos B B B ==. 【详解】4A π=,∴由余弦定理可得2222cos a b c bc A =+-即222b a c -=-, 又22212b a c -=,所以2212c c =-,所以3c =, 222222145299a b c b b b =-=-=,所以3a b =,所以22222258cos 2b b b a c b B ac +-+-===,所以sin B ==, 所以sin tan 3cos B B B==, 故答案为:3.【点睛】本题考查了余弦定理的综合应用,考查了同角三角函数关系式,考查了运算求解能力与转化化归思想,属于中档题.18.【分析】在中则再由正弦定理列出方程即可求解【详解】由题设可知在中所以由正弦定理得即解得故答案为:【点睛】本题主要考查了解三角形的实际应用其中解答中熟练应用正弦定理列出方程是解答的关键着重考查运算与求【分析】在ABC 中,75CAB ∠=︒,45CBA ∠=︒,则60ACB ∠=︒,再由正弦定理列出方程,即可求解.【详解】由题设可知,在ABC 中,75CAB ∠=︒,45CBA ∠=︒,所以60ACB ∠=︒,由正弦定理得sin sin AB AC ACB CBA =∠∠,即3sin 60sin 45AC =,解得AC =..【点睛】本题主要考查了解三角形的实际应用,其中解答中熟练应用正弦定理,列出方程是解答的关键,着重考查运算与求解能力,属于基础题.19.2【分析】设与两边平方后相加可得即可知时最大可得角再利用正弦定理即可求解【详解】设则又因为所以所以所以当时此时的外接圆半径为故答案为:2【点睛】本题主要考查了正弦定理二倍角公式三角函数的性质同角三角 解析:2【分析】设sin sin A B t +=与cos cos A B +=两边平方后相加,可得2322cos()A B t +=+-,即21cos()2t A B +-=,可知A B =时,sin sin =+t A B 最大,可得角C ,再利用正弦定理即可求解.【详解】设sin sin A B t +=,则()2222sin sin sin sin 2sin sin t A B A B A B =+=++, 又因为()2223cos cos cos cos 2cos cos A B A B A B =+=++,所以222223sin 2sin sin sin cos 2cos cos cos t A A B B A A B B +=+++++ 22cos()B A =+-,所以21cos()2t A B +-=, 所以当A B =时,max 1=t ,23C π∠=,此时ABC 2=. 故答案为:2【点睛】本题主要考查了正弦定理、二倍角公式、三角函数的性质、同角三角函数基本关系,属于中档题. 20.【分析】在两个三角形中利用余弦定理建立等量关系式整理得出结合题中所给的条件利用余弦定理建立等量关系式求得结果【详解】因为所以可得在△中所以整理得出所以所以故答案为:【点睛】该题考查的是有关解三角形的解析:677 【分析】 在两个三角形中,利用余弦定理,建立等量关系式,整理得出2AB AD =,结合题中所给的条件,利用余弦定理建立等量关系式,求得结果. 【详解】 因为cos cos ADB ADC ∠=-∠,所以2229142321AD AB AD AD AD+-+-=-⨯⨯⨯⨯,可得2AB AD =, 在△ABD 中,2222cos BD AD AB AD AB BAD =+-⨯⨯∠,所以22192()422AB AB AB AB =+-⨯⨯⨯-, 整理得出2794AB =,所以2367AB =,所以67AB =, 故答案为:67. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理解三角形,属于简单题目.三、解答题21.(1)3π ;(2)4+23. 【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin (C +6π)=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出AIB ∠,设出ABI ∠,将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值可得解.【详解】(1)∵3sin (A +B )=1+2sin 22C ,且A +B +C =π, ∴3sin C =1+1﹣cos C =2﹣cos C ,即3sin C +cos C =2,∴sin (C +6π)=1. ∵C ∈(0,π),∴C +6π∈(6π,76π),∴C +6π=2π,即C =3π.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,sin AB ACB ∠=sin3ABπ=2×2=4,∴AB=23,∵∠ACB=3π,∴∠ABC+∠BAC=23π,∵∠BAC与∠ABC的内角平分线交于点Ⅰ,∴∠ABI+∠BAI=3π,∴∠AIB=23π,设∠ABI=θ,则∠BAI=3π﹣θ,且0<θ<3π,在△ABI中,由正弦定理得,sin()3BIπθ-=sinAIθ=sinABAIB∠23sin34,∴BI=4sin(3π﹣θ),AI=4sinθ,∴△ABI的周长为3+4sin(3π﹣θ)+4sinθ=3(32cosθ﹣12sinθ)+4sinθ=33θ+2sinθ=4sin(θ+3π)3∵0<θ<3π,∴3π<θ+3π<23π,∴当θ+3π=2π,即6πθ=时,△ABI的周长取得最大值,最大值为3,故△ABI的周长的最大值为3.【点睛】关键点点睛:将,AI BI用ABI∠表示,根据三角函数知识求出AI BI+的最大值是解题关键.22.(Ⅰ)3π;(Ⅱ)17-.【分析】(Ⅰ)利用正弦定理的边角互化以及余弦定理即可求解.(Ⅱ)利用正弦定理的边角互化可得sin3sinA B=,再由23A Bπ+=求出3tan B=,再利用两角和的余弦公式即可求解.【详解】(Ⅰ)∵22(sin sin )sin sin sin A B C A B -=-∴由正弦定理得22()a b c ab -=-,即222a b c ab +-= ∴1cos 2C =, 又∵(0,)C π∈ ∴3C π=;(Ⅱ)∵3a b =,∴由正弦定理得sin 3sin A B =, ∵23A B π+=,∴2sin 3sin 3B B π⎛⎫-= ⎪⎝⎭,∴tan B =,∴0,2B π⎛⎫∈ ⎪⎝⎭∴sin B B == ,∴11sin 22sin cos 214B B B B === ∴1cos(2)cos 2cos sin 2sin 7BC B C B C +=-=-23.(1)3π;(2)3. 【分析】 (1)根据题设条件和正弦定理,化简得到222b c a bc +-=,再利用余弦定理,求得cos A 的值,即可求解;(2)由余弦定理和基本不等式,求得2bc a ≤,在结合正弦定理和三角恒等变换的公式,化简得22sin 22si 11tan tan n 2sin R R A R a R B R C B bcC ⋅⋅==⋅+,即可解. 【详解】(1)由()sin sin sin b c CB A b a -=-+,可得()()()sin sin sin b cC B A b a -=-+,由正弦定理得()()()b c c b a b a -=-+,即222b c a bc +-=, 由余弦定理,得2221cos 22b c a A bc +-==, 因为0A π<<,可得3A π=.(2)由(1)知3A π=,设三角形的外接圆的半径为R ,可得2sin a R A == 又由余弦定理得222222cos a b c bc A b c bc bc =+-=+-≥,即24bc a ≤=,当且仅当2b c ==时取等号, 又由11cos cos cos sin sin cos tan tan sin sin sin sin B C B C B C B C B C B C++=+=()sin sin sin sin sin sin B C A B C B C +==22sin 2sin 2sin R R A R B R C ⋅=⋅23343R a bc bc ⋅==≥=⨯, 其中R 是ABC 外接圆的半径,所以11tan tan B C +.24.(1)6π;(2) 【分析】(1)先用余弦定理化余弦为边,再用正弦定理化边为角从而求得A ;(2)由余弦定理用c 表示a ,然后把三角形的面积用两种方法表示求得c ,从而可计算出面积.【详解】(1)由22sin cos 2c a B C ab--=得222sin 2cos ab B ab C c a -=-, 由余弦定理得222222sin ab B c a b c a +--=-,所以2sin a B b =,由正弦定理得2sin sin sin A B B =,B 是三角形内角,sin 0B ≠, 所以1sin 2A =,又A 为锐角,所以6A π=.(2)由(1)2222232cos 2cos 166a b c bc A c c c π=+-=+-⋅⋅2716c =,4a c =,所以11sin 22ABC S bc A a ==⨯△211124224c ⨯⨯=⨯⨯c =b == 111sin 222ABC S bc A ===△ 【点睛】思路点睛:本题考查正弦定理、余弦定理、三角形面积公式.利用正弦定理和余弦定理进行边角互化是解题关键.三角形的面积采取了二次计算,通过不同的计算方法得出等式,从而求解.这是一种解题技巧.25.(1)23C π=;(2)13,24⎡⎫⎪⎢⎣⎭. 【分析】(1)利用正弦定理的边角互化即可求解.(2)利用二倍角公式以及三角形的内角和性质可得22sin sin A B +11sin 226A π⎛⎫=-+ ⎪⎝⎭,利用三角函数的性质即可求解. 【详解】解:(1)由已知及正弦定理得2(sin cos sin cos )cos sin 0A C C A C B ++=,2sin()cos sin 0A C C B ++=,因为A B C π+=-,所以sin (2cos 1)0B C +=, 因为sin 0B ≠,所以1cos 2C =-, 因为0C π<<,所以23C π=. (2)221cos 21cos 21sin sin 1(cos 2cos 2)222A B A B A B --+=+=-+12111cos 2cos 21cos 2cos 2223222A A A A A π⎛⎫⎡⎤⎛⎫=-+-=--+ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭1111cos 221sin 22226A A A π⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为03A π<<,所以52666A πππ<+<,1sin 2126A π⎛⎫<+≤ ⎪⎝⎭, 111sin 22264A π⎛⎫-≤-+<- ⎪⎝⎭,1131sin 22264A π⎛⎫≤-+< ⎪⎝⎭, 所以2213sin sin 24A B ≤+<,即22sin sin A B +的取值范围是13,24⎡⎫⎪⎢⎣⎭.26.条件选择见解析;ABC 【分析】选择①,用余弦定理求得B 角,选择②,用正弦定理化边为角后求得B 角,选择③用两角和的正弦公式变形后求得B 角,然后利用正弦定理求得a ,再由诱导公式与两角和的正弦公式求得sin C ,最后由面积公式计算出面积.【详解】解:(1)若选择①,222b a c =+由余弦定理,222cos 222a cb B ac ac +-===, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭所以113sin 2244ABC S ab C +===△. (2)若选择②cos sin a B b A =,则sin cos sin sin A B B A =, 因为sin 0A ≠,所以sin cos B B =, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭,所以113sin 2244ABC S ab C +===△. (3)若选择③sin cos B B +=4B π⎛⎫+= ⎪⎝⎭sin 14B π⎛⎫+= ⎪⎝⎭, 因为()0,B π∈,所以5,444B πππ⎛⎫+∈ ⎪⎝⎭, 所以42B ππ+=,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△. 【点睛】关键点点睛:本题考查正弦定理、余弦定理、三角形的面积公式,解题中要注意条件与结论之间的联系,确定选用的公式与顺序.用正弦定理进行边角转换是一种重要技巧,它的目的是边角分离,公式应用明确.本题是求三角形面积,一般要知道两边和夹角的正弦,在已知一角和一边情况下还需要求得一条边长及两边夹角,这样我们可以采取先求B 角,再求a 边和sin C ,从而得面积.。
考试形式与试卷结构
Ⅳ.考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式.考试时间为120分钟.考试不允许使用计算器.二、考试范围考试范围分为必考内容和选考内容.必考内容具体如下:数学1(必修):集合、函数概念与基本初步等函数Ⅰ(指数函数、对数函数、幂函数).数学2(必修):立体几何初步、平面解析几何初步.数学3(必修):算法初步、统计、概率.数学4(必修):基本初等函数Ⅱ(三角函数)、平面向量、三角恒等变换.数学5(必修):解三角形、数列、不等式.选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量、三角恒等变换.选修2—2:导数及其应用、推理与证明、数系的扩充与复数的引入.选修2—3:计数原理、统计案例、概率.选考内容如下:选修4—4:坐标系与参数方程.选修4—5:不等式选讲.三、试卷结构1.试题类型全卷分为第Ⅰ卷和第Ⅱ卷两部分,满分为150分.试卷结构如下:2.难度控制试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题为难题.三种难度的试题应控制合适的分值比例,全卷难度控制适中.Ⅴ.具体考试内容及其要求一、必考内容和要求(1)集合1.集合的含义与表示(1)了解集合的含义,体会元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.(二)函数概念与基本初等函数Ⅰ1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.(4)理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用基本初等函数的图像分析函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点(3)体会对数函数是一类重要的函数模型;4.幂函数(1)了解幂函数的概念.(2)结合函数的图像,了解它们的变化情况.5.函数与方程(1)结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.(2)根据具体的函数图像,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会简单应用空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差(不要求记忆公式).(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(八)基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念和弧度制的概念.(2)能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出α,π± α的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大值和最小值以及与 x 轴交点等).理解正切函数在区间内的单调性.(6)体会三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念和两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十)三角恒等变换1.两角和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)会用两角差的余弦公式推导出两角差的正弦、正切公式.(3)会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).(2)了解数列是自变量为正整数的一类特殊函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十四)常用逻辑用语(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的意义.(4)了解逻辑联结词“或”、“且”、“非”的含义.(5)理解全称量词与存在量词的意义.(6)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质(范围、对称性、定点、离心率).(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、定点、离心率、渐近线).(4)了解曲线与方程的对应关系(5)理解数形结合的思想(6)了解圆锥曲线的简单应用.(十六)空间向量与立体几何(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线与垂直.(4)解直线的方向向量与平面的法向量.(5)能用向量语言表述线线、线面、面面的平行和垂直关系.(6)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(7)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用.(十七)导数及其应用(1)了解导数概念的实际背景.(2)通过函数图像直观理解导数的几何意义.(3)根据导数的定义求函数(c为常数)的导数.(4)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.·常见基本初等函数的导数公式和常用导数运算公式:·常用的导数运算法则:法则2.法则3 .(5)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(6)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(7)会用导数解决某些实际问题..(8)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.(9)了解微积分基本定理的含义.(十八)推理与证明(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.(2)了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运“三段论”进行一些简单的演绎推理.(3)了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.(4)了解反证法的思考过程和特点.(5)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.(十九)数系的扩充与复数的引入1.复数的概念(1)理解复数的基本概念(2)理解复数相等的充要条件.(3)了解复数的代数表示法及其几何意义;2.复数的四则运算(1)能进行复数代数形式的四则运算(2)了解复数的代数形式的加、减运算的几何意义.(二十)计数原理1.分类加法计数原理、分布乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分布乘法计数原理分析和解决一些简单的实际问题.2.排列与组合(1)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.(2)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.(3)会用二项式定理解决与二项展开式有关的简单问题.(二十一)概率与统计(1)理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列.(2)了解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率的概念,了解两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题.(5)借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.(6)了解回归的基本思想、方法及其简单应用.(7)了解独立性检验的思想、方法及其初步应用.二、选考内容与要求(一)坐标系与参数方程(1)了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.(3)能在极坐标系中用极坐标刻画点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(4)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.通过比较这些图形的极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.(二)不等式选讲(1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:∣a+b∣≤∣a∣+∣b∣;∣a-b∣≤∣a-c∣+∣c-b∣;会利用绝对值的几何意义求解以下类型的不等式:∣ax+b∣≤c;∣ax+b∣≥c;∣x-c+∣x-b∣≥a(2)能够利用平均值不等式证明一些简单问题和求一些特点函数的最大(小)值(3)了解证明不等式的基本方法:比较法、综合法、分析法、放缩法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 解三角形例1 某地出土一块类似三角形刀状的古代玉佩,其一角已破损,现测得如下数据:BC=2.57cm,CE=3.57cm,BD=4.38cm,B=450,C=1200.为了复原,请计算原玉佩两边的长(结果精确到0.01cm )例2台风中心位于某市正东方向300km 处,正以40km/h 的 速度向西北方向移动,距离台风中心250km 范围内将会受到其影响。
如果台风速度不变,那么该市从何时起要遭受台风影响?这种影响持续多长时间(结果精确到0.1h )?例3如图 在△ABC 中,=(x,y ),AC =(u,v),求证:△ABC 的面积S=21︱xv-yu ︱.例4 如图所示,有两条直线AB 和CD 相交成800角,交点是O,甲、乙两人同时从点O 分别沿OA,OC 方向出发,速度分别是4km/h,4.5km/h,3时后两人相距多远(结例5 如图 是公元前约400年古希腊数学家泰特托斯用来构造无理数2,3,5,、、、的图形,试计算图中线段BD 的长度及∠DA B 的大小(长度精确到0.1,角度精确到10)。
例6如图,在梯形ABCD 中,A D ∥BC,AB=5,AC=9,∠BCA=300,∠ADB=450,求BD 的长。
例7 一次机器人足球比赛中,甲队1号机器人由点A 开始作匀速直线运动,到达点B 时,发现足球在点D 处正以2倍于自己的速度向点A 作匀速直线滚动。
如图,已知AB=42dm,AD=17dm,∠BAC=450.若忽略机器人原地旋转所需的时间,则该机器人最快可在何处截住足球?例8 如图所示,已知⊙O 的半径是1,点C 在直径AB○1若∠POB=θ,试将四边形OPDC的面积y表示成θ的函数。
○2求四边形OPDC面积的最大值。
例9自动卸货汽车采用液压机构。
设计时需要计算油泵顶杠BC的长度,如图,已知车厢的最大仰角为600,(指车厢AC与水平线的夹角),油泵顶点B与车厢支点A 之间的距离为 1.95m,AB与水平线之间的夹角为6020/,AC长为 1.40m.计算BC的长度(结果精确到0.01m)。
例10如图所示,两点C,D与烟囱底部在同一水平直线上,在点C1,D1,利用高为1.5m的测角仪器,测得烟囱的仰角分别是α=450和β=600,C,D间的距离是12m,计算烟囱的高AB(结果精确到0.01m)。
例11图是曲柄连杆机构的示意图。
当曲柄CB绕点C旋转时,通过连杆AB的传递,活塞作直线往复运动。
当曲柄在CB0位置时,曲柄和连杆成一条直线,连杆的端○1当曲柄自CB0按顺时针方向旋转角为θ时,其中00≤θ<3600,求活塞移动的距离(即连杆的端点A移动的距离A0A).○2当l=340mm,r=85mm,θ=800时,求A0A的长(结果精确到0.01mm)。
例12如图所示,a是海面上一条南北方向的海防警戒线,在a上点A处有一个水声监测点,另两个水声监测点B,C 分别在A的正东方20km处和54km处。
某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A,20s后监测点C相继收到这一信号,在当时气象条件下,声波在水中的传播速度是1.5km/s. ○1设A到P的距离为xkm,用x表示B,C到P的距离,并求x的值。
○2求静止目标P到海防警戒线a的距离(结果精确到0.01km)。
第二章 数列例1根据下面的通项公式,分别写出数列的前5项。
(1)a n =2n +n (2) a n =(-1)n cos 4n例2写出下列数列的一个通项公式。
(1)3,5,7,9,… (2)1,2,4,8… (3)9,99,999,9999,…例3判断下列无穷数列的增减性。
(1)2,1,0,-1, …,3-n, … (2) 2 1,3 2,43,…,1n n +, …例3作出数列-2 1,4 1,-8 1,161,…,(-21)n ,…的图像,并分析数列的增减性。
例4一辆邮车每天从A 地往B 地运送邮件,沿途(包括A,B )共有8站,从A 地出发时,装上发往后面7站的邮件各一个,到达后面各站后卸下前面各站发往该站的一个邮件,同时装上该站发往下面各站的邮件各一个。
试写出邮车在各站装卸完毕后剩余邮件个数所成的数列,画出该数列的图像,并判断该数列的增减性。
例5判断下列数列是否为等差数列。
(1)a n =2n-1 ; (2) a n =(-1)n .例6已知等差数列{a n },a 1=1,d=2,求通项a n .例7(1)求等差数列9,5,1,的第10项;(2)已知等差数列{a n },a n =4n-3,求首项a 1和公差d.例8已知在等差数列{a n }中,a 5=-20,a 20=-35,试求出数列的通项公式。
例9已知(1,1),(3,5)是等差数列{a n }图像上的两点。
(1)求这个数列的通项公式。
(2)画出这个数列的图像。
(3)判断这个数列的单调性。
例10一个木制梯形架的上、下两底边分别为33cm,75cm,把梯形的两腰各6等分,用平行木条连接各对应分点,构成梯形架的各级,试计算梯形架中间各级的宽度。
例11求前n个正奇数的和。
例12在我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9有关的设计。
例如,北京天坛圆丘的地面由扇环形的石板铺成(如图),最高一层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共9圈,请问:(1)第九圈共有多少块石板?(2) 前9圈一共有多少块石板?例13在数列{a n}中,a n=2n+3,求这个数列自第100项到第200项之和S的值。
例14 在新城大道一侧A处,运来20棵新树苗,一名工人从A处起沿大道一侧路边每隔10米栽一棵树苗,这名工人每次只能运一棵,要栽完这20棵树苗,并返回A 处,植树工人共走了多少路程?例15九江抗洪指挥部接到预报,24h后有一洪峰到达,第二道防线,经计算,需调用20台同型号翻斗车,平均每车工作24h后方可筑成第二道防线。
但目前只有一辆车投入施工,其余的需从昌九高速公路沿线抽调,每隔20min能有一辆车到达。
指挥部最多可调集25辆车,那么在24h内能否构筑成第二道防线?例16以下数列中,那些是等比数列?(1)1,-21,41,-81,161,(2)1,1,1,…,1;(3)1,2,4,8,12,16,20;(4)a, a2, a3,…, a n.例17一个等比数列的首项是2,第2项与第3项的和是12,求它的第8项的值。
例18在各项为负数的数列{a n}中,已知2a n=3a n+1,且a2·a5=278.(1)求证:{a n}是等比数列,并求出通项。
(2)试问-8116是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由。
例19 据报载,中美洲地区毁林严重。
据统计,在20世纪80年代末,每时平均毁林约48hm 2,森林面积每年以3.6%~3.9%的速度减少,迄今被毁面积已达1.3×107hm 2,目前还剩1.9×107hm 2,请你回答以下几个问题; (1)如果以每时平均毁林约48hm 2计算,剩下的森林经过多少年将被毁尽?(2)根据以上计算出的年数n ,如果以每年3.6%~3.9%的速度减少,计算n 年后的毁林情况;(3)若按3.6%的速度减少,估算经过150年后,200年后,250年后及经过300年后森林面积的情况,经过多少年森林将被毁尽?例20○1已知等比数列{a n },a 1=2,q=3,求S3. ○2求等比数列1,2 1,4 1,81,…的前10项的和。
例21五洲电扇厂去年实现利税300万元,计划在以后的5年中每年比上年利税增长10%,问从今年起第5年的利税是多少?这5年的总利税是多少(结果精确到万元)?例22一个热气球在第一分上升了25m的高度,在以后的每一分里,它上升的高度都是它在前一分上升高度的80%。
这个热气球上升的高度能超过125m吗?例23如图所示,作边长为a的正三角形的内切圆,在这个圆内作内接正三角形,然后,再作新三角形的内切圆,如此下去,求前n个内切圆的面积和。
例24银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取,规定每次存入的钱不计复利(暂不考虑利息税)。
(1)若每月存入金额为x元,月利率r保持不变,存期为n个月,试推导出到期整取时本利和的公式。
(2) 若每月初存入金额为500元,月利率为0.3%,到第36个月末,整取时的本利和是多少?(3) 若每月初存入一定金额,月利率是0.3%,希望到12个月末整取时取得本利和2000元,那么每月初应存入的金额是多少?例25定期自动转存模型银行有另一种储蓄业务为定期存款自动转存。
例如,储户某日存入一笔1年期定期存款,1年后,如果储户不取出本利和,则银行自动办理转存业务,第2年的本金就是第1年的本利和。
按照定期存款自动转存的储蓄业务(暂不考虑利息税),我们来讨论以下问题:(1)如果储户存入定期为1年的P元存款,定期年利率为r,连存n年后,再取出本利和。
试求出储户n年后所得本利和的公式;(2) 如果存入1万元定期存款,存期为1年,年利率为2.79%,那么5年后共得本利和多少万元(精确到0.001)?例26 分期付款模型小华准备购买一台售价为5000元的电脑,采用分期付款方式,并在1年内将款全部付清。
商场提出的付款方式为:购买后2个月第1次付款,再过2个月第2次付款、、、购买后12个月第6次付款,每次付款金额相同,约定月利率为0.8%,每月利息按复利计算,求小华每期付的金额是多少?第三章 不等式例1 2003年10月15日9时,我国“神舟”五号载人飞船在酒泉卫星发射中心发射成功,实现了中华民族千年的飞天梦想。
这是自1970年4月24日成功发射“东方红一号”人造卫星以来,我国航天史上又一座新的里程碑,我国已成为继俄、美之后,世界上第三个掌握载人航天技术、成功发射载人飞船的国家。
“东方红一号”例2 《铁路旅行常识》规定:“一、随同成人旅行身高1.2~1.5米的儿童,享受半价客票(以下称儿童票),超过1.5米时应买全价票。
每一成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票。
……十、旅客每人免费携带品的体积和质量是每件物品的外部尺寸长、宽、高之和不超过160厘米,杆状物品不超过200厘米,质量不超过20k g ……”设儿童身高为h (单位:m ),物品外部尺寸长、宽、高之和为p (单位:cm ),请在表空格内填上对应的数学例3如图y=f(x)反映了某公司产品的销售收入y 万元与销售量x/t 的函数关系,y=g(x) 反映了该公司产品的销售成本与销售量的函数关系,试问: (1)当销售量为多少时,该公司赢利(收入大于成本); (2)当销售量为多少时,该公司亏损(收入小于成本)。