数学建模实验一
数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模实验报告

数学建模实验报告一、实验目的1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直到电梯中的乘客下完时,电梯需停次数的数学期望。
2、问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。
所以选择采用计算机模拟的方法,求得近似结果。
(2)通过增加试验次数,使近似解越来越接近真实情况。
3、模型建立建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下,故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。
例如:给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14、解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5、实验结果ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。
数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模实验题目解答

数学建模实验题目解答题目一:慢跑者与狗一个慢跑者在平面上沿椭圆以恒定的常速v=1跑步,设椭圆方程为: x=10+20cost , y=20+5sint. 突然有一只狗攻击他. 这只狗从原点出发,以恒定速率w 跑向慢跑者.狗的运动方向始终指向慢跑者.分别求出w=20,w=5时狗的运动轨迹,并分析狗是攻击到慢跑者。
一,建立模型。
设时刻t 慢跑者的坐标为(X (t ),Y (t)),狗的坐标为(x(t ),y(t)), 又X=10+20cost , Y=20+15sint 。
由于狗的运动方向始终指向慢跑者,故此时狗与人的坐标连线就是此时狗的轨迹曲线弧处的切线,即dy/dx=(Y-y )/(X —x), y ’=(dy/dt )/(dx/dt ) 又运动时间相同:,解得可得参数方程为:二,求解模型w=20时,建立m —文件xy1.m 如下: function dy=xy1 (t ,y) dy=zeros (2,1);dy (1)=20*(10+20*cos(t )—y (1))/sqrt((10+20*cos(t)-y (1))^2+(20+15*sin (t )-y(2))^2);⎪⎪ ⎩ ⎪⎪ ⎨ ⎧ = = - + - + + - + =- + - + + - + = 0) 0 ( ,0 ) 0 ( )sin 15 20 ( )sin 15 20 ( ) cos 20 10 ( )cos 20 10 ( )sin 15 20 ( ) cos 20 10 ( 22 2 2 y x y t y t x t wdtdy x t y t x t w dtdxdy(2)=20*(20+15*sin(t)—y(2))/sqrt((10+20*cos(t)—y(1))^2+(20+15*sin(t)-y(2))^2);取t0=0,tf=6.0,建立主程序fangcheng1。
m如下:t0=0;tf=6.0;[t,y]=ode45('eq3’,[t0 tf],[0 0]);T=0:0.1:2*pi;X=10+20*cos(T);Y=20+15*sin(T);plot(X,Y,’-')hold onplot(y(:,1),y(:,2),'*’)轨迹线如下图:发现狗没有攻击到慢跑者,于是,从4。
数学建模实验报告

《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。
(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
数学建模实验答案

14.5714
第86页例3
>> c=[2;3;1];
>> a=[1,4,2;3,2,0];
>> b=[8;6];
>> [x,y]=linprog(c,-a,-b,[],[],zeros(3,1))
Optimization terminated.
x =
0.8066
-2.2943
rint =
-4.0390 4.0485
-3.2331 6.2555
-5.3126 1.9707
-6.5603 3.1061
-4.5773 5.0788
-0.5623 8.4132
-6.0767 3.1794
25.1698
0.0000
20.0000
14.8302
40.0000
y =
574.8302
实验报告三、 第二部分
data=[0,0.8,1.4,2.0,2.4,3.2,4.0,4.8,5.4,6.0,7.0,8.0,10.0;0,0.74,2.25,5.25,8.25,15,21.38,26.25,28.88,30.6,32.25,33,35];
b =
62.4054
1.5511
0.5102
0.1019
-0.1441
bint =
-99.1786 223.9893
-0.1663 3.2685
-1.1589 2.1792
-1.6385 1.8423
x5 = [1.62 1.79 1.51 1.60 1.61 1.31 1.02 1.08 1.02 0.82 1.03 1.08 0.92 0.79 0.86 1.27 1.10]';
撰写建模小论文

实验一撰写数学建模小论文一、 实验目的1. 熟悉数学建模的基本方法与步骤;2. 能对一些生活问题进行分析与数学建模;3. 掌握数学建模论文的写作规范与要求。
二、 实验任务1. 对“椅子放平稳问题”,当椅子为长方形时,试建立其数学模型并解决问题。
阐述并写出解决过程。
2. 整理“管道包扎问题”的解决过程,继续“思考与练习”题,即:(1)当w 趋于零时,包扎方式会如何变化?(2)当w 等于截面周长c 时,包扎方式会如何变化?(3).当管道是正方形或其他形状时,对布带宽度有什么影响?(4)如果允许布带有重叠,结论有什么变化?然后按数学建模论文的要求撰写完整的论文。
三、 实验过程与结果(对重要的实验结果截取全屏图,另存为JPG/PNG 格式)一、问题分析该模型看似与数学与数学无关,但我们可以用数学语言给予表述,并用数学工具来证实,经过分析,我们可以用一元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离,进而把模型假设和椅脚同时着地的结论用简单、精确的数学语言表达出来,构成了这个实际问题的数学模型。
二、模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的.三、模型建立(显示模型函数的构造过程)1111A B C D 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
数学建模 -实验报告1

������������⁄������������ = ������������(1 − (������ + ������)) − ������1������∗������,
(4 − 3)
������������∗⁄������������ = −������1������∗������ + ������2������
二、 问题分析
建立肿瘤细胞增长模型时,我们可以从自由增长模型开始分析,引进 Logistic 阻滞增长模型,构成肿瘤细胞增长初步框架。再者肿瘤细胞不同于普 通细胞,其生长受到人体自身免疫系统的制约。于是综合考虑正常细胞转化,癌 细胞增殖,癌细胞死亡,癌细胞被效应细胞消除等情况,建立动力学方程。并对 模型进行适当简化求解。在放射治疗方案的设计中,我们可以引入放射生物学中 广泛接受的 LQ 模型对问题进行分析,由于放疗对人体伤害相当大,因此我们采 取分次逐次放疗的方式进行治疗。我们具体分两种情形进行讨论,一是在总剂量 一定的条件下,不同的分次剂量组合对生物效应的影响;二是在产生相同生物效 应的情况下,分析最优的分次剂量组合。
易算出癌细胞转入活动期已有 300 多天,故如何在早期发现癌症是攻克癌症的关键之一 (2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀
死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细 胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于 100000 个时即可凭借体内 免疫系统杀灭)。
进一步简化,根据(4-4),(4-5)式可知,效应细胞������∗和复合物������有出有进.假 设出入保持平衡,则有
������ + ������∗ = C (C 为常数)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LINGO软件入门与数学规划建模练习
学校:北京信息科技大学班级:信计1101 姓名:王雅卿学号:05
实验目的:1、掌握Lingo软件求解简单数学规划模型的一般编程方法;
2、掌握引入集合及其属性的方法,编程求解一些规模较大的数学规划模型。
实验内容:1、使用Lingo软件求解简单的线性规划模型、整数规划模型及非线性规划模型等;
2、建立各类实际问题的数学规划模型,并运用Lingo软件编程求解所建立的模
型,从而掌握通过建立数学规划模型解决一些实际问题的一般方法。
实验题目:
1、投资组合问题
美国某三种股票(A,B,C)12年(1943~1954)的投资收益率R i(i=1,2,3)(收益率=(本金+收益)/本金)如表5-7所示(表5-7中还列出各年度500种股票的指数供参考)。
假设你在1955年有一笔资金打算投资这三种股票,希望年收益率达到,试给出风险最小的投资方案。
表5-7 美国三种股票1943~1954的收益率
年份股票A股票B股票C
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
平均
解:设投资A,B,C三种股票的资金份额分别为。
程序:
(1)用Matlab计算协方差
R1=xlsread('',1,'B2:B13');
R2=xlsread('',1,'C2:C13');
R3=xlsread('',1,'D2:D13');
R=[R1 R2 R3];
mean(R1)
mean(R2)
mean(R3)
cov(R)
xlswrite('',cov(R),'sheet2')
(2)用Lingo求最优方案
sets:
gupiao/1..3/:x,avgR;
links(gupiao,gupiao):cov;
endsets
data:
avgR=@ole('','avg');
cov=@ole('','xie');
@ole('','jieguo')=x;
enddata
min=@sum(links(i,j):x(i)*x(j)*cov(i,j));
@for(gupiao(j):@sum(gupiao(i):x(i)*avgR(i))>=;
@for(gupiao(i):x(i)>=0);
@for(gupiao(i):x(i)<=1);
@for(gupiao(j):@sum(gupiao(i):x(i))=1);
结果:
(1)协方差
(2)资金份额
即:投资A,B,C三种股票的资金份额分别为,,,
2、设土地开发有两个目的,一是用于发展农业,二是用于发展城市。
有三个部门提出了各自的要求:(1)城市建设部门要求至少开发4000亩土地用于城市建设;(2)农业部门要求至少开发5000亩土地用于发展农业;(3)土地开发部门要求至少开发10000亩土地。
已知城市用地每亩开发费用是400元,农业用地每亩开发费用是300元。
问怎样计划,才能使开发费用花费最少。
解:设开发用于城市建设的土地为亩,用于发展农业的土地为亩。
最少花费。
程序:
min=400*x1+300*x2;
x1>=4000;
x2>=5000;
x1+x2>=10000;
结果:
即:开发用于城市建设的土地为4000亩,用于发展农业的土地为6000亩,最小费用为
3400000元。
3、(混合泳接力队的选拔问题)某班准备从5名游泳队员中选择4人组成接力队,参加学校的4x100m混合泳接力比赛。
5名队员4种泳姿的百平米均成绩如表,问应该如何选拔队员组成接力队
如果最近队员的丁的蛙泳成绩有较大退步,只有1′15″2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57″5,组成接力队的方案是否应该调整
队员
甲乙丙丁戊
泳姿
蝶泳1′06″8 57″2 1′18″1′10″1′07″4
仰泳1′15″6 1′06″1′07″8 1′14″2 1′11″
蛙泳1′27″1′06″4 1′24″6 1′09″6 1′23″8
自由泳58″6 53″59″4 57″2 1′02″4 解:设x(i,j)为第i种泳姿,第j个人,x(i,j)=1为第i种泳姿选第j个人,x(i,j)=0为第i种泳姿不选第j个人。
从excel表格中读数据,并将结果写到excel表格中。
(1)程序:
model:
sets:
yongzi/a1..a4/;
duiyuan/b1..b5/;
links(yongzi,duiyuan):T,x;
endsets
data:
T=@ole('','tt');
@ole('','xx')=x;
enddata
min=@sum(links:T*x);
@for(yongzi(i):@sum(duiyuan(j):x(i,j))=1);
@for(duiyuan(j):@sum(yongzi(i):x(i,j))<=1);
end
结果:
即:接力队选乙,丙,丁,甲分别参加蝶泳,仰泳,蛙泳,自由泳。
(2)将丁的蛙泳成绩改为秒,戊的自由泳成绩改为秒。
结果:
即:接力队选乙,丙,丁,戊分别参加蝶泳,仰泳,蛙泳,自由泳。
4、(生产计划安排问题)某企业用A,B两种原油混合加工成甲,乙两种成品油销售数据见表5-12,表中百分比是成品油中原油A的最低含量。
产品
甲乙现有库存量最大采购量
原油
A>=50%>=60%5001650
B8001200
成品油甲和乙的销售价与加工费之差分别为5和(单位:千元/吨),原油A,B的采购费分别是采购量x(单位:吨)的分段函数f(x),g(x)(单位:千元),该企业的现有资金限额为7200(千元),生产成品油乙的最大能力为2000吨,假设成品油能全部销售出去,试在充分利用现有资金和现有库存条件下,合理安排采购和生产计划,使企业的收益最大。
解:设成品油甲中原油A和原油B的含量分别是、,成品油乙中原油A和原油B的含量分别是、,收益最大。
程序:
max=5*(x11+x21)+*(x12+x22)-f-g;
x11+x21<=500+x1;
x12+x22<=800+x2;
x11/(x11+x21)>=;
x12/(x12+x22)>=;
x12+x22<=2000;
x1<=1650;
x2<=1200;
f+g<=7200;
f=@if(x1#le#500,4*x1,@if(x1#le#1000,500+3*x1,1500+2*x1));
g=@if(x1#le#400,*x1,@if(x1#le#800,240+*x1,880+*x1));
结果:
即:使企业收益最大,采购和生产计划为成品油甲中原油A的含量约为吨,原油B的含量约为吨;成品油乙中原油A的含量约为吨,原油B的含量约为吨。
生产收益为13700千元。