数列的概念教案教学提纲

合集下载

《数列的概念》示范公开课教案【高中数学北师大】

《数列的概念》示范公开课教案【高中数学北师大】

第一章 数列1.1 数列的概念1.理解数列的概念,了解数列通项公式的意义与分类;2.能由通项公式求出数列的各项,反之能根据数列的前几项发现规律,写出数列的通项公式;3.通过学习,培养学生观察抽象的能力,认识数列是刻画自然规律的数学模型.教学重点:理解数列的概念,认识数列是刻画自然规律的数学模型. 教学难点:根据数列的前几项发现规律,写出数列的通项公式.一、情境导入在现实生活和数学学习中,我们经常需要根据问题的意义,通过对一些数据按特定顺序排列的方法来刻画研究对象.例如:1、从2000年到2022年我国共参加了6次奥运会,各次参赛获得的金牌总数依次为:28,32,52,38,26,38.2、拉面师傅在拉面过程中,随着拉的次数增多,面条根数依次增多:1,2,4,8,16,... 3.人们在1740年发现了一颗彗星,并且每隔83年出现一次.从发现那次算起,这颗彗星近五次出现的年份依次为:1740,1823,1906,1989,2072.4.庄子曰:“一尺之棰,日取其半,万世不竭”.意思为:一尺长的木棒,每日取其一半,永远也取不完.如果将“一尺之棰”视为一份,那么每日剩下的部分依次为:问题1:这几列数的共同特点是什么? 答:①规律都用一列数表示 ②都有一定顺序设计意图:从生活实例引入课题,让学生认识数学是刻画自然规律的数学模型.二、新知探究定义概念1.数列:一般地,按一定次序排列的一列数叫做数列,数列中的每一个数叫作这个数列的项.数数列的一般形式: 123,,,,,n a a a a ⋯⋯ , 简记为数列 {}n a .其中数列第一项 1a ,也叫首项,n a 是数列的第n 项,也叫数列的通项.11111,,,,,2481632⋯◆教学目标◆教学重难点◆教学过程想一想:将数列:1,2,3,4,5,6改成:6,5,4,3,2,1.两个数列一样吗? 答:不一样.2.数列的分类:✮以项数来分类:(1) 有穷数列:项数有限的数列; (2) 无穷数列:项数无限的数列. ✮ 以各项的大小关系来分类:(1) 递增数列:从第2项起,每一项都大于它的前一项的数列.即对任意n ∈N ∗,总有a n+1>a n (或a n+1−a n >0).(2) 递减数列:从第2项起,每一项都小于它的前一项的数列.即对任意n ∈N ∗,总有a n+1<a n (或a n+1−a n <0). (3) 常数列:各项都相等的数列;(4) 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.问题2: 数列与数集有什么异同?答:(1)数列{}n a 中是一列数,而集合中的元素不一定是数; (2)数列{}n a 中的数是有一定次序的,而集合中的元素没有次序; (3)数列{}n a 中的数可以重复,而集合中的元素不能重复. 问题3:数列{}n a 的项与序号n 有怎样的关系?答:数列的每一项都对应一个序号,反之,数列的每一个序号都对应着一个项. 如数列:2,4,8,16,32,64,⋯这个数列的每一项的序号n 与这一项的对应关系可用如下公式表示: 这样,只要依次用序号1,2,3,4,⋯代替求出数列相应的项.总结:1.对任意数列 {}n a ,其每一项的序号与项都有对应关系:2.如果数列 {}n a 的第 n 项n a 与序号 n 之间的关系可以用一个式子表示成:(),.n a f n n N +=∈这个式子叫做数列的通项公式.a n =2n问题4: 任意一个数列都能写出通项公式吗?它是唯一的吗? 答:不是每一个数列都能写出它的通项公式;如:1248319,,,, ② 一些数列的通项公式不是唯一.如:数列 1-11-1,,,,1(1)n n a +=-1(1)n n a -=-或11,n n a n ⎧=⎨-⎩,为奇数或为偶数设计意图:从具体的一个数列出发,分析数列项与序号间的关系,培养学生从特殊到一般的思想与分析问题习惯.三、应用举例例1 根据下列数列的通项公式,写出数列的前5项.(1)1;1n a n =+(2)sin .2n n a π=解:(1)依次取 1,2,3,4,5,n = 得到数列 {}n a 前5项为11111,,,,;23456(2)依次取 1,2,3,4,5,n = 得到数列 {}n a 前5项为1,0,1,0,1.-例2 如果数列 {}n a 的通项公式为2328n a n n =-,那么 -49和 68 是不是这个数列的项? 如果是,是第几项?解:令 232849n n -=-, 解得:77().3n n ==或舍去 .∴-49是这个数列的第7项令 232868n n -=, 解得:342.3n n =-=或均不符合题意, .∴68不是这个数列的项总结:数列的通项公式给出了第n 项a n 与它的项数n 之间的关系.已知数列的通项公式,只要用项数代替通项公式中的n ,即可求出相应的项.反过来,判断某一个数是不是数列中的项,就用数列的通项公式建立以n 为变量的方程,若方程有正整数解,则该数为数列中的项,n 的值即为该数在数列中的项数;若方程没有正整数解,则该数不是数列中的项.例3 写出下列数列的一个通项公式. (1)1,4,9,16,25,(2)1,3,5,7,9,--(3)9,99,999,9999,解:(1)2n a n =;(2) ()+1(1)21n n a n =--;(3)101nn a =- ;总结:用观察归纳法写出一个数列的通项公式,体现了由特殊到一般的思维规律,可以: (1)先统一项的结构,如都化成分数、根式等;(2)分析这一结构中变化的部分与不变的部分,探索变化部分的规律与对应序号间的关系式;(3)对于符号交替出现的情况,可先观察其绝对值,再以(−1)^k 处理符号;设计意图:通过例1、例2、例3,加深对数列通项公式的理解,同时培养学生观察与归纳能力.四、课堂练习1.下列说法:①数列{}31n -的第 5 项是10 ;②数列22222,1,,,,,,345n可以记为 2n ⎧⎫⎨⎬⎩⎭;③数列 3,6,9 与数列 6,9,3 是相同的数列;④数列 1,1,2,3,5,8,13,21,是无穷数列. 其中,正确的有 .2.写出下列数列的一个通项公式:(1)1,3,7,15,(2)7,77,777,7777,(3) 1,3,1,3,1,3,参与答案: 1.② ④2.(1) 21nn a =- ;(2) 7(101)9nn a =-(3) {1,3,n n n a =为奇数,为偶数. 或 2(1)n n a =+- .3.古希腊著名科学家毕达哥拉斯把1,3,6,10,15,21,….这些数量的(石子),排成一个个如图一样的等边三角形,从第二行起每一行都比前一行多1个石子,像这样的数称为三角形数.那么把三角形数从小到大排列,第10个三角形数是_________.解:根据题意,三角形数的每一项都是数列{}n 的前n 项的和,即10123,55n a n a =++++=故答案为:55设计意图:巩固数列的概念和数列的通项公式,强调数列的有序性,加深学生对数列的概念的认识.五、课堂小结一、知识:1.数列的有关概念:定义、分类、表示;2.数列的通项公式; 二、数学素养:培养观察、分析、归纳思维能力设计意图:总结与归纳本节课所学知识,培养学生的归纳概括能力.六、布置作业教材第7页练习1、2、3、4.。

数列的概念教案

数列的概念教案

数列的概念教案数列的概念教案一、教学目标1. 了解数列的概念和定义;2. 能够判断一个数列的规律;3. 能够根据给定的数列规律,推导出数列的通项公式;4. 能够应用数列的概念解决实际问题。

二、教学内容1. 数列的概念和定义;2. 数列的通项公式;3. 数列的前n项和;4. 应用数列解决实际问题。

三、教学步骤步骤一:引入数列的概念通过举例子的方式,让学生观察一些数的排列,找出其中的规律性。

例如:1、2、3、4、5...;1、3、5、7、9...等。

并引导学生思考这些数的排列是否有一定的规律,如果有,我们可以将其称为数列。

步骤二:引出数列的定义根据学生的观察和理解,引出数列的概念和定义。

数列是由一列数按照一定的顺序排列而成的序列,其中每个数称为该数列的项,用an表示,n表示项的位置。

步骤三:数列的通项公式的引入引导学生在观察数列的过程中,思考如何得到数列中的每一项。

例如,对于数列1、2、3、4、5...,如果需要求第n个数,我们可以发现数列中的每一项都比前一项大1,所以第n个数可以表示为an = a1 + (n - 1)。

步骤四:数列的前n项和的引入引导学生思考如何求一个数列的前n项和。

例如,对于数列1、2、3、4、5...,如果需要求前n项的和S,我们可以发现数列中的每一项都比前一项大1,所以可以利用等差数列求和公式Sn = (a1 + an) / 2 * n,其中an = a1 + (n - 1)。

步骤五:应用数列解决实际问题通过实际问题的引入,让学生应用数列的概念解决问题。

例如,有一序列数:1、3、5、7、9...,要求求出第n项的值并求前n 项和。

引导学生观察数列规律,判断数列是等差数列,然后根据通项公式和求和公式计算出结果。

四、教学注意事项1. 引导学生在观察数列的过程中,思考数列的规律;2. 培养学生分析和推断的能力,让其能够根据已知规律求解未知项或和;3. 引导学生在解决实际问题时,将问题转化为数列问题,然后应用数列的概念解决问题。

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案一、教学目标1. 了解数列的概念,理解数列的表示方法,如通项公式、项的表示等。

2. 学会用图像和数学公式表示数列。

3. 能够运用数列的性质解决实际问题。

二、教学内容1. 数列的概念:数列是按照一定的顺序排列的一列数。

2. 数列的表示方法:a) 通项公式:数列中每一项的数学表达式。

b) 项的表示:用序号表示数列中的每一项。

3. 数列的图像表示:数列的图像通常为一条直线或曲线。

4. 数列的性质:数列的项数、公差、公比等。

三、教学重点与难点1. 教学重点:数列的概念、数列的表示方法、数列的图像表示。

2. 教学难点:数列的性质及其应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳数列的性质。

2. 利用多媒体展示数列的图像,增强学生的直观感受。

3. 开展小组讨论,培养学生合作学习的能力。

五、教学步骤1. 引入数列的概念,引导学生理解数列是按照一定顺序排列的一列数。

2. 讲解数列的表示方法,如通项公式、项的表示,让学生学会用数学公式表示数列。

3. 利用多媒体展示数列的图像,让学生了解数列的图像表示方法。

4. 分析数列的性质,如项数、公差、公比等,并引导学生运用数列的性质解决实际问题。

5. 进行课堂练习,巩固所学内容。

教案设计仅供参考,具体实施时可根据学生的实际情况进行调整。

六、教学活动1. 课堂讲解:数列的概念与表示方法。

2. 实例分析:分析生活中常见的数列,如等差数列、等比数列。

3. 练习:求给定数列的前n项和。

七、数列的图像表示1. 讲解:数列图像的绘制方法。

2. 练习:绘制给定数列的图像。

八、数列的性质与应用1. 讲解:数列的性质及其应用。

2. 实例分析:运用数列的性质解决实际问题。

3. 练习:运用数列的性质解决给定问题。

九、课堂小结1. 回顾本节课所学内容,总结数列的概念、表示方法、图像表示和性质。

2. 强调数列在实际问题中的应用。

十、课后作业1. 习题:求给定数列的前n项和。

数列的概念与表示教案

数列的概念与表示教案

数列的概念与表示教案一、教学目标1. 认识数列的概念,理解数列中的项和公差的含义。

2. 掌握等差数列和等比数列的表示方法和常用性质。

3. 能够应用数列的概念解决实际问题。

二、教学重点1. 数列的概念及其表示方法。

2. 等差数列和等比数列的性质。

三、教学难点1. 理解数列中的项和公差的含义。

2. 应用数列解决实际问题。

四、教学准备课件、教辅资料、练习题。

五、教学过程Step 1 引入1. 引入数列的概念:请同学们思考一下,你们对数列有什么了解?2. 教师解释数列的概念:数列是指按照一定规律排列的一组数,其中的每个数称为该数列的项。

数列中相邻两项之间的差或比称为公差或公比。

Step 2 数列的表示方法1. 等差数列的表示方法:选择一个起始项a₁和公差d,等差数列的通项公式为an = a₁ + (n-1)d,其中n为项数。

2. 等比数列的表示方法:选择一个起始项a₁和公比q,等比数列的通项公式为an = a₁q^(n-1),其中n为项数。

Step 3 等差数列的性质1. 等差数列的公差:相邻两项的差始终相等。

2. 等差数列的通项公式:an = a₁ + (n-1)d。

3. 等差数列的前n项和公式:Sn = n/2(a₁ + an)。

Step 4 等比数列的性质1. 等比数列的公比:相邻两项的比始终相等。

2. 等比数列的通项公式:an = a₁q^(n-1)。

3. 等比数列的前n项和公式(当q≠1):Sn = a₁(1-q^n)/(1-q)。

Step 5 实际问题的应用1. 将所学知识应用到实际问题的解决中。

2. 练习不同类型的数列题目,培养解决问题的能力。

六、课堂练习教师出示一些数列,要求学生判断其是等差数列还是等比数列,并求出对应的公差或公比。

七、课堂总结教师对本节课内容进行总结,并强调数列的概念、表示方法以及等差数列和等比数列的性质。

八、课后作业完成课后作业册上相关练习题,并准备下节课的内容。

九、板书设计一、教学目标1. 认识数列的概念,理解数列中的项和公差的含义。

数列的概念 教案

数列的概念 教案

数列的概念教案一、教学目标:1.了解数列的概念和特点;2.能够根据规律求出数列的通项公式;3.能够判断数列是等差数列、等比数列还是其他类型的数列。

二、教学重点:1.数列的概念和特点;2.数列的通项公式的求法。

三、教学难点:1.数列的通项公式的求法;2.辨别数列类型的能力。

四、教学准备:教师准备:黑板、彩色粉笔、教学课件。

学生准备:笔记本。

五、教学过程:Step 1 引入新知教师提出一个问题:什么是数列?请大家思考一分钟,并回答问题。

Step 2 探究数列的概念和特点教师板书“数列”的定义并解释:数列是由一系列数字按照一定的顺序排列而成的序列。

例如,1,3,5,7,9就是一个数列。

提问:根据这个定义,你能举出几个数列的例子?引导学生提供多个数列的例子,如等差数列、等比数列等。

教师板书“等差数列”的定义和特点:等差数列是指一个数列中,从第二项开始,每一项与它前面的项之差都是一个常数。

这个常数叫作等差数列的公差。

例如,2,4,6,8,10就是一个等差数列。

教师板书“等比数列”的定义和特点:等比数列是指一个数列中,从第二项开始,每一项与它前面的项之比都是一个常数。

这个常数叫作等比数列的公比。

例如,2,4,8,16,32就是一个等比数列。

教师让学生总结等差数列和等比数列的特点,并进行讲解。

Step 3 求数列的通项公式教师提问:如何求一个数列的通项公式?请大家思考一分钟,并回答问题。

引导学生思考,教师给予指导和提示。

举例说明如何求解数列的通项公式。

例1:已知等差数列的首项是3,公差是2,求第n项的通项公式。

解:设数列的通项公式为an,首项是a1,公差是d。

根据等差数列的特点,有a2 = a1 + d,a3 = a2 + d,...,an = a(n-1) + d。

将首项代入,有a2 = a1 + d,即a1 + 2d = a1 + d,整理得d = a2 - a1。

将公差代入通项公式,得an = a1 + (n-1)d。

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。

举例说明数列的组成,如自然数数列、等差数列等。

1.2 数列的项解释数列中的每一个数称为数列的项。

强调数列项的顺序和重复性质。

1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。

举例讲解如何写出简单数列的通项公式。

第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。

练习写出几个给定数列的列举表示。

2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。

举例说明如何用公式法表示等差数列和等比数列。

2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。

引导学生通过观察图形来理解数列的特点。

第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。

举例说明如何确定一个数列的项数。

3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。

举例说明如何判断一个数列的单调性。

3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。

举例说明如何判断一个数列的周期性。

第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。

推导等差数列的通项公式。

4.2 等比数列的通项公式讲解等比数列的定义和性质。

推导等比数列的通项公式。

4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。

举例讲解如何求解其他类型数列的通项公式。

第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。

推导等差数列的前n项和的公式。

5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。

推导等比数列的前n项和的公式。

5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。

举例讲解如何求解其他类型数列的前n项和。

第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。

数列的概念公开课教案

数列的概念公开课教案

数列的概念公开课教案以下是为您生成的一份关于“数列的概念公开课教案”,但字数可能达不到1500 字,您可以根据实际需求进行修改补充。

---# 数列的概念公开课教案一、教学目标1. 让学生理解数列的概念,了解数列的分类。

2. 引导学生掌握数列的通项公式,能根据通项公式写出数列的项。

3. 通过实例,培养学生观察、分析、归纳的能力,激发学生学习数学的兴趣。

二、教学重难点1. 重点- 理解数列的概念。

- 掌握数列的通项公式。

2. 难点- 根据数列的前几项归纳出数列的通项公式。

三、教学方法讲授法、讨论法、练习法四、教学过程# (一)导入新课同学们,咱们先来玩一个小游戏。

老师说几个数字,你们看看能不能发现其中的规律。

老师说:1,3,5,7,9。

(停顿,观察学生反应)大家发现规律了吗?对啦,这是连续的奇数。

那如果老师再说:2,4,8,16,32。

这又有啥规律呢?(与学生互动,让学生回答)是不是后一个数都是前一个数的2 倍呀?那像这样按照一定顺序排列的数,在数学中就叫做数列。

今天咱们就来好好研究研究数列!# (二)新课讲授1. 数列的定义咱们来看几个例子。

(展示PPT 上的例子)比如:(1)精确到1,0.1,0.01,0.001,…的不足近似值为1,1.4,1.41,1.414,…(2)从1984 年到2023 年,我国参加夏季奥运会获得的金牌数依次为15,5,16,16,28,32,51,38,26,32,28,38,26,38,32,26。

大家观察一下,这些数有什么共同特点呢?(让学生思考并回答)对啦,它们都是按照一定顺序排列的数。

那咱们就可以给数列下个定义啦:按照一定顺序排列着的一列数称为数列。

同学们,想想看,生活中还有哪些数列的例子呢?(与学生互动)比如咱们班同学的身高从小到大排列,一年中每个月的平均气温等等。

2. 数列的项在数列中,每一个数都叫做这个数列的项。

排在第一位的数称为这个数列的第1 项(通常也叫做首项),排在第二位的数称为这个数列的第2 项……排在第n 位的数称为这个数列的第n 项。

数列的概念教案

数列的概念教案

【数列的概念教案策划】一、教学目标1.知识与技能目标1)深入理解数列的概念,准确区分数列与集合的不同之处,明确数列中项、首项、第n 项等关键概念。

2)熟练掌握数列的通项公式,能够根据通项公式快速、准确地求出数列的任意一项,同时能根据数列的前几项尝试推导数列的通项公式。

3)学会对数列进行分类,包括按项数分为有穷数列和无穷数列,按项的变化趋势分为递增数列、递减数列、常数列和摆动数列,并能准确判断给定数列的类型。

2.过程与方法目标1)通过大量生活中的实例引入数列的概念,培养学生的观察能力、分析能力和归纳能力,让学生学会从实际问题中抽象出数学概念。

2)经历求数列通项公式和根据数列前几项推导通项公式的过程,培养学生的逻辑思维能力、数学运算能力和创新思维能力。

3)通过小组讨论和课堂互动,提高学生的合作交流能力和表达能力。

3.情感态度与价值观目标1)让学生深刻体会数学与生活的紧密联系,感受数学在实际生活中的广泛应用,激发学生学习数学的兴趣和热情。

2)培养学生勇于探索、敢于创新的精神,提高学生面对问题时的坚韧和毅力,增强学生对数学学习的自信心。

3)在合作学习中,培养学生的团队合作意识和互助精神,促进学生之间的良好关系和共同进步。

二、教学重难点4.教学重点1)数列的概念和通项公式。

a)对于数列概念的讲解,要通过丰富的实例让学生切实理解数列中各项的有序性,以及与集合的本质区别。

b)通项公式是数列的核心内容,要通过大量的练习让学生熟练掌握根据通项公式求数列项和根据数列前几项推导通项公式的方法。

2)根据数列的前几项写出数列的通项公式。

a)这是一个具有一定难度和挑战性的内容,需要引导学生观察数列各项的特点、规律,尝试用不同的方法进行归纳和推导。

5.教学难点1)根据数列的前几项准确地写出数列的通项公式。

a)由于数列的前几项可能呈现出多种不同的规律,学生在推导通项公式时容易出现错误或不全面的情况。

因此,需要通过大量的实例分析和方法指导,帮助学生掌握推导通项公式的技巧和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的概念与简单表示法(第一课时)
教学目标:1、理解数列的概念,了解通项公式的意义和分类
2、能由通项公式求出数列的各项。

反之能求出数列的前几项
3、培养学生分析问题的能力及探索规律的能力
教学重点:理解数列的概念,认识数列是反映自然规律的基本数学模型
教学难点:认识数列是一种特殊函数;发现数列的规律,找出数列可能的通项公式。

教学过程:
一、引入新课
有人说,大自然是懂数学的,不知你注意过没有,树木的分叉、花瓣的数量、植物种子的排列等等,都遵循着某种数学规律,大家能想到它们涉及了那些数学规律吗?通过本课时的学习,这些问题都会得到解决。

二、新课
学生阅读课本、小组互动完成学案上第一、二部分
小组内推选同学回答问题
(一)、考考你 寻找规律,在空格出填写数字
1.1、21、31、( )、51、61、( )、8
1 2. 2、-4、( )、-8、10、( )14
3. ( )、22、32、42、52、( )、72
思考1:以上几组数有什么特征?
观察、讨论、分析归纳特点:上面的数字都是有规律的。

从具体例子引出数列概念,激发学生的兴趣。

(二)、知识探究
1、根据上面几组数归纳出数列的概念
数列是一列数;数列中的数是按一定次序排列的。

引领学生由感性认识上升到理性认识,进而明确数列的定义
思考2 数列1、2、3、4……与4、3、2、1……是同一数列吗?
不是,数列的有序性;
深化定义,加深对数列概念的理解。

试试看: 根据思考2归纳出数列的特点________
2、数列的项如何表示
数列的一般表示:n a a a ,,,21 ,表示法 n a
练习:请大家举几个生活中数列的例子
3、数列的分类(课本28页观察)
①按项数分有穷数列和无穷数列
②按项的大小关系分递增数列、递减数列、常数列、摆动数列
4、常数列:各项均为常数的数列 为等差、等比数列进一步学习作铺垫
5、数列的通项公式
项数:1 2 3 4 5 …… n 1 2 3 4 5 …… n
项: 1 4 9 16 25…… (n 2
) 2 4 6 8 10…… (2n ) 仔细观察上面两个数列的项与它对应的项数,你能发现它们的关系吗?请写出项数与项之间
的一个关系式。

数列中的每一个数都对应着一个序号,反过来,每个序号也都对应着一个数。

引出数列通项公式的定义:如果数列 n a 的第n 项与序号n 之间的关系可以用一个式子表示,那么这个公式叫做这个数列的通项公式。

深化概念:分析通项公式的作用,根据通项公式写出数列。

在归纳通项公式过程中,培养学生分析问题的能力及探索规律的能力
6、数列与函数的关系
观察上面的数列2、4、6、8、10……的通项公式与函数y=2x 的图像你有什么发现? 该数列通项公式为a n =2n 它的图像是一个个孤立的点,并且这些点都在函数y=2x 的图像
上。

数列可以看作特殊的函数,序号是其自变量,项是序号所对应的函数值,数列的定义域是正整数集,或是正整数集的有限子集。

(三)、解题研究
学生上黑板完成课堂练习 规范书写,落实目标
1、根据下列数列的前几项写出数列的通项公式
分组讨论,回答问题
总结数列通项公式要先观察,再归纳,然后猜想,最后验证
(1)1、3、5、7…… 12 n a n
(2)211 、321 、431 、541 …… )
1(1 n n a n 数列为分数则分别讨论分子、分母的规律
(3)1、2、3、2、5……
n a n (4)-1、1、-1、1、-1、1……
)1( n n a (5)0、2、0、2、0、2……
问题的转化 观察与-1、1、-1、1、-1、1……的关系 很容易能得到
1)1( n n a 提出问题:0、1、0、1、0、1……的通项公式你能写出来么?
2、根据数列{
a n }的通项公式写出它的前3项,并求出a 10 (1) 1
n n a n 解:由题意可知 211111
a 3
21222 a 431333 a 11101101010 a
(2)n n n a )1(
解:由题意可知
11)1(11 a 22)1(2
2 a 33)1(3
3 a 1010)1(10
10 a 强调规范书写过程。

巩固概念,使学生对a n 与n 的关系有更深刻的认识。

3、画出下列数列的图像
(1)4、5、6、7、8、9……
(2)1、2、4、8、16……
通过图像进一步加深同学们对数列是一种特殊函数的理解。

三、课后作业
习题2.1 2,3,4题
四、小结
1、数列的定义
2、数列的分类
3、数列的通项公式
4、数列的实质—特殊的函数(离散函数)
五、板书设计。

相关文档
最新文档