报童问题模型

合集下载

报童卖报问题

报童卖报问题

报童卖报问题摘要:这个问题解决的是报刊亭购进报纸数量。

通过分析上月报纸的销售量得出上月的平均期望x =243.3,方差S=13,最后通过计算分析得出,当报纸数量n=248时,利润)(n G =99.5最大。

正文:一. 问题的重述设某报刊亭报纸的购进价为0.6元,售出价为1元,退回价为0.4元,问该报 亭每天应购进几份报纸,才能使收益最大?并求出最大收益。

二.符号的约定b 购进价格 a 零售价格c 退回价格 n 报纸数量 S 方差x 平均期望)(n G 利润函数 )(r p 概率密度函数三.模型的基本假设假设外界环境不变.假设这个月卖报量服从上个月分布,并服从正态分布.假设-∞到0的概率为0. 四.模型的建立与求解根据上面的符号约定,显然有c b a >>。

设报童每天购进n 份报纸,因为需求量r 是随机的,r 可以小于n 、等于n 或大于n ;并由分析计算可知,上月报童卖报的平均期望x =243.3,方差S=13。

记报童每天购进n 份报纸时平均收入为)(n G ,考虑到需求量为r 的概率是)(r f ,所以∑∑∞+==-+----=10)()()()])(()[(n G n r nr r nf b a x f r n c b r b a )( (4.2-1)问题归结为在)(r f .a.b.c 已知时,求n 使)(n G 最大。

通常需求量r 的取值和购进量n 都相当大,将r 视为连续变量,这时)(r f 转化为概率密度函数)(r p ,这样(4.2-1)式变为:∑∑∞+==-+----=10)()()()])(()[(n G n r nr r np b a x p r n c b r b a )( (4.2-2)计算⎰-----=nr nP b a dr r P c b n nP b a dn dG0)()()()()()(⎰+∞-+n drr P b a )()(⎰⎰+∞-+--=n ndrr P b a dr r P c b 0)()()()(,令 0=dn dG得: c b ba dr r P dr r P nn--=⎰⎰∞+)()(0(4.2-3) 使报童日平均收入达到最大购进量n 应满足(4.2-3) ,因为⎰+∞=01)(dr r P 所以(4.2-3)式可变为cb ba dr r P dr r P n n--=-⎰⎰00)(1)(即有⎰--=nc a ba dr r P 0)( (4.2-4)根据需求量的概率密度P(r)的图形(如图4.3)很容易从(4.2-4)式确定购进图4.3在图中,用21,P P 分别表示曲线)(r P 下的两块面积,则(4.2-3)式又可记作:cb b a p p --=21 所以(4.2-3)式表明:购进的份数n 应该使卖不完与卖完的概率之比,恰好等于卖出一份赚的钱a -b 与退回一份赔的钱b -c 之比。

报童 数学建模

报童  数学建模

报童诀窍一、问题:报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。

设报纸每份的购进价为b ,零售价为a ,退回价为c ,假设a>b>c 。

即报童售出一份报纸赚a-b ,退回一份赔b-c 。

报童每天购进报纸太多,卖不完会赔钱;购进太少,不够卖会少挣钱。

试为报童筹划一下每天购进报纸的数量,以获得最大收入。

二、模型分析:购进量由需求量确定,需求量是随机的。

假定报童已通过自己的经验或其他渠道掌握了需求量的随机规律,即在他的销受范围内每天报纸的需求量为 r 份的概率是f(r)(r=0,1,2…)有了f(r),a 和b,c 就可以建立关于购进量的优化模型。

三、模型建立:假设每天购进量是n 份,需求量是随机的,r 可以小于,等于或大于n, ,所以报童每天的收入也是随机的。

那么,作为优化模型的目标函数,不能取每天的收入,而取长期卖报(月,年)的日平均收入。

从概率论大数定律的观点看,这相当于报童每天收入的期望值,简称平均收入。

记报童每天购进n 份报纸的平均收入为G(n),如果这天的需求量r<=n,则售出r 份,退回n-r 份;如果需求量人r>n,则r 份将全部售出。

需求量为r 的概率是f(r),则()()()()[]()()()∑∑=∞+=-+----=n r n r r nf b a r f r n c b r b a n G 01问题归结为在()c b a r f ,,,已知时,求n 是G(n)最大。

四、模型求解:购进量n 都相当大,将r 视为连续变量便于分析和计算,这时概率f(r)转化为概率密度函数p(r)()()()()[]()()()⎰⎰∞-+----=n ndr r np b a dr r p r n c b r b a n G 0计算()()()()⎰---=ndrr p c b n np b a dndG 0()()()()dr r p b a n np b a n ⎰∞-+--令0=dndG 得dndG ()()()()()()dr r p b a dr r p c b n np c a n n⎰⎰∞-+---=02得到()()cb b a drr p dr r p nn --=⎰⎰∞n 应满足上式。

报童模型

报童模型
k 0 n

n2 k 0
k n 1
(a b)(n 1) p


k
E (n 1)= (a b)k (b c)(n 1 k ) pk
k n 1
(a b)(n 1) p
k
所以
E (n) E (n 1) (b c) pk (a b)
rn rn
根据已知需求量 r 的分布规律 f(r),得平均收入为
G n E (Y ) a b r b c n r f r
r 0 n r n 1
a b nf r

问题归结为在 f(r),a,b,c已知时,求n 使G (n)最大。
报童的诀窍
模型分析:
购进量由需求量确定,需求量是随机变量。假定报童已 经通过自己的经验或其他渠道掌握了需求量的统计规律性, 即在他的销售范围内每天报纸的需求量为 r份的概率是 f r r 0,1,2,
有了f r和
a, b, c 。就可以建立关于购进量的优化模型。
模型建立:
r 假设每天购进量是n份,需求量 r 是随机变量,可以 大于n,可以等于n,也可以小于n。所以报童每天 的收入也是随机变量。那么,作为优化模型的目标 函数不能取每天的收入,而应该取长期卖报的日平 均收入,即报童每天收入的期望值。
所以 E (n) E f (r , n)) (
= (a b)k (b c)(n k ) pk (a b)npk
k 0 k n
n 1

设进货量为n时,期望收益E(n)最大,则应有不等式 E(n) ≥ E(n+1)且E(n) ≥ E(n-1)

9-报童问题

9-报童问题

Qiu canhua, Tongji University
超额预售问题的解法
设 X 为超额预售的机票数,设 Y 为有票没来的人数。 X > Y 就意味着超额预售的机票数超过了有票没来的人数。 再多售一张机票就要蒙受400美元的损失, co = $. X < Y 则意味着超额预订的数量小于没有登机的人数,预 订数量减少一个就蒙受100美元的损失, cu = $100.。 最佳的 X* 应当满足
Qiu canhua, Tongji University
有不确定因素的决策问题
这三个问题有以下几个方面的共同点: 都有一个决策变量 X (报纸供应量;出发时间;多预售的 座位)和一个随机变量 Y (报纸需求量;实际路程时间; 持票而未登机人数)。这两个变量共同决定结果。但是我 们必须先选定 X 的数值,然后才能看到Y的数值。 都有一个 X 大于 Y 的单位成本(过量成本) (未售出的报 纸;一名因客满而未能乘机的乘客;提前一分钟)。 都有一个Y 大于X 的单位成本(不足成本)(差一份报纸; 一个空座;晚到一分钟)。 都需要测算 Y 的概率分布。
Qiu canhua, Tongji University
报童问题 II的解
设 X为留作自售的份数, Y 为明天的报纸需求。. {X > Y} 意味着留得太多,否则可以前一天卖给另一报贩, 每份可赚0.40元,所以每份损失利润 co = 0.40 元。 {X < Y} 意味着留得太少,每份前一天只卖了0.40元,留着 可卖0.50元, 多卖 cu = 0.50-0.40 = 0.10元。 最 优解X* 应满足



P{Y>X*} 表示需求Y大于X*的概率。 P{Y<X*} 表示需求Y小于X*的概率。 CuP{Y>X*} 第X*件产品售出时所带来的收益; CoP{Y<X*} 第X*件产品未售出时所带来的损失。

报童问题

报童问题

报 童 问 题 模 型【问题的提出]】报童每天清晨以b 元从报社购进报纸,然后以零售价a 出售,晚上将没有卖出的报纸以退回价c 元退回给报社,其中a>b>c.问:报童应该如何确定报纸的每天的购进量,才能使利润最大?【问题的分析】根据需求量确定购进量.需求量是随机的,假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律。

已知售出一份赚 a-b ;退回一份赔 b-c 。

【做出假设】假设报童的销售范围内每天报纸的需求量为r 份的概率是),2,1,0)(( =r r f .每天购进量为n 份,因为需求量r 是随机的,r 可以小于n ,等于n 或大于n ,致使报童每天的收入也是随机的,所以作为优化模型的目标函数,不能是报童每天的收入,而应该是他长期(几个月,一年)卖报的日平均收入.【模型的建立]】记报童每天购进n 份报纸时的平均收入为G(n),如果这天的需求量r ≤n ,则他售出r 份,退回n-r 份;如果这天的需求量r>n ,则n 份将全部售出.考虑到需求量为r 的概率是)(r f ,所以∑∑+==-+----=∞1n 0)()()()])(()[()(G n r r r nf b a r f r n c b r b a n (1))(r f ,a ,b ,c 已知时,求n 使G(n)最大.【模型求解】通常需求量r 的取值和购进量n 都相当大,将r 视为连续变量更便于分析和计算,这时概率)(r f 转化为概率密度函数)(r p ,(1)式变成dr r np b a dr r p r n c b r b a n G n n ⎰⎰-+----=0∞)()()()])(()[()(计算:由以下公式:))(,()())(,()(d ),(d d ),(F )()()()(x x f x x x f x y y x f xF dyy x f x x x x x ϕϕψψψϕψϕ'-'+==⎰⎰以及dy y x f dy y x f A A ⎰⎰∞∞→=00),(lim ),(得:)()()()()()()()(d dG 10n np b a dr r p b a n np b a dr r p c b nn n ---+-+--=⎰⎰∞+即:r r p c b r r p b a n n d )()(d )()(dndG 10⎰⎰∞+---= 令0=dndG .得到 c b b a drr p dr r p n n--=⎰⎰∞+10)()( (2) 根据需求量的概率密度)(r p 的图形很容易从(2)式确定购进量n .在图2中用1P ,2P 分别表示曲线)(r p 下的两块面积,则(3)式可记作cb b a P P --=21 因为当购进n 份报纸时,⎰=ndr r p P 01)(是需求量r 不超过n 的概率:⎰∞+=12)(n dr r p P 是需求量r 超过n 的概率。

报童问题模型 ppt课件

报童问题模型  ppt课件

ppt课件
3
这就产生一个问题:订货量过多,出现过剩,会造成损失; 订货量少,又可能会失去销售机会,影响利润,那么应该如何确 定订货策略呢?将这一现象具体到报童销售报纸上,就引发了报 童问题:
报童问题:
报童每天需订购多少份报纸?
ppt课件
4
问 报童售报:(零售价) a > (购进价) b > (退回价) c 题 售出一份赚 a-b;退回一份赔 b-c
报童问题模型
ppt课件
1
1、报童问题的提出 2、报童问题所属范畴 3、报童模型的建立与求解 4、报童模型的推广与应用
ppt课件
2
1、报童问题的提出
在日常生活中,经常会碰到一些季节性强、更新快、不易保 存等特点的物品,如海产、山货、时装、生鲜食品和报纸等,当 商店购进这些商品时,买的数量越多,价格越便宜获利越大。但 买得太多也可能卖不出去,需要削价处理,人力物力都受损;如 果进货太少,又可能发生缺货现象,失去销售机会而减少利润。
每天购进多少份使收入最大?
分 购进太多卖不完退回赔钱 析 购进太少不够销售赚钱少
应根据需求确定购进量
存在一个合适的 购进量
每天需求量是随机的
每天收入是随机的
优化问题的目标函数应是长期的日平均收入
等于每天收入的期望
ppt课件
5
2、报童问题所属范畴
单周期随机型存贮模型
这种单周期购入—售出(报纸、日历、杂志,各种季节性货物、时 装),并且超出该购入—售出周期商品就会严重贬值的存贮问题,存 贮论中统称为卖报童问题。 这类问题的库存控制策略是以利润期望最大为目标,确定一次购入的 经济订货批量。
ppt课件
9
4、报童问题的推广与应用

报童问题模型

报童问题模型

§2 报 童 问 题 模 型[问题的提出] 报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回.设报纸每份的购进价为b ,零售价为a ,退回价为c ,应该自然地假设为a >b>c .这就是说,报童售出一份报纸赚a -b ,退回一份赔b-c .报童每天如果购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱.请你为报童筹划一下,他应如何确定每天购进报纸的数量,以获得最大的收入.[问题的分析及假设] 众所周知,应该根据需求量确定购进量.需求量是随机的,假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律,即在他的销售范围内每天报纸的需求量为r 份的概率是),2,1,0)(( r r f .有了)(r f 和a ,b ,c ,就可以建立关于购进量的优化模型了.假设每天购进量为n 份,因为需求量r 是随机的,r 可以小于n ,等于n 或大于n ,致使报童每天的收入也是随机的,所以作为优化模型的目标函数,不能是报童每天的收入,而应该是他长期(几个月,一年)卖报的日平均收入.从概率论大数定律的观点看,这相当于报童每天收入的期望值,以下简称平均收入.[模型的建立及求解] 记报童每天购进n 份报纸时的平均收入为G(n),如果这天的需求量r ≤n ,则他售出r 份,退回n-r 份;如果这天的需求量r>n ,则n 份将全部售出.考虑到需求量为r 的概率是)(r f ,所以问题归结为在)(r f ,a ,b ,c 已知时,求n 使G(n)最大.通常需求量r 的取值和购进量n 都相当大,将r 视为连续变量更便于分析和计算,这时概率)(r f 转化为概率密度函数)(r p ,(1)式变成计算令0 dndG .得到使报童日平均收入达到最大的购进量n 应满足(3)式.因为01)(dr r p ,所以(3)式又可表为根据需求量的概率密度)(r p 的图形很容易从(3)式确定购进量n .在图2中用1P ,2P 分别表示曲线)(r p 下的两块面积,则(3)式可记作因为当购进n 份报纸时, n dr r p P 01)(是需求量r 不超过n 的概率,即卖不完的概率:n dr r p P )(2是需求量r 超过n 的概率,即卖完的概率,所以(3)式表明,购进的份数 应该使卖不完和卖完的概率之比,恰好等于卖出一份赚的钱a-b 与退回一份赔b-c 之比.显然,当报童与报社签订的合同使报童每份赚钱和赔钱之比越大时,报童购进的份数就应该越多.。

报童数学建模

报童数学建模

报童数学建模 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】报童诀窍一、问题: 报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。

设报纸每份的购进价为b ,零售价为a ,退回价为c ,假设a>b>c 。

即报童售出一份报纸赚a-b ,退回一份赔b-c 。

报童每天购进报纸太多,卖不完会赔钱;购进太少,不够卖会少挣钱。

试为报童筹划一下每天购进报纸的数量,以获得最大收入。

二、模型分析:购进量由需求量确定,需求量是随机的。

假定报童已通过自己的经验或其他渠道掌握了需求量的随机规律,即在他的销受范围内每天报纸的需求量为r 份的概率是f(r)(r=0,1,2…)有了f(r),a 和b,c 就可以建立关于购进量的优化模型。

三、模型建立:假设每天购进量是n 份,需求量是随机的,r 可以小于,等于或大于n,,所以报童每天的收入也是随机的。

那么,作为优化模型的目标函数,不能取每天的收入,而取长期卖报(月,年)的日平均收入。

从概率论大数定律的观点看,这相当于报童每天收入的期望值,简称平均收入。

记报童每天购进n 份报纸的平均收入为G(n),如果这天的需求量r<=n,则售出r份,退回n-r 份;如果需求量人r>n,则r 份将全部售出。

需求量为r 的概率是f(r),则问题归结为在()c b a r f ,,,已知时,求n 是G(n)最大。

四、模型求解:购进量n 都相当大,将r 视为连续变量便于分析和计算,这时概率f(r)转化为概率密度函数p(r)计算令0=dn dG 得dn dG ()()()()()()dr r p b a dr r p c b n np c a n n ⎰⎰∞-+---=02 得到()()c b b a dr r p dr r p n n--=⎰⎰∞0 n 应满足上式。

()10=⎰∞dr r p 使报童日平均收入达到最大的购进量为()ca b a dr r p n --=⎰0 根据需求量的概率密度p(r)的图形可以确定购进量n 在图中用p1,p2分别表示曲线p(r)下的两块面积,则cb b a P P --=21 O nr因为当购进n 份报纸时,()dr r p P n ⎰=01是需求量r 不超过n 的概率; ()dr r p P n ⎰∞=2是需求量r 超过n 的概率,既卖完的概率,所以上式表明,购进的份数n 应使卖不完与卖完的概率之比,恰好等于卖出一份赚的钱a-b 与退回一份赔的钱b-c 之比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2 报童问题模型
[问题的提出] 报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回.设报纸每份的购进价为b,零售价为a,退回价为c,应该自然地假设为a>b>c.这就是说,报童售出一份报纸赚a-b,退回一份赔b-c.报童每天如果购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱.请你为报童筹划一下,他应如何确定每天购进报纸的数量,以获得最大的收入.
[问题的分析及假设] 众所周知,应该根据需求量确定购进量.需求量是随机的,假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律,即在他的销售范围内每天报纸的需求量为r份的概率是)
f.有了)
(r
r
f和a,b,c,
,2,1,0
)(
r
(
就可以建立关于购进量的优化模型了.
假设每天购进量为n份,因为需求量r是随机的,r可以小于n,等于n或大于n,致使报童每天的收入也是随机的,所以作为优化模型的目标函数,不能是报童每天的收入,而应该是他长期(几个月,一年)卖报的日平均收入.从概率论大数定律的观点看,这相当于报童每天收入的期望值,以下简称平均收入.
[模型的建立及求解] 记报童每天购进n份报纸时的平均收入为G(n),如果这天的需求量r≤n,则他售出r份,退回n-r份;如果这天的需求量r>n,则n份将全部售出.考虑到需求量为r的概率是)
f,所以
(r
问题归结为在)
f,a,b,c已知时,求n使G(n)最大.
(r
通常需求量r的取值和购进量n都相当大,将r视为连续变量更便于分析和计算,这时概率)
f转化为概率密度函数)
(r
(r
p,(1)式变成
计算
令0=dn dG
.得到
使报童日平均收入达到最大的购进量n 应满足(3)式.因为⎰∞
=01)(dr r p ,所以(3)式又可表为
根据需求量的概率密度)(r p 的图形很容易从(3)式确定购进量n .在图2中用1P ,2P 分别表示曲线)(r p 下的两块面积,则(3)式可记作
因为当购进n 份报纸时,⎰=n dr r p P 01)(是需
求量r 不超过n 的概率,即卖不完的概率:
⎰∞=n dr r p P )(2是需求量r 超过n 的概率,即卖完
的概率,所以(3)式表明,购进的份数 应该使卖
不完和卖完的概率之比,恰好等于卖出一份赚的钱
a-b 与退回一份赔b-c 之比.显然,当报童与报社签订的合同使报童每份赚钱和赔钱之比越大时,报童购进的份数就应该越多.。

相关文档
最新文档