膨胀与腐蚀
膨胀和腐蚀

一、腐蚀和膨胀
1、腐蚀和膨胀的主要功能
(1)消除噪声
(2)分割出独立的图像元素,在图像中连接相邻的元素
(3)寻找图像中的极大值或者极小值区域
(4)求出图像的梯度
2、膨胀(dilate)
膨胀就是求局部最大值的操作。
从数学角度来说,就是将图像与核进行卷积,计算核B覆盖区域的像素点的最大值,并把这个最大值赋值给参考点指定的元素。
这样就会使图像中的高亮区域逐渐增长。
3、腐蚀(erode)
腐蚀和膨胀是相反的操作,腐蚀是求局部最小值的操作。
腐蚀操作会使图像中的高亮区逐渐减小。
膨胀与腐蚀,radon,hough变换

(a)
(b)
(c) (d) 图3-16 二值图像的膨胀运算
(e)
M、N、P、Q是4个算子,M是一个列向量,N是一个行向量。 P、Q都是[3 3]矩阵,P、Q分别为: 0 0 1 0 0 1
P 0 1 0 0 0 0 Q 0 0 0 1 0 0
(a) 图像3-16(a)的一部分,即有字母b的那部分,图3-17左边的一部分数据
(b) 图(a)使用Q膨胀后的部分结果,即3-18(d)的放大。 图3-19 二值图像膨胀运算规则
其他算子的运算规则都与上面所述相同。运算结果与原 图像有关,算子形状与图像的邻域情况决定了运算结果 。 另外,从上面描述情况看,二值图像膨胀运算本质上是 逻辑运算。 数学上,二值图像膨胀运算可以用集合定义如下:
简单的应用。
1 二值图像膨胀运算
先通过下面例题观察分析几个二值图像膨胀算子的
【例3-16】对二值图像实施膨胀运算。 设计如下程序,结果显示在图3-16中。 A = imread('C:\MATLAB6p5\work\bc.bmp'); B=~A; M=[1;1;1]; N=[1 1 0]; P=[0 0 1;0 1 0;0 0 0]; Q=[0 0 1;0 0 0;1 0 0]; C1=imdilate(B,M); C2=imdilate(B,N); C3=imdilate(B,P); C4=imdilate(B,Q); subplot(1,5,1); imshow(B) subplot(1,5,2); imshow(C1) subplot(1,5,3); imshow(C2) subplot(1,5,4); imshow(C3) subplot(1,5,5); imshow(C4)
Python图像处理之膨胀与腐蚀的操作

Python图像处理之膨胀与腐蚀的操作引⾔膨胀与腐蚀是图像处理中两种最基本的形态学操作,膨胀将⽬标点融合到背景中,向外部扩展,腐蚀与膨胀意义相反,消除连通的边界,使边界向内收缩。
在本⽂中我们将了解使⽤内核的图像膨胀与腐蚀的基本原理。
让我们开始吧,同样我们需要导⼊必需的库。
import numpy as npimport matplotlib.pyplot as pltfrom skimage.io import imread, imshowfrom skimage.draw import circlefrom skimage.morphology import erosion, dilation⾸先让我们创建⼀个容易操作的形状--⼀个简单的圆。
circ_image = np.zeros((100, 100))circ_image[circle(50, 50, 25)] = 1imshow(circ_image);现在让我们定义⼀个内核。
cross = np.array([[0,1,0],[1,1,1],[0,1,0]])imshow(cross, cmap = 'gray');将腐蚀函数应⽤到创建的圆上。
eroded_circle = erosion(circ_image, cross)imshow(eroded_circle);图像看起来⼏乎⼀模⼀样。
要看到那些微⼩的差异,我们必须仔细查看图像。
linecolor = 'red'fig, ax = plt.subplots(1, 2, figsize=(12, 5))ax[0].imshow(circ_image, cmap = 'gray');ax[0].set_title('Original', fontsize = 19)ax[0].axvline(x = 25, color = linecolor)ax[0].axvline(x = 75, color = linecolor)ax[0].axhline(y = 25, color = linecolor)ax[0].axhline(y = 75, color = linecolor)ax[1].imshow(eroded_circle, cmap = 'gray');ax[1].set_title('Eroded', fontsize = 19)ax[1].axvline(x = 25, color = linecolor)ax[1].axvline(x = 75, color = linecolor)ax[1].axhline(y = 25, color = linecolor)ax[1].axhline(y = 75, color = linecolor)fig.tight_layout()我们可以看到,被腐蚀的圆已经略微缩⼩了。
像的形态学处理方法包括

像的形态学处理方法包括形态学处理是数字图像处理领域的重要技术之一,主要用于图像的形状、大小和结构的分析与变换。
以下是几种常见的形态学处理方法:1. 膨胀(Dilation):膨胀操作可以扩大图像中明亮区域的像素值,从而增大目标物体的尺寸。
膨胀操作使用一个结构元素(strel)对图像进行滑动,当结构元素中的像素点与源图像中的像素点匹配时,将目标图像中对应位置设置为白色。
多次膨胀操作会导致目标物体变得更大。
2. 腐蚀(Erosion):腐蚀操作与膨胀操作相反,它可以缩小图像中明亮区域的像素值,从而减小目标物体的尺寸。
腐蚀操作使用同样的结构元素(strel)对图像进行滑动,当结构元素中的所有像素点与源图像中的所有像素点匹配时,将目标图像中对应位置设置为白色。
多次腐蚀操作会导致目标物体变得更小。
3. 开运算(Opening):开运算是先进行腐蚀操作,然后再进行膨胀操作。
开运算可以去除噪点、平滑图像边界,并保持图像中明亮区域的形态特征。
4. 闭运算(Closing):闭运算是先进行膨胀操作,然后再进行腐蚀操作。
闭运算可以填充图像中的空洞、连接断裂的物体,并保持图像中较暗区域的形态特征。
5. 边缘检测:利用膨胀和腐蚀操作的差异来检测图像中的边缘。
常用的边缘检测算法有Sobel算法、Prewitt算法和Canny算法等。
6. 骨架化(Skeletonization):骨架化是通过连续的腐蚀操作将物体细化到只有一个像素宽度的过程。
骨架化操作可以提取图像中物体的形状特征,并用于形状匹配、特征提取等应用。
7. 捕获区域(Region Filling):捕获区域操作是通过连续的膨胀操作填充图像中的空洞,以便更好地分析和处理图像。
捕获区域操作可以应用于图像分割、目标识别等应用中。
除了上述方法,形态学处理还可以结合其他图像处理技术,如阈值化、滤波和边缘检测等,来进行更为复杂的操作和分析。
形态学处理方法在图像分析、目标识别、医学图像处理等领域有着广泛的应用和研究。
腐蚀膨胀算法详细解释

形态学运算中腐蚀,膨胀,开运算和闭运算(针对二值图而言)6.1腐蚀腐蚀是一种消除边界点,使边界向内部收缩的过程。
可以用来消除小且无意义的物体。
腐蚀的算法:用3x3的结构元素,扫描图像的每一个像素用结构元素与其覆盖的二值图像做“与”操作如果都为1,结果图像的该像素为1。
否则为0。
结果:使二值图像减小一圈把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做X被B腐蚀(Erosion)的结果。
用公式表示为:E(X)={alBa C X}=X©B,如图6.8所示。
图6.8腐蚀的示意图图6.8中X是被处理的对象,B是结构元素。
不难知道,对于任意一个在阴影部分的点a,Ba包含于X,所以X被B腐蚀的结果就是那个阴影部分。
阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因。
值得注意的是,上面的B是对称的,即B的对称集Bv=B,所以X被B腐蚀的结果和X被Bv腐蚀的结果是一样的。
如果B不是对称的,让我们看看图6.9,就会发现X被B腐蚀的结果和X被Bv腐蚀的结果不同。
y图6.9结构元素非对称时,腐蚀的结果不同图6.8和图6.9都是示意图,让我们来看看实际上是怎样进行腐蚀运算的。
在图6.10中,左边是被处理的图象X (二值图象,我们针对的是黑点),中间是结构元素B ,那个标有origin 的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。
腐蚀的方法是,拿B 的中心点和X 上的点一个一个地对比,如果B 上的所有点都在X 的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。
可以看出,它仍在原来X 的范围内,且比X 包含的点要少,就象X 被腐蚀掉了一层。
o Q Q Q o & QO Qo Q o O oooo o o o o o 0- 0 O 0 o o •• • ■ Oo o oo o o 0 o o o o o 0 0 o o o ••o o o oo o o o ■ ■ o o 0 0 o o o ••o 0 0 oo o o 0 ■ • ♦ o QQ Q ■0 0 & o Q Q Q 0 0 * * 0 0 0 O 0 0 • ♦ ♦■ 0 Q Q ◎ 00o o ■ •0 0 o O ■ ■ ■ ■ *« O Q Qo o■ ■ ■ ■ Q Q c- O■ * ■ o GO O O O o o •o o ■ •• ■ o o o o O oO ■ ■ ■o 0o O O o O ♦<Q 0■••■ o a o o O o O o o 0 0 o 0oO o oooo\>o0 00o o o o 0 0 0'originFEX e 6图6.10腐蚀运算 图6.11为原图,图6.12为腐蚀后的结果图,能够很明显地看出腐蚀的效果。
腐蚀膨胀算法原理

腐蚀膨胀算法原理
腐蚀膨胀算法(Erosion-DilationAlgorithm,缩写为EDA)是图像处理中最常用的算法之一。
它主要应用于图像的二值化处理,可以有效地消除图像中的噪声,以及实现图像中文字和物体的分割。
EDA是一种分水岭算法(Watershed Algorithm),该算法包括两个步骤,腐蚀和膨胀。
腐蚀步骤将从图像中提取图像对象的轮廓,而膨胀步骤将对象的轮廓填充,从而实现对图像对象的分割。
一般来说,EDA算法可以分为以下两步:
(1)腐蚀:腐蚀是图像处理中常用的技术,它的目的是去除图像中的噪声,消除图像中的噪点,并实现对图像中的文字或物体的轮廓提取。
腐蚀的基本原理是:使用一个结构元素(structuring element),它可以是不同类型的形状,如圆形、菱形、矩形等,将图像中某像素的非零元素替换为零。
(2)膨胀:膨胀是EDA算法中另一个重要的步骤,它是腐蚀的反向过程。
膨胀的基本原理是:使用一个结构元素将图像中某像素的零元素替换为非零元素,如果临近的像素是非零元素,则认为此像素属于某个对象的轮廓。
EDA算法的优点在于它既可以去除噪声,又可以实现文字或物体的分割。
此外,EDA算法还性能卓越,比一般算法要快得多,是图像处理中用到较多的算法之一。
但EDA算法也存在缺点:结构元素的选择不当,会影响到最终的结果;由于腐蚀操作的迭代,会导致目标图像的误差及失真问题;同
样,膨胀操作也会null影响图像的体积及精度。
总而言之,腐蚀膨胀算法是一种有效的图像处理算法,在图像的噪声消除、文字分割等应用中均有良好的效果,但也有一定的缺点,应该合理选择结构元素,以保证算法的正确性和最佳效果。
matlab中有关膨胀与腐蚀的解释

腐蚀与膨胀的基本原理1。
图像形态学处理的概念数字图像处理中的形态学处理是指将数字形态学作为工具从图像中提取对于表达和描绘区域形状有用处的图像分量,比如边界、骨架以及凸壳,还包括用于预处理或后处理的形态学过滤、细化和修剪等。
图像形态学处理中我们感兴趣的主要是二值图像。
在二值图像中,所有黑色像素的集合是图像完整的形态学描述,二值图像的各个分量是Z2的元素.假定二值图像A和形态学处理的结构元素B是定义在笛卡儿网格上的集合,网格中值为1的点是集合的元素,当结构元素的原点移到点(x,y)时,记为Sxy,为简单起见,结构元素为3x3,且全都为1,在这种限制下,决定输出结果的是逻辑运算。
2。
膨胀和腐蚀膨胀和腐蚀这两种操作是形态学处理的基础,许多形态学算法都是以这两种运算为基础的。
①膨胀是以得到B的相对与它自身原点的映像并且由z对映像进行移位为基础的。
A被B膨胀是所有位移z的集合,这样,和A至少有一个元素是重叠的。
我们可以把上式改写为:结构元素B可以看作一个卷积模板,区别在于膨胀是以集合运算为基础的,卷积是以算术运算为基础的,但两者的处理过程是相似的.⑴用结构元素B,扫描图像A的每一个像素⑵用结构元素与其覆盖的二值图像做“与”操作⑶如果都为0,结果图像的该像素为0。
否则为1②腐蚀对Z中的集合A和B,B对A进行腐蚀的整个过程如下:⑴用结构元素B,扫描图像A的每一个像素⑵用结构元素与其覆盖的二值图像做“与”操作⑶如果都为1,结果图像的该像素为1。
否则为0腐蚀处理的结果是使原来的二值图像减小一圈。
3.击中(匹配)或击不中变换假设集合A是由3个子集X,Y和Z组成的集合,击中(匹配)的目的是要在A中找到X的位置,我们设X被包围在一个小窗口W中,与W有关的X的局部背景定义为集合的差(W-X),则X在A内能得到精确拟合位置集合是由X对A的腐蚀后由(W-X)对A的补集Ac腐蚀的交集,这个交集就是我们要找的位置,我们用集合B来表示由X和X的背景构成的集合,我们可以令B =(B1,B2),这里B1=X,B2=(W-X),则在A中对B进行匹配可以表示为:A⊙B我们称为形态学上的击中或击不中变换。
腐蚀膨胀算法原理

腐蚀膨胀算法原理
腐蚀膨胀算法是数字图像处理中一种常用的算法,它能够有效处理图像的边界检测以及对象提取问题。
在本文中,将深入讨论腐蚀膨胀算法的原理、优点和应用。
一、腐蚀膨胀算法原理
腐蚀膨胀算法是一种基于细化算法的图像处理算法,主要的思想是利用腐蚀或膨胀的操作改变图像的像素点,从而达到对图像边界的检测或对象的提取。
首先,我们需要确定腐蚀或膨胀操作的半径,半径越大,腐蚀或膨胀操作越明显。
腐蚀操作是把一个特定半径内所有像素点的灰度值变为0,而且腐蚀的成度越大,说明这个特定半径内的所有像素点的灰度值越小。
膨胀操作则是把一个特定半径内所有像素点的灰度值变为最大值,它与腐蚀操作相反,半径越大,膨胀的成度越大,说明特定半径内的所有像素点的灰度值越大。
二、腐蚀膨胀算法的优点
腐蚀膨胀算法比较简单,易于理解和实现,它不需要比较复杂的数学模型,也不需要复杂的参数调整,是图像处理中一种简单有效的算法。
另外,它还具有较强的抗噪声性能,也就是说它能够比较准确的检测出信号强度相对较弱的边界。
三、腐蚀膨胀算法的应用
腐蚀膨胀算法常用于图像边界检测和对象提取等方面,它具有一定的实际应用,例如在机器视觉中,可以使用腐蚀膨胀算法实现对特
定物体的准确定位和识别。
另外,也可以使用它来实现图像的噪声消除,或者将较弱的信号边界转换为较强的信号边界,以便使得后续的图像处理任务变得更加容易。
综上所述,腐蚀膨胀算法是一种常用的图像处理算法,主要用于图像的边界检测和对象提取,具有一定实际应用。
此外,它还具有较强的抗噪声性能,可以比较准确的检测出信号强度较弱的边界。
因此,腐蚀膨胀算法在图像处理中具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当算子移动到位置“3”时,因为左下角与右上角处颜色值 都不为1,所以在覆盖区域中心(12, 9)处输出颜色值0, 如图3-19(b)位置“3”所示。
1 1 1
二值图像膨胀与腐蚀
一般来说对于二值图像,膨胀运算后图像中物体 “加
长”或“变粗”;腐蚀运算后图像中物体“收缩” 或“细
化”。下面先通过一些例题观察分析膨胀与腐蚀后 的
效果,总结二值图像膨胀与腐蚀运算的方法与原则, 最后给出二值图像膨胀与腐蚀运算的准确描述以及 简单的应用。
1 二值图像膨胀运算
先通过下面例题观察分析几个二值图像膨胀算子的
(a) 图像3-16(a)的一部分,即有字母b的那部分,图3-17左边的一部分数据
(b) 图(a)使用Q膨胀后的部分结果,即3-18(d)的放大。 图3-19 二值图像膨胀运算规则
其他算子的运算规则都与上面所述相同。运算结果与原 图像有关,算子形状与图像的邻域情况决定了运算结果 。
另外,从上面描述情况看,二值图像膨胀运算本质上是 逻辑运算。
在对二值图像进行膨胀运算时,也使用算子在图像上滑动。如 果图像的算子覆盖邻域内有1,那么覆盖区域中心的输出值就 为1,也就是新图像在覆盖区域中心的值为1。否则为0。
程序中读入的图像bc.bmp 是白色背景黑色字体,使用语句 B=~A把图像bc.bmp 变为黑色背景白色字体,如图3-16(a)所示。 该图像是二值图像,所有数据显示在图 3-17中。字体b 与c所 在范围用灰色标出。
(a)
(b)
(c)
(d)
(e)
图3-16 二值图像的膨胀运算
M、N、P、Q是4个算子,M是一个列向量,N是一个行向量。
P、Q都是[3 3] 矩阵,P、Q分别为: ?0 0 1?
P ? ??0
1
0
? ?
??0 0 0??
?0 0 1 ? Q ? ??0 0 0??
??1 0 0 ??
算子由0、1构成,有1的位置用来定义算子覆盖区域的邻域。 这里的(算子覆盖)邻域概念很重要,算子覆盖时,算子上有 1的地方称为中心点处的邻域。
图3-17 二Βιβλιοθήκη 图像bc.bmp的颜色数据为了节省篇幅,这里只研究字母b被膨胀后的变化情况。下 图中的4个图像都是字母b的变化情况。
(a)
(b)
M
N
果结的后胀膨 用使
果结的后胀膨 用使
果结的后胀膨 用使
果结的后胀膨 用使
(c)
(d)
P
Q
下面以图3-19为例详细讲解二值图像膨胀运算规则。
图3-19使用的是算子Q。对于算子Q,只要覆盖区域的左 下角与右上角至少有一个为 1(两个为1也可以),那么在 覆盖区域的中心位置的返回值就是 1。所以,当算子移动 到位置“1”时,因为右上角处颜色值为1,所以在覆盖区 域中心(5, 3)处输出颜色值1,如图3-19(b)位置“1”所 示。
【例3-17】对二值图像实施腐蚀运算。
把3-16中程序语句: C1=imdilate(B,M); C2=imdilate(B,N); C3=imdilate(B,P); C4=imdilate(B,Q); 修改为: C1=imerode(B,M);C2=imerode(B,N);
程序中的函数 imerode是用来 进行腐蚀运算的。 腐蚀运算后,原 来图像一般会变 细变小。
z
?A
c
?
?
? ?
?
其中,A为原图像,B为算子。Ac是A的补集。是移动覆 盖操作,是空集,是计算后的输出值。
在进行腐蚀运算时,算子移动一下,输出一个新值赋给 算子覆盖处的中心位置。计算输出值的方法是:如果算 子覆盖邻域内图像像素值有为0的,那么中心位置的输出 值为0,否则为1。
根据上面定义与说明,结合下面例3-17来理解图像腐蚀运 算规则。
C3=imerode(B,P);C4=imerode(B,Q);
其他语句不变,程序运行的结果是图3-20。
图3-20 二值图像腐蚀运算
【例3-18】对二值图像实施腐蚀运算,并且与膨胀运 算进行比较。
设计下面程序:
A = imread('0370.bmp'); B=im2bw(A); B=~B; M=strel('diamond',3); C1=imerode(B,M); C2=imdilate(B,M); subplot(1,3,1); imshow(B) subplot(1,3,2); imshow(C1) subplot(1,3,3); imshow(C2)
【例3-16】对二值图像实施膨胀运算。 设计如下程序,结果显示在图3-16中。 A = imread('C:\MATLAB6p5\work\bc.bmp'); B=~A; M=[1;1;1]; N=[1 1 0]; P=[0 0 1;0 1 0;0 0 0]; Q=[0 0 1;0 0 0;1 0 0]; C1=imdilate(B,M); C2=imdilate(B,N); C3=imdilate(B,P); C4=imdilate(B,Q); subplot(1,5,1); imshow(B) subplot(1,5,2); imshow(C1) subplot(1,5,3); imshow(C2) subplot(1,5,4); imshow(C3) subplot(1,5,5); imshow(C4)
程序运行结果如图3-21所示。
(a) 原图像
(b) 腐蚀后的图像 图3-21 二值图像腐蚀与膨胀比较
(c) 膨胀后的图像
函数strel是专门用来生成算子模板的,strel('diamond',3)生成
的算子模板为:
0 0 0 1 0 0 0 该算子模板呈菱形结
0 0 1
0 1 1
1 1 1
1 1 1
数学上,二值图像膨胀运算可以用集合定义如下:
A?
B
?
? ?
z
?
|
(
?
B
)
z
?A
?
?
? ?
?
其中,A为原图像,B为算子。就是上面描述的那种覆盖操 作,是空集,是计算后的输出值。
2 二值图像腐蚀运算 二值图像腐蚀运算本质上也是逻 辑运算,可以用如下数学定义描述二值图像腐蚀运算:
A
B
?
? ?
z
?
|
(
?
B)