《工业催化基础》讲义(09)3
《工业催化(第3版)》教学课件—03吸附、催化作用与催化剂

3.1 催化作用与催化剂
• 3.1.1 催化作用的定义与特征 • 3.1.1.1 定义 • 根据IUPAC于1981年提出的定义,催化剂是一种
能够加速反应速率而不改变该反应的标准Gibbs自由 焓变化的物质。这种作用称为催化作用。涉及催化剂的反 应称为催化反应。
• 催化剂之所以能够加速化学反应趋于热力学平衡点,是由 于它为反应物分子提供了一条较易进行的反应途径。
图3-6 催化剂再生、 运转时间与寿命的关系
• 3.1.3.3 环境友好和自然界的相容性
• 适应于循环经济的催化反应过程,其催化剂属性不仅要具 有高转化率和高选择性,还要涵盖可持续发展概念的要求 ,即应该是无毒无害、对环境友好的,反应应尽量遵循“ 原子经济性”,且反应的剩余物与自然相容的要求,也就 是“绿色化”的要求。
• ①反应物分子从气流中向催化剂表面和孔内扩散; • ②反应物分子在催化剂内表面上吸附; • ③吸附的反应物分子在催化剂表面上相互作用或与气相分
子作用进行化学反应; • ④反应产物自催化剂内表面脱附; • ⑤反应产物在孔内扩散并扩散到反应气流中去。
图3-13 多相催化反应过程中各步骤的示意图
图3-14 多相催化反应中的吸附、表面反 应和脱附过程
• 则金属的总表面积A可表示为
• 正确可靠的测量结果,尚需消除许多因素:吸附质气体在 金属中的溶解,与金属形成化合物,载体的固有吸附能力 ,金属与载体之间因强相互作用产生的溢流现象等。
• 3.3.3 氧化物表面上的化学吸附
• 在氧化物表面上的化学吸附,要比金属表面上的复杂,研 究也更困难。因为:
(吸附质)的吸附能力,需要研究吸附速率和吸附平衡及 其影响因素。除吸附剂和吸附质的本性外,最重要的影响 因素是温度和压力。达到平衡时的气体吸附量称为平衡吸 附量,它是吸附物系(包括吸附剂和吸附质)的性质、温 度和压力的函数。对于给定的物系,在温度恒定和达到平 衡的条件下,吸附量与压力的关系称为吸附等温式或称吸 附平衡式,绘制成的曲线称为吸附等温线。
《工业催化基础》课件(2011)-407811

化工资源有效利用国家重点实验室
7
7
第二节 合成氨工艺流程和操作条件
石脑油 天然气
中
催 塔
一二 段段 转转 化化
变 换 低
氧 化 碳 吸 收
甲 烷 化
合 成 塔
温
塔
变
换
空气
化工资源有效利用国家重点实验室
NH3
8
8
第二节 合成氨工艺流程和操作条件
化工资源有效利用国家重点实验室
13
13
第三节 催化过程
四、甲烷化过程
成塔低时变必后须,脱原除料, 中过微去量用的铜C氨O液和吸CO收2,
(< 0.5%) 进合 现用催化加氢
脱除.
1、反应:
CO + 3H2 → C H4 + H2O CO2 + 4H2 → C H4 + 2H2O
2、催化剂: Ni 是有效的催化剂, 活性大小顺序如下: Ni
的金属簇催化理论。
化工资源有效利用国家重点实验室
6
6
第二节 合成氨工艺流程和操作条件
一、工艺流程:
目前,国内外大型合成氨厂基本都采用石脑油或天然气为 原料进行氨的生产,其工艺流程包括烃类加氢脱硫、水蒸气两 段转化制氢、中温和低温变换脱除CO、CO2吸收、微量CO 甲烷 化、氨合成等流程,共采用八种催化剂(CO2吸收除外)。
化工资源有效利用国家重点实验室
16
16
化工资源有效利用国家重点实验室
12
12
第三节 催化过程
三、CO变换过程
1、反应: CO + H2O →CO2 + H2
2、中温变换:Fe、Cr催化剂,反应温度为350-500℃,使CO浓 度降到2-3%;
工业催化基础课程教学大纲.doc

催化原理教学大纲课程名称:催化原理英文名称:The principle of catalysis总学时:32学时理论学时:32 实验学时:0 总学分:2.0一、课程的性质、目的及任务本课程主要介绍工业催化技术的应用以及催化剂设计、制备、表征的一般知识和规律。
研究催化剂结构与性质之间的关系,从微观的角度探讨催化剂组成、比例及表面层原子、分子及离子的位置、运动以及构型与催化剂性能的关系。
通过本课程的学习使同学们系统地掌握工业催化的基本概念、基本原理、基本方法及技巧,为今后的科研和开发打下良好的基础。
二、课程教学基本要求本课程要求学生掌握催化作用的基本原理,了解各类催化剂及其催化作用,包括固体酸碱催体、分子筛催化、金属催化、络合催化、金属氧化物和金属硫化物催化等,并跟踪工业催化的最新进展;初步了解工业催化剂的基本要求,催化剂的组成、制备原理和方法;初步了解催化实验用的反应器和检测仪器、手段等。
三、课程教学基本内容第一章催化作用与催化剂(含绪论)第一节绪论第二节催化作用与催化剂第二章均相催化第一节配位催化的主要原理及应用第二节酸碱催化的主要原理及应用第三章多相催化第一节多相催化的反应步骤第二节..吸附等温线第三节.金属表面上的化学吸附第四节.氧化物表面上的化学吸附第五节.固体酸碱催化剂及其催化作用第六节.分子筛催化剂及其催化作用第七节.金属催化剂及其催化作用第八节.金属氧化物和硫化物催化剂及其催化作用第四章酶催化第一节.酶的结构及命名第二节.酶催化的特征第三节.酶催化动力学第五章工业催化剂的制备与表征第一节工业催化剂的制备第二节..催化剂的使用、失活与再生第三节催化剂的表面积及其测定第四节催化剂的孔结构及其测定第五节催化剂微观结构的表征第六章工业催化剂的设计主要介绍国外几个主要的催化剂设计专家系统.学时分配表教学内容讲课时实验时实践时上]机时自学时习题课讨论时第一章催化作用与催化剂(含绪论) 4第二章均相催化 4第三章多相催化10第四章酶催化 4第五章工业催化剂的制备与表征8第六章工业催化剂的设计 2合计32总计32.主要参考书目[1]《工业催化剂设计与开发》,黄仲传等编著,华南理工大学出版社;[2]《工业催化原理》,李玉敏,天津大学出版社;[3]《液相化学反应动力学原理》,金家骏,上海科学技术出版社;[4]《催化剂成型》,朱洪法,中国石油化工出版社;1987;[5]《实用催化》,高正中,化学工业出版社,1996。
工业催化基础

2、经济效益 (1)催化剂按使用部门划分为炼油、化工.和环保催化剂三大类。据统计,20 世纪80年代中期全球催化剂销售额仅25亿美元,1991年达到66亿美元,1995年103 亿美元,其中炼油、聚合物、化工和环保催化剂分别占22%、16%、26%和35%,汽 车尾气处理Cat.占1/3。
(2)1986年美国商业部估计,美国1984年催化剂消耗总值为13.3亿美元,同 期的石油炼制产品和石油化工产品(两类产品绝大多数通过催化剂生产)的销售总 值为2590亿美元,即$195产值/$1 Cat. 。
2)催化化学;
3)废塑料、废弃物回收利用技术;*** 4)分离技术;***
5)工程放大技术;***
6)新能源、节能技术的开发;*** 7)生态平衡工厂、舒适工厂,即绿色化工厂;***
8)现代化管理系统;*
9)高新技术;*** 10)软件开发。**
(2)现代化学工业中,任何一种新产品、新工艺的出现,都是与催化剂 的开发有关。 Ex1:乙烯生产 工业方法:渣油、石脑油、轻柴油裂解→乙烯。 存在问题:石油资源缺乏,与车用燃料、其它石化产品争原料。 缺原料,瓶颈问题。 大力研发:甲烷氧化偶联(OCM)制乙烯。关键:高效催化剂开发。 OCM制乙烯是20世纪80’以来世界天然气转化研究的突出热点。自1982年Keller
等发表第一篇OCM研究论文到1993年初,全世界所发表论文>950篇,申请美国专利
>160件。有人统计,国内外所研究过的OCM催化剂>2000种,及到元素周期表中 除氧族元素以外的各主副族的数十种元素。 目前,OCM制乙烯已取得突破进展,开始投入工业试验。乙烯单程收率达到 26~28%。筛选催化剂有:LiCl/MnO2、Li+/MgO、Li2SO4.MnXOy/TiO2、 MnO2.NaCl/B2O3等。 此外,合成气→烯烃,甲醇→烯烃,大力开发,完成工业试验、正在工业化。
1-工业催化原理PPT优秀课件

48
思考题: 2
2021/6/3
49
思考题: 3
4 、
2021/6/3
50
2021/6/3
51
2021/6/3
52
部分资料从网络收集整 理而来,供大家参考,
感谢您的关注!
反应速率随表面精细结构而变化—结构 敏感反应。
2021/6/3
26
反应速率
反应速率表示反应快慢,一般有三种表 示方法。
以催化剂重量为基淮 以催化剂体积为基准 以催化剂表面积为基准
在催化反应动力学的研究中,活性多用 反应速率来表达。
2021/6/3
27
2021/6/3
28
速率常数
用速率常数比较活性时,要求温度相同。 在不同催化剂上反应,只有当反应的速 率方程有相同的形式时,用速率常数比 较活性大小才有意义。此时,速率常数 大的催化剂的活性高。
44
催化剂分类
金属催化剂(Ni,Fe, Cu, Pt, Pd….) 金属氧化物催化剂和金属硫化物催化剂
(多为半导体) Ln2O3 MoS 酸碱催化剂 配合物催化剂
2021/6/3
45
双功能催化剂(多功能催化剂)
是指其催化的过程包含了两种或两种以 上不同反应机理,催化剂也具有不同类 型的活性位。
2021/6/地3 氧化为邻二甲苯酐。
6
催化理论的基本思想的形成
在这一时期,逐步产生了某些催化理论 的基本思想。例如,不稳定表面中间物 (1910年),晶格非理想性(1920年),表面 活性中心(1925年),这些理论雏形在实践 中应用,起到了改进旧催化剂、开发新 催化剂的作用,推动了化学工业的发展。
Heterogeneous Catalysis Principles and Applications-----G.C. Bond, Oxford Science
《工业催化基础》课件(第2章 催化剂与催化作用的基础知识)2015-2解读

活性炭
硅藻土 高岭土
50~1500
2~30 ~140
0.32~2.6
0.5~6.1 ~0.31 14
化工资源有效利用国家重点实验室
第三节 固体催化剂的组成和结构
4、催化剂结构
(1)固体工业催化剂的形状结构
固体工业催化剂是具有一定外形和大小的颗粒,催化剂的形状有球状、圆柱 状、环状、片状、网状、粉末状、条状及不规则状,近年来还出现了许多特 殊形状,如三叶状、四叶状、车轮状、蜂窝状及梅花状等,颗粒大小几十微 米到十几毫米。由于制备方法的不同,虽然催化剂的化学组成相同,但是由 于结构(晶相结构和孔结构等)不同,催化剂的性能差别很大。
项 目 酸碱型催化反应 电子对的授受或电荷密度的分布发生变化 非均裂或极化 自旋饱和的物种(离子型物种) 自旋饱和分子或固体物质 酸,碱,盐,氧化物,分子筛 裂解,水合,酯化,烷基化,歧化,异构化 氧化还原型催化反应 单个电子转移 均裂 自旋不饱和的物种(自由基型物种) 自旋不饱和的分子或固体物质 过渡金属,过渡金属氧(硫)化物,过渡金 属盐,金属有机络合物 加氢,脱氢,氧化,氨氧化 催化剂与反应物之间作用 反应物化学键变化 生成活性中间物种 催化剂 催化剂举例 反应举例
工业催化的化学基础

工业催化的化学基础工业催化是指利用催化剂来促进化学反应的进行,提高反应速率和选择性的工艺。
催化剂在工业生产中扮演着重要的角色,其中催化剂的选择和设计直接关系到反应的效率和经济性。
在工业催化的背后,有着深厚的化学基础支撑。
一、催化剂的种类催化剂的种类非常广泛,根据其物理状态可分为固体催化剂、液体催化剂和气体催化剂。
其中,固体催化剂应用最为广泛,包括金属催化剂、金属氧化物催化剂、贵金属催化剂等。
这些催化剂主要通过吸附、表面反应和扩散等方式来促进反应的进行。
二、催化作用的原理催化剂能够降低反应的反应活化能,从而提高反应速率。
这是通过催化剂表面的活性位点来实现的,活性位点能够吸附反应物分子并促使其发生反应。
在反应过程中,催化剂会发生表面吸附和反应、生成中间体等过程,最终得到产物。
三、催化剂的设计与选择在工业催化中,催化剂的设计和选择至关重要。
首先需要考虑的是催化剂的活性和稳定性,活性指的是催化剂促进反应的能力,稳定性则是指催化剂在反应条件下的稳定性。
其次要考虑的是催化剂的选择性和寿命,选择性决定了反应的产物分布,寿命则是指催化剂的使用寿命和再生性能。
四、催化反应的动力学催化反应的动力学研究是理解和优化工业催化过程的关键。
动力学研究可以揭示反应速率随反应物浓度变化的规律,了解反应进行的速率限制步骤,并为催化剂的设计和反应条件的选择提供指导。
五、催化剂的先进研究随着科学技术的不断发展,工业催化领域也在不断创新。
从新型催化材料的设计合成、表征方法的发展、反应机理的研究等方面都在取得新的进展,为工业催化的发展提供了新的思路和可能性。
总结:工业催化是一门重要的交叉学科,涉及化学、物理、材料等多个领域。
其化学基础包括催化剂种类、催化作用原理、催化剂设计与选择、催化反应的动力学等方面。
通过不断地研究和创新,工业催化将为实现绿色、高效的生产提供更多可能性。
工业催化导论第三章

在新材料、新能源、生物医药等领域,工业催化技术发挥着至关重要的作用,推动了新兴 产业的快速发展和传统产业的转型升级。
未来工业催化的发展方向与挑战
研发新型高效催化剂
强化催化反应机理研究
针对不同工业过程,研发具有更高活性、 选择性和稳定性的新型催化剂,以满足不 断变化的市场需求。
催化反应动力学基础
动力学参数
反应机理
揭示反应如何进行,包括中间产 物、活化能等,是理解反应动力 学的关键。
通过实验测定反应速率常数、活 化能等动力学参数,有助于优化 反应条件和提高催化效率。
温度影响
温度对催化反应速率有显著影响, 通过研究温度与反应速率的关系, 可以找到最佳的反应温度。
反应速率方程
THANKS FOR WATCHING
感谢您的观看
酸碱催化剂
如硫酸、氢氧化钠等,通过酸碱中 和反应来促进化学反应的进行。
酶催化剂
生物体内存在的天然催化剂,具有极 高的催化效率和选择性,常用于生物 发酵和制药等领域。
复合催化剂
由多种组分组成的催化剂,通过协 同作用提高催化性能,广泛应用于 各种化学反应中。
负载型催化剂
催化剂被负载在固体载体上,可提 高催化剂的分散度和稳定性,延长 使用寿命。
深入理解催化反应机理,有助于优化催化 剂设计,提高催化效率,减少副反应,降 低能耗和资源消耗。
发展绿色催化工艺
应对资源与能源挑战
在保证产品性能的同时,努力实现工业催 化过程的绿色化,减少对环境的负面影响 。
随着全球能源和资源紧张的加剧,工业催 化需要更加注重资源的有效利用和能源的 可持续发展,以应对未来的挑战。
石油裂化催化过程
石油裂化是一种将重质油转化为轻质油的过程, 通过使用催化剂,可以有效地促进裂化反应,提 高轻质油产物的收率。