柯西不等式及排序不等式及其应用经典例题透析

合集下载

经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式

经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式

不妨设
a1 a2 ... an
b1 b2 ... bn
由切比雪夫不等式为
1 (a1 a2 ... an )(b1 b2 ... bn ) a1b1 a2b2 ... anbn n
令 ai bi (i 1, 2,..., n) 则有
aibi-ajbi+ajbj-aibj=(ai-aj)(bi-bj)≥0
即顺序和≥乱序和(当且仅当 ai=aj 或 bi=bj 时等号成立) 当有多个乱序时可由数学归纳法即得结论: a1bn+a2bn-1+…+anb1≤a1bj1+a2bj2+„+anbjn≤a1b1+a2b2+„+anbn (其中 j1,j2,…,jn 是 1,2,…,n 的一个排列) 当且仅当 a1=a2=…=an 或 b1=b2=…=bn 时等号成立 2.切比雪夫不等式 若两个正实数数组{ai} , {bi} 满足 a1≤a2≤„≤an ,b1≤b2≤„ ≤bn,
版权所有,违者乱棍打死
1. 排序不等式 设两个数组{ai} , {bi}满足 a1≤a2≤„≤an,b1≤b2≤„≤bn, 则有 a1bn+a2bn-1+…+anb1≤a1bj1+a2bj2+„+anbjn≤a1b1+a2b2+„+anbn (其中 j1,j2,…,jn 是 1,2,…,n 的一个排列) 当且仅当 a1=a2=…=an 或 b1=b2=…=bn 时等号成立 证明: (先证有一个乱序的情形,其余的可根据结论得证) 设序列{ai}中仅有 ai 与 aj 调换次序 由 a1b1+a2b2+…+ajbi+…+aibj+…+anbn 记为○ 1 式(为乱序) a1b1+a2b2+…+aibi+…+ajbj+…+anbn 2 -○ 1 得 ○ : 记为○ 2 式(为顺序) 恒成立 .

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
m n || m | | n | |
2 2 2
ac bd a b c d
2
定理2: (柯西不等式的向量形式)
| || | | |
设α,β是两个向量,则 当且仅当β是零向量,或存在实数k, 使α=kβ时,等号成立.
观 察
反序和≤乱序和≤顺序和
例1 :有10人各拿一只水桶去接水,设水 龙头注满第i(i=1,2,…,10)个人的水桶需 要ti分,假定这些ti各不相同。 问:只有一个水龙头时,应该如何安排10 人的顺序,使他们等候的总时间最少? 这个最少的总时间等于多少?
解:总时间(分)是 10t1+9t2+…+2t9+t10 根据排序不等式,当t1<t2<…<t9<t10时, 总时间取最小值。 即:按水桶的大小由小到大依次接水, 则10人等候的总时间最少。 最少的总时间是: 10t1+9t2+…+2t9+t10
即可
三 排序不等式
定理(排序不等式,又称排序定理) 设a1 a2 ... an,b1 b2 ... bn为两组 实数c1 , c2 是b1 , b2 ...bn的任一排列, 那么: a1bn a2bn 1 ... anb1 a1c1 a2 c2 ... an cn a1b1 a2b2 ... anb.n 当且仅当a1 a2 ... an或b1 b2 ... bn时, 反序和等于顺序和。
y
P1(x1,y1)
y P1(x1,y1) 0
0
P2(x2,y2) x
x P2(x2,y2)
根据两点间距离公式以及三角形的 边长关系:
x y x y ( x1 x2 ) ( y1 y2 )

不等式选讲――柯西不等式与排序不等式(全)

不等式选讲――柯西不等式与排序不等式(全)

不等式选讲――柯西不等式与排序不等式(全)例1 已知12,,n a a a ⋅⋅⋅都是正数,求证:21212111()()n na a a n a a a ++⋅⋅⋅+++⋅⋅⋅+≥ 证1:()i a R i N +∈∈12n a a a ∴++⋅⋅⋅+≥,12111n a a a ++⋅⋅⋅+≥21212111()()n na a a n a a a ∴++⋅⋅⋅+++⋅⋅⋅+≥,当且仅当12n a a a ==⋅⋅⋅=时等号成立. 证2:构造两个数组:利用柯西不等式有22211`1([][]nn ni i i ===≤⋅∑∑即 21111(1)()()nn nii i i ia a===≤∑∑∑21212111()()n na a a n a a a ∴++⋅⋅⋅+++⋅⋅⋅+≥例2 设(1,2,,)i a R i n ∈=⋅⋅⋅,且22111()1nnii i i A a a n ==+<-∑∑,证明:122A a a <证明:由柯西不等式,有2222222212121211()[()](111)[()](1)(2)n ni n ni i i a a a a a a a n a a a ===++⋅⋅⋅+≤++⋅⋅⋅+++⋅⋅⋅+=-+∑∑221211(1)(2)1ni i i A a n a a a n =∴+<⋅-+-∑∑122A a a ∴<例3. 设12,,,,k a a a ⋅⋅⋅⋅⋅⋅为各不相同的正整数,求证:对任何正整数n ,有2111nnk k k a k k==≥∑∑证明:22211()[nnn n k a k k a =≤⋅∑∑∑∑不妨设12k a a a <<⋅⋅⋅<,则k a k ≥,故11k a k≤ 1111nn k k k a k==∴≤∑∑2211111()()n n n k k k k a k k k ===∴≤∑∑∑,即2111nn kk k a k k ==≤∑∑例4.已知,0a b >,4422222(1)1(1)(1)a b f b a b a b+=+++++,求证:16f ≥ 证明:由题意,可得442222222222222(1)1(1)(1)(1)[(1)][(1)]a b a b f b a a b a b b a b b a++=+++++=+++++ 222222222(1)(1)[(1)][][]a b a b a b b a b a++=+++≥+令22(1)a b g b a+=+22222()](1)a b g b a ∴+=++≥++221()2()11()()24a b a b a b g a b a b a b a b++++++∴≥==+++≥+++即4f ≥例5.证明:22221212()n na a a a a a n n++⋅⋅⋅+++⋅⋅⋅+≤证明:221212()(111)n n a a a a a a ++⋅⋅⋅+=⋅+⋅+⋅⋅⋅+⋅222221212()(111)()n n a a a n a a a ≤++⋅⋅⋅+++⋅⋅⋅+=++⋅⋅⋅+ 22221212()n n a a a a a a n n++⋅⋅⋅+++⋅⋅⋅+∴≤若上述不等式中12,,,0n a a a ⋅⋅⋅>,两边开平方,得12n a a a n ++⋅⋅⋅+≤这就是著名的不等式:n 个正数的平方平均值不小于它们的算术平均值.例6 .求证:对于任意实数12,a a 和12,b b ,下面不等式恒成立证明:由柯西不等式,得: 2222212121122()()()a a b b a b a b ++≥+又 2222222212112)()(()b a a b b b =++++ 222222121211221122()()2()()()a a b b a b a b a b a b ≥+++++=+++两边开平方即得证. 例7 .证明:对于任意实数,,x y z ,不等式222222()()()()()()x y y z z x xyz x y y z z x +++≥+++成立.证明:由柯西不等式,得 222222()()()()x y y z x yy z y x z++≥+=+ 22222()()()y z z x z y x ++≥+,222222()()()z x x y x y z ++≥+2222222222222()()()()()()()x y y z z x xyz x y y z z x ∴+++≥+++ 222222,,0x y y z z x +++≥222222()()()()()()x y y z z x xyz x y y z z x ∴+++≥+++例8. 若u =,p q 是使u 有意义的实数,试确定u 的最大值.解:由柯西不等式,得u =1122(111)(23262)p q q p q ≤++-+-+-=当且仅当23262p q q p q -=-=-即2,2p q ==时等号成立.max u ∴=练习:1.已知a 1,a 2,a 3,…,a n ,b 1,b 2,…,b n 为正数,求证:2设,,,,21+∈R x x x n 求证:n nn x x x x x x x x x x x +++≥++++ 211232213.已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=,试求a 的最值.4.设a 、b 、c>0且acos2θ+bsin2θ<c ,求证c b a <+θθ22sin cos.5.设a ﹐b 为不相等的正数﹐试证:(a +b)(a 3+b 3)>(a 2+b 2)2﹒6.设a ﹑b 均为正数,则(a +2b )(1a +2b)之最小值= .﹒ 7.(a 2+b 2+c 2)((21a )+(21b)+(21c ))最小值为 .8.设16)1z (9)1y (4x 222++++=1,求2x+y+z-16之最大值 ,最小值 . 9.设x ,y ,z ∈R ,若x 2+y 2+z 2=5,求x-y+2z 的最大值 .,且此时(x ,y ,z)= . 10.设x ,y ,z 均为正实数,且x+y+z=10,求z9y 1x 4++的最小值 .且此是(x ,y ,z)= . 11.x , y , z ∈R ,且x -2y +2z =5﹐求(x +5)2+(y -1)2+(z +3)2的最小值 . 12.设a 、b 为实数,求a 2+b 2+(2a-3b+4)2的最小值为 . 13.设x ,y ,z ∈R ,求222zy 2x z y x 2++-+的最大值 .14.设 a , b , c > 0,证明 1).a 2a b 2b c 2c ≥ a b+c b c+a c a+b . 2).a a b b c c ≥ 3)(cb a abc ++.3).ab c ca b bc a b a c a c b c b a c b a 333222222222++≤+++++≤++. 4).333888111c b a c b a c b a ++≤++. 5). cb a b a ac c b ++++222222 ≥ abc.15.设 x 1 , x 2 , … , x n (n ≥ 2) 全是正整数,并有以下性质:x 1 + x 2 + … + x n = x 1x 2 … x n证明:1 < nx x x n+++...21 ≤ 2.16.设a 、b 、c 为正数且各不相等.求证:cb a ac c b b a ++>+++++922217.a 、b 为非负数,a +b =1,+∈R x x 21,求证:212121))((x x ax bx bx ax ≥++.18.若a >b >c 求证:ca cb b a -≥-+-411.19.+∈R c b a ,,求证:23≥+++++b a c a c b c b a .20. 设 a , b , c ≥ 0,證明 23≥+++++b a c a c b c b a .21.已知a 、b 、c ∈R +且a+b+c=1,求141414+++++c b a 的最大值.22.求)cos 11)(sin 11(a a y ++=的最小值)20(π<<a .23.△ABC 的三边长为a 、b 、c ,其外接圆半径为R ,求证:222222236)sin 1sin 1sin 1)((R CB A c b a ≥++++24.比较大小:1010⨯1111⨯1212⨯1313 与 1013⨯1112⨯1211⨯1310.。

经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式

经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式
1 xn
最小,因而其乘积和是反序的)
版权所有,违者乱棍打死

x1 y1 x2 y2 ... xn yn
总是两数组的反序和。
于是由排序不等式的“乱序和 反序和” ,总有
x1 yn x2 y1 ... xn yn1 x1 y1 x2 y2 ... xn yn
n 1 1 1 ... a1 a2 an
n
n a1a2 ...an
证明:○ 1
(此处先利用 由于
a1a2 ...an
a1 a2 ... an n
的结论) 1式 ○
1 1 1 ... a1 a2 an 1 1 1 n ... n a1 a2 an
=n
1 a1a2 ...an

a a1 a2 ... n 1 1 ... 1 n c c c
a1 a2 ... an c n a1a2 ...an n

n
a1 a2 ... an a1a2 ...an n
(利用切比雪夫不等式证明) ,
2 2 a1 a2 ... an a 2 a2 ... an 1 n n ○ 3
c
c
y1= 1 = c ,y2= 1 =
x1 a1 x2
c2 a1a2
,„,yn= 1 =
xn
cn a1a2 ...an
=1
(其中 c n a1a2 ...an ,因为{xn},{yn}两个数列对应成倒数,所以 无论它们数列的各项的值的大小如何,乘积的和都是 1,且 可视为两个数列反序乘积和的形式, 比如: 若 xn 最大, 则 yn=
(提示:上式从第○ 2 行到最后一行可视为 ai 顺序乘以 bi 的一 个乱序) 根据“顺序和 乱序和” (从第○ 2 行到第○ n 行同时使用) ,可 得

高中数学第三讲柯西不等式与排序不等式一二维形式的柯西不等式讲义含解析新人教A选修4_5_

高中数学第三讲柯西不等式与排序不等式一二维形式的柯西不等式讲义含解析新人教A选修4_5_

一二维形式的柯西不等式1.二维形式的柯西不等式(1)定理1:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)二维形式的柯西不等式的推论:(a+b)(c+d)≥(ac+bd)2(a,b,c,d为非负实数);a2+b2·c2+d2≥|ac+bd|(a,b,c,d∈R);a2+b2·c2+d2≥|ac|+|bd|(a,b,c,d∈R).2.柯西不等式的向量形式定理2:设α,β是两个向量,则|α·β|≤|α|·|β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.[注意] 柯西不等式的向量形式中α·β≤|α||β|,取等号“=”的条件是β=0或存在实数k,使α=kβ.3.二维形式的三角不等式(1)定理3:x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2(x1,y1,x2,y2∈R).当且仅当三点P1,P2与O共线,并且P1,P2点在原点O异侧时,等号成立.(2)推论:对于任意的x1,x2,x3,y1,y2,y3∈R,有(x1-x3)2+(y1-y3)2+(x2-x3)2+(y2-y3)2≥(x1-x2)2+(y1-y2)2.事实上,在平面直角坐标系中,设点P1,P2,P3的坐标分别为(x1,y1),(x2,y2),(x3,y3),根据△P1P2P3的边长关系有|P1P3|+|P2P3|≥|P1P2|,当且仅当三点P1,P2,P3共线,并且点P1,P2在P3点的异侧时,等号成立.[例1] 已知θ为锐角,a ,b ∈R +,求证:a2cos2θ+b2sin2θ≥(a +b )2.[思路点拨] 可结合柯西不等式,将左侧构造成乘积形式,利用“1=sin 2θ+cos 2θ”,然后用柯西不等式证明.[证明] ∵a2cos2θ+b2sin2θ=⎝⎛⎭⎪⎫a2cos2θ+b2sin2θ(cos 2θ+sin 2θ)≥⎝⎛⎭⎪⎫a cos θ·cos θ+b sin θ·sin θ2=(a +b )2,∴(a +b )2≤a2cos2θ+b2sin2θ.利用柯西不等式证明不等式的关键在于利用已知条件和所证不等式,把已知条件利用添项、拆项、分解、组合、配方、变量代换等,将条件构造成柯西不等式的基本形式,从而利用柯西不等式证明,但应注意等号成立的条件.1.已知a 1,a 2,b 1,b 2为正实数.求证:(a 1b 1+a 2b 2)⎝ ⎛⎭⎪⎫a1b1+a2b2≥(a 1+a 2)2.证明:∵(a 1b 1+a 2b 2)⎝⎛⎭⎪⎫a1b1+a2b2=[(a1b1)2+(a2b2)2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a1b12+⎝ ⎛⎭⎪⎫a2b22 ≥⎝⎛⎭⎪⎫a1b1·a1b1+a2b2·a2b22=(a 1+a 2)2. ∴原不等式成立. 2.设a ,b ,c 为正数,求证:a2+b2+b2+c2+a2+c2≥ 2(a +b +c ). 证明:由柯西不等式,得 a2+b2·12+12≥a +b , 即2·a2+b2≥a +b . 同理:2·b2+c2≥b +c , 2·a2+c2≥a +c , 将上面三个同向不等式相加得:2()a2+b2+ b2+c2+ a2+c2≥2(a +b +c ) ∴ a2+b2+ b2+c2+a2+c2≥ 2(a +b +c ). 3.设a ,b ∈R +,且a +b =2.求证:a22-a +b22-b ≥2.证明:根据柯西不等式,有[(2-a )+(2-b )]⎝ ⎛⎭⎪⎫a22-a +b22-b=[(2-a)2+(2-b)2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫b 2-b 2≥⎝⎛⎭⎪⎫2-a ·a2-a +2-b ·b 2-b 2=(a +b )2=4.∴a22-a +b22-b ≥4(2-a)+(2-b)=2. ∴原不等式成立.[例2] 求函数y =3sin α+4cos α的最大值.[思路点拨] 函数的解析式是两部分的和,若能化为ac +bd 的形式就能用柯西不等式求其最大值.[解] 由柯西不等式得(3sin α+4cos α)2≤(32+42)(sin 2α+cos 2α)=25, ∴3sin α+4cos α≤5.当且仅当sin α3=cos α4>0即sin α=35,cos α=45时取等号,即函数的最大值为5.利用柯西不等式求最值的注意点(1)变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决条件;(2)有些最值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以利用柯西不等式来解,这也是运用柯西不等式解题的技巧;(3)有些最值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.多次反复运用柯西不等式的方法也是常用技巧之一.4.已知2x 2+y 2=1,求2x +y 的最大值.解:∵2x +y =2×2x +1×y ≤(2)2+12×(2x)2+y2=3×2x2+y2=3,当且仅当x =y =33时取等号. ∴2x +y 的最大值为 3.5.求函数y =x2-2x +3+x2-6x +14的最小值. 解:y =(x -1)2+2+(3-x)2+5,y 2=(x -1)2+2+(3-x )2+5+2×[(x -1)2+2][(3-x)2+5]≥(x -1)2+2+(3-x )2+5+2×[(x -1)(3-x )+10]=[(x -1)+(3-x )]2+(7+210)=11+210.当且仅当x -13-x =25,即x =32+52+5时等号成立.此时y min =11+210=10+1.1.已知a ,b ∈R +且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的大小关系是( ) A .P ≤Q B .P <Q C .P ≥QD .P >Q解析:选A 设m =(a x ,b y ),n =(a ,b), 则|ax +by |=|m·n |≤|m ||n |=(ax)2+(by)2·(a)2+(b)2=ax2+by2·a +b = ax2+by2, ∴(ax +by )2≤ax 2+by 2,即P ≤Q .2.若a ,b ∈R ,且a 2+b 2=10,则a -b 的取值范围是( ) A .[-25,2 5 ] B .[-210,210 ]C .[-10,10 ]D .(-5,5)解析:选A (a 2+b 2)[12+(-1)2]≥(a -b )2, ∵a 2+b 2=10, ∴(a -b )2≤20. ∴-25≤a -b ≤2 5.3.已知x +y =1,那么2x 2+3y 2的最小值是( ) A.56 B.65 C.2536D.3625解析:选B (2x 2+3y 2)[(3)2+(2)2]≥(6x +6y )2=[6(x +y )]2=6, 当且仅当x =35,y =25时取等号,即2x 2+3y 2≥65.故2x 2+3y 2的最小值为65.4.函数y =x -5+26-x 的最大值是( ) A. 3 B. 5 C .3D .5解析:选B 根据柯西不等式,知y =1×x -5+2×6-x ≤12+22×(x -5)2+(6-x)2=5,当且仅当x =265时取等号.5.设xy >0,则⎝⎛⎭⎪⎫x2+4y2⎝ ⎛⎭⎪⎫y2+1x2的最小值为________.解析:原式=⎣⎢⎡⎦⎥⎤x2+⎝ ⎛⎭⎪⎫2y 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x 2+y2≥x ·1x +2y ·y 2=9,当且仅当xy =2时取等号. 答案:96.设a =(-2,1,2),|b |=6,则a ·b 的最小值为________,此时b =________. 解析:根据柯西不等式的向量形式,有|a ·b |≤|a |·|b |, ∴|a ·b |≤(-2)2+12+22×6=18, 当且仅当存在实数k , 使a =kb 时,等号成立. ∴-18≤a ·b ≤18, ∴a ·b 的最小值为-18, 此时b =-2a =(4,-2,-4). 答案:-18 (4,-2,-4)7.设实数x ,y 满足3x 2+2y 2≤6,则P =2x +y 的最大值为________. 解析:由柯西不等式得(2x +y )2≤[(3x )2+(2y )2]·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫122=(3x 2+2y 2)·⎝ ⎛⎭⎪⎫43+12≤6×116=11,当且仅当x =411,y =311时取等号,故P =2x +y 的最大值为11. 答案:118.已知x ,y ∈R +,且x +y =2.求证:1x +1y ≥2.证明:1x +1y =12(x +y )⎝ ⎛⎭⎪⎫1x +1y =12[ (x)2+(y)2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x 2+⎝ ⎛⎭⎪⎫1y 2 ≥12⎝ ⎛⎭⎪⎫x · 1x +y ·1y 2=2,当且仅当⎩⎪⎨⎪⎧xy=y x ,x +y =2时等号成立,此时x =1,y =1.所以1x +1y≥2.9.若x 2+4y 2=5,求x +y 的最大值及此时x ,y 的值. 解:由柯西不等式得[x 2+(2y )2]⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122≥(x +y )2,即(x +y )2≤5×54=254,x +y ≤52.当且仅当x 1=2y12,即x =4y 时取等号.由⎩⎪⎨⎪⎧x2+4y2=5,x =4y ,得⎩⎪⎨⎪⎧x =2,y =12或⎩⎪⎨⎪⎧x =-2,y =-12(舍去).∴x +y 的最大值为52,此时x =2,y =12.10.求函数f (x )=3cos x +4 1+sin2x 的最大值,并求出相应的x 的值. 解:设m =(3,4),n =(cos x ,1+sin2x), 则f (x )=3cos x +4 1+sin2x =|m ·n |≤|m |·|n |=cos2x +1+sin2x ·32+42 =52,当且仅当m ∥n 时,上式取“=”.此时,3 1+sin2x-4cos x=0.解得sin x=75,cos x=325.故当sin x=75,cos x=325时.f(x)=3cos x+4 1+sin2x取最大值5 2.。

选修4-5 第三节 柯西不等式与排序不等式

选修4-5  第三节  柯西不等式与排序不等式
2 2 2 · ≥ ( a b ) . a b aibi i i i i
i 1 i 1 i 1 n n n
3.会用向量递归方法讨论排序不等式. 4.能够利用柯西不等式求一些特定函数的极值.
返回
怎 么 考 从近几年高考试题来看,柯西不等式与排序不等式 在高考中没有考查.但在复习中要注意柯西不等式在证
解析:由排序不等式 a2+b2+c2≥ab+bc+ac,所以 ab+ bc+ca≤3.
答案:3
返回
4.表达式 x 1-y2+y 1-x2的最大的值是________.
解析:因为 x 1-y2+y 1-x2≤ x2+1-x21-y2+y2 =1.
答案:1
返回
1 1 5.已知不等式(x+y)x+ y ≥a
返回
又由 0<b+c-a,0<a+b-c,0<a+c-b,有 0<A (b+c-a)+C(a+b-c)+B(a+c-b) =a(B+C-A)+b(A+C-B)+c(A+B-C) =a(π-2A)+b(π-2B)+c(π-2C) =(a+b+c)π-2(aA+bB+cC). aA+bB+cC π 得 <2.② a+b+c 由①②得原不等式成立.
返回
[冲关锦囊] 利用柯西不等式求最值的一般结构为: 1 1 2 2 2 1 (a1+a2+…+an) a2+a2+…+a2 ≥(1+1+…+1)2=n2.在 1 2 n 使用柯西不等式时, 要注意右边为常数, 且应注意等号成立 的条件.

返回
[精析考题] [例 3] π aA+bB+cC π 在△ABC 中,试证:3≤ <2. a+b+c
1.(2011· 南通调研)若正数 a,b,c 满足 a+b+c=1, 1 1 1 求 + + 的最小值. 3a+2 3b+2 3c+2

经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式

经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式

几个经典不等式的关系一 几个经典不等式(1)均值不等式设12,,0n a a a > 是实数1212111+n na a a nn a a a +++≤≤≤++ 其中0,1,2,i a i n >= .当且仅当12n a a a === 时,等号成立.(2)柯西不等式设1212,,,,,n n a a a b b b 是实数,则()()()222222212121122n n n n aa ab b b a b a b a b ++++++≥+++当且仅当0(1,2,,)i b i n == 或存在实数k ,使得(1,2,,)i i a kb i n == 时,等号成立.(3)排序不等式设12n a a a ≥≥≥ ,12n b b b ≥≥≥ 为两个数组,12n c c c ,,,是12n b b b ,,,的任一排列,则112211221211n n n n n n n a b a b a b a c a c a c a b a b a b -+++≥+++≥+++ 当且仅当12n a a a === 或12n b b b === 时,等号成立.(4)切比晓夫不等式对于两个数组:12n a a a ≥≥≥ ,12n b b b ≥≥≥ ,有112212121211n n n n n n n a b a b a b a a a b b b a b a b a b n n n n -++++++++++++⎛⎫⎛⎫≥≥⎪⎪⎝⎭⎝⎭当且仅当12n a a a === 或12n b b b === 时,等号成立.二 相关证明(1)用排序不等式证明切比晓夫不等式 证明:由()()()1122121211221212n n n n n n n n a b a b a b a a a b b b n n n n a b a b a b a a a b b b +++++++++⎛⎫⎛⎫≥ ⎪⎪⎝⎭⎝⎭⇔+++≥++++++而()()1212112212231132421425311221211n n n n n n n n n n n n n n a a a b b b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b ---++++++=++++++++++++++++++++++++根据“顺序和≥乱序和”(在1n -个部分同时使用),可得()()()11221212n n n n n a b a b a b a a a b b b +++≥++++++即得11221212n n n n a b a b a b a a a b b b n n n +++++++++⎛⎫⎛⎫≥ ⎪⎪⎝⎭⎝⎭同理,根据“乱序和≥反序和”,可得12121211n n n n n a a a b b b a b a b a b n n n -+++++++++⎛⎫⎛⎫≥⎪⎪⎝⎭⎝⎭综合即证(2)用排序不等式证明“几何—算数平均不等式”12na a a n+++≤证明:构造两个数列:12112122,,1n n n a a a a a ax x x c c c==== 2121121212111,,1nn n nc c c y y y x a x a a x a a a =======其中c =.因为两个数列中相应项互为倒数,故无论大小如何,乘积的和:............................1122n n x y x y x y ++总是两数组的反序和..........于是由“乱序和≥反序和”,总有 12111122n n n n n x y x y x y x y x y x y -++≥++于是12111n a a a c c c+++≥+++ 即12na a a n c+++≥即证12na a a c n+++≥= (3)用切比晓夫不等式证明“算数—开方平均不等式”:12n a a a n +++≤证明:不妨设12n a a a ≥≥≥ ,12n a a a n +++≤ 222121212n n na a a a a a a a a n n n +++++++++⎛⎫⎛⎫⇔≤⎪⎪⎝⎭⎝⎭. 由切比晓夫不等式,右边不等式显然成立.即证. (4)用切比晓夫不等式证明“调和—算数平均不等式”1212+nna a a n na a a +++≤++证明:1212111+nna a a n na a a +++≤++12121212111111+1n n n na a a a a a a a a a a a n n n ⎛⎫++⋅+⋅++⋅ ⎪+++⎛⎫ ⎪⇔≥= ⎪⎪⎝⎭ ⎪⎝⎭.不妨设12n a a a ≥≥≥ ,则11111n n a a a -≥≥≥ ,由切比晓夫不等式,上式成立.即证. (5)用均值不等式和切比晓夫不等式证明柯西不等式证明:不妨设12n a a a ≥≥≥ ,12n b b b ≤≤≤ 由切比晓夫不等式,有11221212n n n n a b a b a b a a a b b b n n n +++++++++⎛⎫⎛⎫≤ ⎪⎪⎝⎭⎝⎭.由均值不等式,有1212n n a a a n b b b n +++≤+++≤所以1122n na b a b a b n+++≤两边平方,即得()222222211221212n n nn a b a b a b a a a bb b +++≤++++++ .即证.(6)补充“调和—几何平均不等式”的证明证明12n a a a n +++≤ 中的i a 换成1i a12111n a a a n +++≤ .两边取倒数,即得12111+nna a a ≤++。

高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式讲义含解析新人教A版选修4_5

高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式讲义含解析新人教A版选修4_5

二 一般形式的柯西不等式与推广,其特点可类比二维形式的柯西不等式来总结,左边是平方和的积,右边是积的和的平方.在使用时,关键是构造出符合柯西不等式的结构形式.[例1] 设x 1,x 2,…,x n 都是正数,求证:x 1+x 2+…+x n ≥x 1+x 2+…+x n.[思路点拨] 根据一般柯西不等式的特点,构造两组数的积的形式,利用柯西不等式证明.[证明] ∵(x 1+x 2+…+x n )⎝ ⎛⎭⎪⎫1x 1+1x 2+…+1x n=[(x 1)2+(x 2)2+…+(x n )2]·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1x 12+⎝ ⎛⎭⎪⎫1x 22+…+⎝ ⎛⎭⎪⎫1x n 2≥ ⎝⎛⎭⎪⎫x 1·1x 1+x 2·1x 2+…+x n ·1x n 2=n 2,∴1x 1+1x 2+…+1x n ≥n 2x 1+x 2+…+x n.柯西不等式的结构特征可以记为:(a 1+a 2+…+a n )·(b 1+b 2+…+b n )≥(a 1b 1+a 2b 2+…+a n b n )2.其中a i ,b i ∈R +(i =1,2,…,n ),在使用柯西不等式时要善于从整体上把握柯西不等式的结构特征,正确地配凑出公式两侧的数是解决问题的关键.1.设a ,b ,c 为正数,且不全相等. 求证:2a +b +2b +c +2c +a >9a +b +c. 证明:构造两组数a +b ,b +c ,c +a ;1a +b,1b +c,1c +a,则由柯西不等式得(a +b +b +c +c +a )⎝⎛⎭⎪⎫1a +b +1b +c +1c +a ≥(1+1+1)2,①即2(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1c +a ≥9,于是2a +b +2b +c +2c +a ≥9a +b +c. 由柯西不等式知,①中有等号成立⇔a +b1a +b=b +c1b +c=c +a1c +a⇔a +b =b +c =c +a ⇔a =b =c .因为a ,b ,c 不全相等,故①中等号不成立, 于是2a +b +2b +c +2c +a >9a +b +c.[例2] (1)+求 1x + 4y + 9z的最小值;(2)设2x +3y +5z =29,求函数μ=2x +1+3y +4+5z +6的最大值. [思路点拨] (1)利用1x +4y +9z=⎝ ⎛⎭⎪⎫1x +4y +98(x +y +z ). (2)利用(2x +1+3y +4+5z +6)2= (1×2x +1+1×3y +4+1×5z +6)2. [解] (1)∵x +y +z =1, ∴1x +4y +9z =⎝ ⎛⎭⎪⎫1x +4y +9z (x +y +z );≥⎝⎛⎭⎪⎫1x·x +2y·y +3z·z 2=(1+2+3)2=36. 当且仅当x =y 2=z3,即x =16,y =13,z =12时取等号.所以1x +4y +9z的最小值为36.(2)根据柯西不等式,有(2x +1×1+3y +4×1+5z +6×1)2≤[(2x +1)+(3y +4)+(5z +6)]·(1+1+1) =3×(2x +3y +5z +11) =3×40=120.故2x +1+3y +4+5z +6≤230, 当且仅当2x +1=3y +4=5z +6, 即x =376,y =289,z =2215时等号成立.此时μmax=230.利用柯西不等式求最值时,关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件.2.已知x ,y ,z ∈R ,且x -2y +2z =5,则(x +5)2+(y -1)2+(z +3)2的最小值是( ) A .20 B .25 C .36D .47解析:选C ∵[(x +5)2+(y -1)2+(z +3)2][12+(-2)2+22]≥[(x +5)+(-2)(y -1)+2(z +3)]2=324,当且仅当x +51=y -1-2=z +32,即x =-3,y =-3,z =1时取等号.故(x +5)2+(y -1)2+(z +3)2的最小值是36.3.若2x +3y +4z =11,则x 2+y 2+z 2的最小值为________. 解析:∵2x +3y +4z =11,∴由柯西不等式,得 (x 2+y 2+z 2)(4+9+16)≥(2x +3y +4z )2, 故x 2+y 2+z 2≥12129,当且仅当x 2=y 3=z 4,即x =2229,y =3329,z =4429时取等号.答案:121294.把一根长为12 m 的细绳截成三段,各围成三个正方形.问:怎样截法,才能使围成的三个正方形面积之和S 最小,并求此最小值.解:设三段绳子的长分别为x ,y ,z ,则x +y +z =12,三个正方形的边长分别为x 4,y4,z4均为正数,三个正方形面积之和:S =⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫y 42+⎝ ⎛⎭⎪⎫z 42=116(x 2+y 2+z 2). ∵(12+12+12)(x 2+y 2+z 2)≥(x +y +z )2=122, 即x 2+y 2+z 2≥48.从而S ≥116×48=3. 当且仅当x 1=y 1=z1时取等号,又x +y +z =12, ∴x =y =z =4时,S min =3.故把绳子三等分时,围成的三个正方形面积之和最小,最小面积为3 m 2.1.已知a 2+b 2+c 2+d 2=5,则ab +bc +cd +ad 的最小值为( ) A .5 B .-5 C .25D .-25解析:选B (ab +bc +cd +ad )2≤(a 2+b 2+c 2+d 2)·(b 2+c 2+d 2+a 2)=25,当且仅当a =b =c =d =±52时,等号成立. ∴ab +bc +cd +bd 的最小值为-5.2.已知a 21+a 22+…+a 2n =1,x 21+x 22+…+x 2n =1,则a 1x 1+a 2x 2+…+a n x n 的最大值是( ) A .1 B .2 C .3D .4解析:选A (a 1x 1+a 2x 2+…+a n x n )2≤(a 21+a 22+…+a 2n )·(x 21+x 22+…+x 2n )=1×1=1,当且仅当x 1a 1=x 2a 2=…=x n a n=1时取等号.∴a 1x 1+a 2x 2+…+a n x n 的最大值是1.3.已知x ,y ,z ∈R +,且1x +2y +3z =1,则x +y 2+z3的最小值是( )A .5B .6C .8D .9解析:选 D x +y 2+z 3=1x +2y +3z ·⎝ ⎛⎭⎪⎫x +y 2+z 3≥1x·x +2y·y2+3z·z 32=9,当且仅当1x =2y =3z =13时等号成立.4.设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +cx +y +z=( )A.14B.13C.12D.34解析:选C 由柯西不等式得,(a 2+b 2+c 2)(x 2+y 2+z 2)≥(ax +by +cz )2=400,当且仅当a x =b y =c z =12时取等号,因此有a +b +c x +y +z =12.5.已知2x +3y +z =8,则x 2+y 2+z 2取得最小值时,x ,y ,z 形成的点(x ,y ,z )=________. 解析:由柯西不等式(22+32+12)(x 2+y 2+z 2)≥(2x +3y +z )2,即x 2+y 2+z 2≥327. 当且仅当x 2=y3=z 时等号成立.又2x +3y +z =8, 解得x =87,y =127,z =47,故所求点为⎝ ⎛⎭⎪⎫87,127,47. 答案:⎝ ⎛⎭⎪⎫87,127,47 6.设a ,b ,c 为正数,则(a +b +c )⎝ ⎛⎭⎪⎫4a +9b+36c 的最小值是________.解析:(a +b +c )⎝ ⎛⎭⎪⎫4a +9b+36c=[(a )2+(b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2a 2+⎝ ⎛⎭⎪⎫3b 2+⎝ ⎛⎭⎪⎫6c 2 ≥⎝⎛⎭⎪⎫a ·2a +b ·3b +c ·6c 2=(2+3+6)2=121.当且仅当a 2=b 3=c6=k (k 为正实数)时,等号成立.答案:1217.已知实数x ,y ,z 满足3x +2y +z =1,则x 2+2y 2+3z 2的最小值为________. 解析:由柯西不等式,得[x 2+(2y )2+(3z )2]·⎣⎢⎡⎦⎥⎤32+(2)2+⎝ ⎛⎭⎪⎫132≥(3x +2y +z )2=1,所以x 2+2y 2+3z 2≥334,当且仅当x 3=2y 2=3z 13,即x =934,y =334,z =134时,等号成立,所以x 2+2y 2+3z 2的最小值为334.答案:3348.在△ABC 中,设其各边长为a ,b ,c ,外接圆半径为R ,求证:(a 2+b 2+c 2)⎝⎛⎭⎪⎫1sin 2A +1sin 2B +1sin 2C ≥36R 2.证明:∵a sin A =b sin B =csin C =2R ,∴(a 2+b 2+c 2)⎝ ⎛⎭⎪⎫1sin 2A +1sin 2B +1sin 2C≥⎝⎛⎭⎪⎫a sin A +b sin B +c sin C 2=36R 2.9.在直线5x +3y =2上求一点,使(x +2y -1)2+(3x -y +3)2取得最小值. 解:由柯西不等式得(22+12)[(x +2y -1)2+(3x -y +3)2]≥[2(x +2y -1)+(3x -y +3)]2=(5x +3y +1)2=9.∴(x +2y -1)2+(3x -y +3)2≥95.当且仅当x +2y -1=2(3x -y +3) 即5x -4y +7=0时取等号.解方程组⎩⎪⎨⎪⎧5x +3y =2,5x -4y =-7,得⎩⎪⎨⎪⎧x =-1335,y =97.故所求点的坐标为⎝ ⎛⎭⎪⎫-1335,97.10.已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值;(2)若a ,b ,c 为正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)因为f (x +2)=m -|x |, 所以f (x +2)≥0等价于|x |≤m .由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }, 又f (x +2)≥0的解集为[-1,1],故m =1. (2)证明:由(1)知1a +12b +13c=1,所以a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c ≥⎝⎛⎭⎪⎫a ·1a +2b ·12b +3c ·13c 2=9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典例题透析类型一:利用柯西不等式求最值1.求函数
的最大值.思路点拨:利用不等式解决最值问题,通常设法在不
等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为ac+bd的形式就能利用柯西不等式求其最大值.也可以利用导数求解。

解析:法一:∵且,
∴函数的定义域为,且,
当且仅当时,等号成立,
即时函数取最大值,最大值为法二:∵且,
∴函数的定义域为
由,

即,解得∴时函数取最大值,最大值
为.
总结升华:当函数解析式中含有根号时常利用柯西不等式求解.不等式中的等号能否取得是求最值问题的关键.
举一反三:
【变式1】(2011,24)已知函数f(x)=|x-2|-|x-5|。

(I)证明:-3≤f(x)≤3;
(II)求不等式f(x)≥x2-8x+15的解集。

【答案】
(Ⅰ)
当时,.
所以.…………5分
(Ⅱ)由(Ⅰ)可知,
当时,的解集为空集;
当时,的解集为;
当时,的解集为.
综上,不等式的解集为.……10分
【变式2】已知,,求的最值.
【答案】法一:
由柯西不等式

是的最大值为,最小值为.
法二:
由柯西不等式
于是的最大值为,最小值为.
【变式3】设2x+3y+5z=29,求函数的最大值.
【答案】
根据柯西不等式

故。

当且仅当2x+1=3y+4=5z+6,即时等号成立,
此时,评注:根据所求最值的目标函数的形式对已知条件进行配凑.
类型二:利用柯西不等式证明不等式
利用柯西不等式证明某些不等式显得特别方便,而利用柯西不等式的技巧也有很多。

如常数的巧拆、结构的巧变、巧设数组等。

(1)巧拆常数:2.设、、为正数且各不相等,求证:
思路点拨:∵、、均为正,∴为证结论正确只需证:
而,又,故可利用柯西不等式证明之。

证明:
又、、各不相等,故等号不能成立
∴。

(2)重新安排某些项的次序:3.、为非负数,+=1,,求证:
思路点拨:不等号左边为两个二项式积,
,直接利用柯西不等式,得不到结论,但当把第二个小括号的两项前后调换一下位置,就能证明结论了。

证明:∵+=1

即(3)改变结构:4、若>>,求证:
思路点拨:初见并不能使用柯西不等式,改造结构后便可使用柯西不等式了。

,,∴,∴所证结论改为证。

证明:∴(4)添项:5.,求证:
思路点拨:左端变形
,∴只需证此式即可。

证明:
举一反三:
【变式1】设a,b,c为正数,求证:.【答案】
由柯西不等式:
,即。

同理,.
将上面三个同向不等式相加得

于是.
【变式2】设a,b,c为正数,求证:。

【答案】
由柯西不等式
于是

【变式3】已知正数满足证明。

【答案】
利用柯西不等式
又因为
在此不等式两边同乘以2,再加上得:
故。

类型三:柯西不等式在几何上的应用6.△ABC的三边长为a、b、c,其外接圆半径为R,求证:证明:由三角形中的正弦定理得,所以,
同理,
于是左边=
故。

【变式】ΔABC之三边长为4,5,6,P为三角形部一点,P到三边的距离分別为x,y,z,求的最小值。

【答案】
且4x+5y+6z=
由柯西不等式(4x+5y+6z)2≥(x2+y2+z2)(42+52+62)
≥(x2+y2+z2)×77x2+y2+z2≥。

类型四:排序不等式的简单应用7.对,比较与的大小。

思路点拨:题目中没有给出a,b,c三个数的大小顺序,且a,b,c在不等式中的“地位”是对等的,不妨设,再利用排序不等式加以证明.解析:∵,不妨设,则
由排序原理,乱序和≤顺序和,得:举一反三:
【变式1】比较1010×1111×1212×1313与1013×1112×1211×1310的大小。

【答案】
因10 ≤11 ≤12 ≤13及lg10 ≤lg11 ≤lg12 ≤lg13,
由排序不等式得:
10lg10 + 11lg11 + 12lg12 + 13lg13 ≥13lg10 + 12lg11 + 11lg12 + 10lg13
lg(1010×1111×1212×1313) ≥lg(1013×1112×1211×1310)
即1010×1111×1212×1313≥1013×1112×1211×1310。

【变式2】已知,求证:证明:
由对称性,不妨设,于是,,
故由排序不等式:顺序和≥乱序和,得:

又因为,.
再次由排序不等式:反序和≤乱序和,得:

由①②得.
8、设,求证:
证明:
不妨设,则,
由排序不等式有:

两式相加得:
又因为:,

两式相加得:
即:举一反三:
【变式】,求证:【答案】证明:不妨设则,
从而,

两式相加得:。

相关文档
最新文档