高考复习中抛物线(几个常见结论及其应用)

合集下载

抛物线课件-2025届高三数学一轮复习

抛物线课件-2025届高三数学一轮复习

A. 2
B. 3
[解析]

2
C. 4
2
D. 8

由题意,知抛物线的焦点坐标为( ,0),椭圆的焦点坐标为(±
2
所以 = 2 ,解得 p =8,故选D.
D )
2 ,0),
5. 已知抛物线 y 2=2 px ( p >0)的焦点为 F ,点 M (2,2 2 )为抛物线上一点,则
|MF|=(
A. 2
2
即 p =2,所以A选项正确.
= − 3( − 1),
对于B,不妨设 M ( x 1, y 1), N ( x 2, y 2), x 1< x 2,联立方程得 2
= 4,
1
消去 y 并整理得3 x 2-10 x +3=0,解得 x 1= , x 2=3.由抛物线的定义得,| MN|=
x 1+ x 2+ p =
B )
B. 3
C. 4
D. 5
[解析] 因为点 M (2,2 2 )为抛物线上一点,所以将点 M 的坐标代入抛物线的方程
y 2=2 px ( p >0),可得 p =2,所以抛物线的方程为 y 2=4 x ,可得其准线方程为 x =
-1.根据抛物线的定义,得| MF |=2-(-1)=3.故选B.
三、知识点例题讲解及方法技巧总结
1

S △ AOB = ×| AB |× ×
2
2
由(2)的推导过程可得,
sin
1
||


2

= 2 ,
1−cos
1+cos
si
1
2

α= × 2 × ×
2
si
2

高考数学抛物线复习

高考数学抛物线复习

抛物线复习【高考会这样考】1.考查抛物线的定义、方程,常与求参数和最值等问题相结合.2.考查抛物线的几何性质,常考查焦点弦及内接三角形问题.3.多与向量交汇考查抛物线的定义、方程、性质等.考点梳理1.抛物线的定义(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质图形标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0) x2=-2py(p>0) p的几何意义:焦点F到准线l的距离性质顶点O(0,0)对称轴y=0 x=0焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R开口 方向向右 向左 向上 向下【助学·微博】一个重要转化 一次项的变量与焦点所在的坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向,即“对称轴看一次项,符号决定开口方向”. 六个常见结论直线AB 过抛物线y 2=2px (p >0)的焦点,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图. ①y 1y 2=-p 2,x 1x 2=p 24.②|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . ③1|AF |+1|BF |为定值2p .④弦长AB =2psin 2α(α为AB 的倾斜角). ⑤以AB 为直径的圆与准线相切.⑥焦点F 对A ,B 在准线上射影的张角为90°. 考点自测1.(陕西)设抛物线的顶点在原点,准线方程x =-2,则抛物线的方程是( ). A .y 2=-8x B .y 2=-4x C .y 2=8x D .y 2=4x2.(辽宁)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ). A.34 B .1 C.54 D.743.(四川)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |=( ).A.2 2 B.2 3 C.4 D.2 54.已知动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为________.5.(新乡模拟)若抛物线y2=2px的焦点与双曲线x26-y23=1的右焦点重合,则p的值为________.考向一抛物线的定义及其应用【例1】►已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|P A|+|PF|的最小值,并求出取最小值时P点的坐标.【训练1】设P是曲线y2=4x上的一个动点,则点P到点B(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.考向二抛物线的标准方程及几何性质【例2】►(1)以原点为顶点,坐标轴为对称轴,并且经过P(-2,-4)的抛物线方程为________.(2)设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是().A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)【训练2】(郑州一模)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为().A.y2=9x B.y2=6x C.y2=3x D.y2=3x考向三抛物线的焦点弦问题【例3】►已知过抛物线y2=2px(p>0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.【训练3】 若抛物线y 2=4x 的焦点为F ,过F 且斜率为1的直线交抛物线于A ,B 两点,动点P 在曲线y 2=-4x (y ≥0)上,则△P AB 的面积的最小值为________.方法优化——有关抛物线焦点弦的解题技巧【真题探究】► (安徽)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( ).A.22B. 2C.322 D .2 2【试一试】 已知抛物线y 2=4x 的焦点为F ,过F 的直线与该抛物线相交于A (x 1,y1),B(x2,y2)两点,则y21+y22的最小值是().A.4 B.8 C.12 D.16A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(辽宁)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为 ( ). A.34 B .1C.54D.742.(东北三校联考)若抛物线y 2=2px (p >0)上一点P 到焦点和抛物线的对称轴的距离分别为10和6,则p 的值为 ( ).A .2B .18C .2或18D .4或163.(全国)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB = ( ).A.45B.35C .-35D .-454.(山东)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ). A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y二、填空题(每小题5分,共10分)5.(郑州模拟)设斜率为1的直线l过抛物线y2=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为8,则a的值为________.6.(陕西)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.三、解答题(共25分)7.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程;(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于55?若存在,求出直线l的方程;若不存在,说明理由.8.(13分)(温州十校联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切. (1)求a 与b ;(2)设该椭圆的左、右焦点分别为F 1,F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB→|+|FC →|=( ).A .9B .6C .4D .32.(洛阳统考)已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( ).A. 3B. 5 C .2 D.5-1二、填空题(每小题5分,共10分)3.(北京)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60°,则△OAF 的面积为________.4.(重庆)过抛物线y 2=2x 的焦点F 作直线交抛物线于A ,B 两点,若|AB |=2512,|AF |<|BF |,则|AF |=________.三、解答题(共25分)5.(12分)已知抛物线C :y 2=4x ,过点A (-1,0)的直线交抛物线C 于P 、Q 两点,设AP→=λAQ →. (1)若点P 关于x 轴的对称点为M ,求证:直线MQ 经过抛物线C 的焦点F ; (2)若λ∈⎣⎢⎡⎦⎥⎤13,12,求|PQ |的最大值.6.(13分)(新课标全国)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C 上一点,已知以F为圆心,F A为半径的圆F交l于B,D两点.(1)若∠BFD=90°,△ABD的面积为4 2,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.。

2025届高中数学一轮复习课件《抛物线(一)》ppt

2025届高中数学一轮复习课件《抛物线(一)》ppt

答案
高考一轮总复习•数学
第29页
解析:(1)∵抛物线方程为 y2=2px(p>0),∴准线为 x=-p2.
∵点 P(2,y0)到其准线的距离为 4,∴-p2-2=4. ∴p=4(负值舍去),∴抛物线的标准方程为 y2=8x.
(2)因为△FPM 为等边三角形,则|PM|=|PF|,由抛物线的定义得 PM 垂直于抛物线的准 线,设 Pm,m2p2,则点 Mm,-p2.因为焦点为 F0,p2,△FPM 是等边三角形,所以|PM|=4,
高考一轮总复习•数学
抛物线定义的应用策略
第17页
高考一轮总复习•数学
第18页
对点练 1 (1)(2024·陕西榆林模拟)如图 1,某建筑物的屋顶像抛物线,若将该建筑外形 弧线的一段按照一定的比例处理后可看成如图 2 所示的抛物线 C:x2=-2py(p>0)的一部分, P 为抛物线 C 上一点,F 为抛物线 C 的焦点.若∠OFP=120°,且|OP|= 221,则 p=( )
高考一轮总复习•数学
第10页
2.过抛物线 y2=4x 的焦点的直线 l 交抛物线于 P(x1,y1),Q(x2,y2)两点,如果 x1+x2 =6,则|PQ|=( )
A.9
B.8
C.7
D.6
解析:抛物线 y2=4x 的焦点为 F(1,0),准线方程为 x=-1.根据题意,得|PQ|=|PF|+ |QF|=x1+1+x2+1=x1+x2+2=8.故选 B.
即 px0=4.又 C 的准线方程为 x=-p2, 易知|FM|=x0+p2,显然|DM|=x0-p2.
由焦点联想准线.
因为 cos∠MFG=2 3 2,所以 sin∠MFG=13,因此||DFMM||=sin∠MFG=13,即xx00+-p2p2=13, 整理得 x0=p,与 px0=4 联立,解得 p=x0=2,

2023年高考数学二轮复习(新高考版)第1部分 专题突破 专题6 微重点17 抛物线的二级结论的应用

2023年高考数学二轮复习(新高考版)第1部分 专题突破 专题6 微重点17 抛物线的二级结论的应用

易错提醒
焦半径公式和焦点弦面积公式容易混淆,用时要注意使用 的条件;数形结合求解时,焦点弦的倾斜角可以为锐角、 直角或钝角,不能一律当成锐角而漏解.
跟踪演练1 (1)已知 A,B 是过抛物线 y2=2px(p>0)焦点 F 的直线与抛物线的
交点,O 是坐标原点,且满足A→B=3F→B,S△OAB= 32|AB|,则|AB|的值为
A.2
B.2 6+3
C.4
√D.3+2 2
因为p=2, 所以|A1F|+|B1F|=2p=1, 所以 2|AF|+|BF|=(2|AF|+|BF|)·|A1F|+|B1F| =3+2|B|AFF||+||BAFF||≥3+2 2|B|AFF||·||BAFF||=3+2 2,
当且仅当|BF|= 2|AF|时,等号成立,
ABB′A′的面积为
A.4 3
B.8 3
√C.16 3
D.32 3
12345678
不妨令直线l的倾斜角为θ,
则|AF|=1-cpos
θ=1-c3os
, θ
|BF|=1+cpos
θ=1+c3os
, θ
又|AF|=3|BF|,∴1-c3os
θ=3·1+c3os
, θ
解得 cos θ=12,
又 θ∈[0,π),∴θ=π3,
√B.34
C.43
D.3
如图,过点P作准线的垂线交于点H,
由抛物线的定义有|PF|=|PH|=m(m>0),
过点Q作准线的垂线交于点E,则|EQ|=|QF|, ∵P→M=2F→P,∴|PM|=2m, 根据△PHM∽△QEM,可得||PPMH||=||QQME||=12, ∴2|EQ|=|QM|=|FQ|+3m. ∴|EQ|=3m,即|FQ|=3m, ∴||PFQQ||=3m3+m m=34.

高考数学复习考点知识讲解与专题练习61---抛物线

高考数学复习考点知识讲解与专题练习61---抛物线

高考数学复习考点知识讲解与专题练习抛物线考试要求 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.知识梳理1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:{M||MF|=d}(d为点M到准线l的距离).2.抛物线的标准方程与几何性质图形标准方程y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0)p的几何意义:焦点F到准线l的距离性质顶点O(0,0)对称轴y=0 x=0焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程 x =-p 2 x =p 2 y =-p 2 y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下[常用结论与微点提醒]1.通径:过焦点且垂直于对称轴的弦长等于2p ,通径是过焦点最短的弦.2.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离|PF |=x 0+p 2,也称为抛物线的焦半径.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( )解析 (1)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线,而非抛物线.(2)方程y =ax 2(a ≠0)可化为x 2=1a y ,是焦点在y 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫0,14a ,准线方程是y =-14a .(3)抛物线是只有一条对称轴的轴对称图形.(4)一条直线平行抛物线的对称轴,此时与抛物线只有一个交点,但不相切. 答案 (1)× (2)× (3)× (4)× (5)√2.(老教材选修2-1P72A1改编)顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________.解析 设抛物线的标准方程是y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y . 答案 y 2=-92x 或x 2=43y3. (老教材选修2-1P67A3改编)抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.解析 设P (x 1,y 1),则|PF |=x 1+2=5,得x 1=3,y 1=±2 6.故满足条件的点的个数为2. 答案 24.(2019·全国Ⅱ卷)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p =( )A.2B.3C.4D.8解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,椭圆的焦点坐标为()±2p ,0, 所以p2=2p ,解得p =0(舍去)或p =8. 答案 D5.(2020·山东名校联考)已知F 是抛物线y 2=x 的焦点,A ,B 是抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ) A.34 B.1 C.54 D.74解析 如图所示,设抛物线的准线为l ,AB 的中点为M ,作AA 1⊥l 于点A 1,BB 1⊥l 于点B 1,MM 1⊥l 于点M 1,由抛物线的方程知p =12,由抛物线定义知|AA 1|+|BB 1|=|AF |+|BF |=3,所以点M 到y 轴的距离为|MM 1|-p 2=12(|AA 1|+|BB 1|)-p 2=12×3-14=54,故选C. 答案 C6.(2019·昆明诊断)已知抛物线方程为y 2=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.解析 由题意知,直线l 的斜率存在,设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,当k =0时,显然满足题意;当k ≠0时,Δ=(4k 2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k<0或0<k≤1,因此k的取值范围是[-1,1]. 答案[-1,1]考点一抛物线的定义、标准方程及其性质【例1】(1)已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是()A.y2=±22xB.y2=±2xC.y2=±4xD.y2=±42x(2)(多选题)过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,且|AF|=3|BF|,则直线AB的斜率为()A.2B.3C.- 2D.- 3(3)动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为__________.解析(1)由已知可知双曲线的焦点为(-2,0),(2,0).=2,设抛物线方程为y2=±2px(p>0),则p2所以p=22,所以抛物线方程为y2=±42x.故选D.(2)如图所示,当点A在第一象限时,过A,B分别向抛物线的准线作垂线,垂足分别为D,E,过A作x轴的垂线,与EB交于点C,则四边形ADEC为矩形.由抛物线定义可知|AD|=|AF|,|BE|=|BF|,设|AF|=3|BF|=3m,所以|AD|=|CE|=3m,|AB|=4m,在Rt△ABC中,|BC|=2m,所以∠ABC=60°,所以直线l的斜率为3;当点B在第一象限时,同理可知直线l 的斜率为- 3.(3)设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x.答案(1)D(2)BD(3)y2=4x规律方法 1.应用抛物线定义的两个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)抛物线焦点到准线的距离为p.2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.3.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【训练1】(1)设抛物线y2=2px的焦点在直线2x+3y-8=0上,则该抛物线的准线方程为()A.x=-4B.x=-3C.x=-2D.x=-1(2)(2020·佛山模拟)已知抛物线x 2=2py (p >0)的焦点为F ,准线为l ,点P (4,y 0)在抛物线上,K 为l 与y 轴的交点,且|PK |=2|PF |,则y 0=________.解析 (1)直线2x +3y -8=0与x 轴的交点为(4,0),∴抛物线y 2=2px 的焦点为(4,0),∴准线方程为x =-4.(2)作PM ⊥l ,垂足为M ,由抛物线定义知|PM |=|PF |,又知|PK |=2|PF |,∴在直角三角形PKM 中,sin ∠PKM =|PM ||PK |=|PF ||PK |=22,∴∠PKM =45°,∴△PMK 为等腰直角三角形,∴|PM |=|MK |=4,又知点P 在抛物线x 2=2py (p >0)上,∴⎩⎨⎧py 0=8,y 0+p2=4,解得⎩⎪⎨⎪⎧p =4,y 0=2. 答案 (1)A (2)2考点二 与抛物线有关的最值问题多维探究角度1 到焦点与定点距离之和(差)最值问题【例2-1】 点P 为抛物线y 2=4x 上的动点,点A (2,1)为平面内定点,F 为抛物线焦点,则:(1)|PA |+|PF |的最小值为________;(2)(多填题)|PA |-|PF |的最小值为________,最大值为________.解析 (1)如图1,由抛物线定义可知,|PF |=|PH |,|PA |+|PF |=|PA |+|PH |,从而最小值为A 到准线的距离为3.(2)如图2,当P,A,F三点共线,且P在FA延长线上时,|PA|-|PF|有最小值为-|AF|=- 2.当P,A,F三点共线,且P在AF延长线上时,|PA|-|PF|有最大值为|AF|= 2.故|PA|-|PF|最小值为-2,最大值为 2.答案(1)3(2)-2 2规律方法 1.解决到焦点与定点距离之和最小问题,先将抛物线上的点到焦点的距离转化为到准线的距离,再结合图形解决问题.2.到两定点距离之差的最值问题,当且仅当三点共线时取最值.角度2到点与准线的距离之和最值问题【例2-2】设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P 到直线x=-1的距离之和的最小值为________.解析如图,易知抛物线的焦点为F(1,0),准线是x=-1,由抛物线的定义知点P到直线x=-1的距离等于点P到F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,此时最小值为[1-(-1)]2+(0-1)2= 5.答案 5规律方法 解决到点与准线的距离之和最值问题,先将抛物线上的点到准线的距离转化为到焦点的距离,再构造出“两点之间线段最短”,使问题得解. 角度3 动弦中点到坐标轴距离最短问题【例2-3】 已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A.34B.32C.1 D.2解析 由题意知,抛物线的准线l :y =-1,过点A 作AA 1⊥l 交l 于点A 1,过点B 作BB 1⊥l 交l 于点B 1,设弦AB 的中点为M ,过点M 作MM 1⊥l 交l 于点M 1,则|MM 1|=|AA 1|+|BB 1|2.因为|AB |≤|AF |+|BF |(F 为抛物线的焦点),即|AF |+|BF |≥6,所以|AA 1|+|BB 1|≥6,2|MM 1|≥6,|MM 1|≥3,故点M 到x 轴的距离d ≥2,故选D. 答案 D规律方法 解决动弦中点到坐标轴距离最短问题将定长线段的中点到准线的距离转化为线段端点到准线距离之和的一半,再根据三角形中两边之和大于第三边得出不等式求解. 角度4 焦点弦中距离之和最小问题【例2-4】 已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 由题意知F (1,0),|AC |+|BD |=|AF |+|FB |-2=|AB |-2,即|AC |+|BD |取得最小值时当且仅当|AB |取得最小值.依抛物线定义知,当|AB |为通径,即|AB |=2p =4时为最小值,所以|AC |+|BD |的最小值为2. 答案 2规律方法 过抛物线的焦点且与抛物线的对称轴垂直的弦称为抛物线的通径,通径是抛物线所有过焦点的弦中最短的,若能将问题转化为与通径有关的问题,则可以用通径最短求最值.角度5 到定直线的距离最小问题【例2-5】(一题多解)抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________.解析 法一如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线为4x +3y +b =0,切线方程与抛物线方程联立得⎩⎪⎨⎪⎧y =-x 2,4x +3y +b =0消去y 整理得3x 2-4x -b =0,则Δ=16+12b =0,解得b =-43,故切线方程为4x +3y -43=0,抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是这两条平行线间的距离d =⎪⎪⎪⎪⎪⎪8-435=43.法二对y =-x 2,有y ′=-2x ,如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线与抛物线的切点是T (m ,-m 2),则切线斜率k =y ′|x =m =-2m =-43,所以m =23,即切点T ⎝ ⎛⎭⎪⎫23,-49,点T 到直线4x +3y -8=0的距离d =⎪⎪⎪⎪⎪⎪83-43-816+9=43,由图知抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是43. 答案 43规律方法 抛物线上的动点到定直线的距离,可以转化为平行线间的距离,也可以利用单变量设点利用函数思想求最值.【训练2】 (1)若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到 A (-2,1)的距离之和最小,则该点的坐标为( ) A.⎝ ⎛⎭⎪⎫-14,1B.⎝ ⎛⎭⎪⎫14,1 C.(-2,-22) D.(-2,22)(2)已知P 为抛物线y 2=4x 上一个动点,Q 为圆C :x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线准线的距离之和的最小值是________. 解析 (1)如图,∵y 2=-4x ,∴p =2,焦点坐标为(-1,0).依题意可知当A ,P 及P 到准线的垂足三点共线时,点P 与点F 、点P 与点A 的距离之和最小,故点P 的纵坐标为1.将y =1代入抛物线方程求得x =-14,则点P 的坐标为⎝ ⎛⎭⎪⎫-14,1.故选A.(2)由题意知,圆C :x 2+(y -4)2=1的圆心为C (0,4),半径为1,抛物线的焦点为F (1,0).根据抛物线的定义,点P 到点Q 的距离与点P 到抛物线准线的距离之和即点P 到点Q 的距离与点P 到抛物线焦点的距离之和,因此|PQ |+|PF |≥|PC |+|PF |-1≥|CF |-1=17-1.答案 (1)A (2)17-1考点三 直线与抛物线的综合问题【例3】(2019·全国Ⅰ卷)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求直线l 的方程; (2)若AP→=3PB →,求|AB |. 解 设直线l 的方程为:y =32x +t ,A (x 1,y 1),B (x 2,y 2). (1)由题设得F ⎝ ⎛⎭⎪⎫34,0,故|AF |+|BF |=x 1+x 2+32.又|AF |+|BF |=4,所以x 1+x 2=52.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x 可得9x 2+12(t -1)x +4t 2=0, 其中Δ=144(1-2t )>0, 则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t =-78(满足Δ>0). 所以l 的方程为y =32x -78.(2)由AP →=3PB →可得y 1=-3y 2.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x 可得y 2-2y +2t =0,其中Δ=4-8t >0, 所以y 1+y 2=2,从而-3y 2+y 2=2,故y 2=-1,y 1=3. 代入C 的方程得x 1=3,x 2=13. 所以A (3,3),B ⎝ ⎛⎭⎪⎫13,-1,故|AB |=4133.规律方法1.直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.3.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒 涉及弦的中点、斜率时一般用“点差法”求解.【训练3】 如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上. (1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解 (1)由已知条件,可设抛物线的方程为y 2=2px (p >0).∵点P (1,2)在抛物线上,∴22=2p ×1,解得p =2. 故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1),∵PA 与PB 的斜率存在且倾斜角互补,∴k PA =-k PB . 由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得y 21=4x 1,①y 22=4x 2,②∴y 1-214y 21-1=-y 2-214y 22-1,∴y 1+2=-(y 2+2).∴y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2),∴k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).数学抽象——活用抛物线焦点弦的四个结论1.数学抽象素养水平表现为能够在得到的数学结论的基础上形成新命题,能够针对具体的问题运用数学方法解决问题.本课时抛物线的焦点弦问题的四个常用结论即为具体表现之一.2.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24. (2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角). (4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点).【例1】 过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A.4 B.92C.5 D.6[一般解法]易知直线l 的斜率存在,设为k ,则其方程为 y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,得x A ·x B =1,①因为|AF |=2|BF |,由抛物线的定义得x A +1=2(x B +1), 即x A =2x B +1,②由①②解得x A =2,x B =12, 所以|AB |=|AF |+|BF |=x A +x B +p =92.[应用结论]法一 由对称性不妨设点A 在x 轴的上方,如图设A ,B 在准线上的射影分别为D ,C ,作BE ⊥AD 于E , 设|BF |=m ,直线l 的倾斜角为θ,则|AB |=3m , 由抛物线的定义知|AD |=|AF |=2m ,|BC |=|BF |=m ,所以cos θ=|AE ||AB |=13,所以tan θ=2 2.则sin 2θ=8cos 2θ,∴sin 2θ=89.又y 2=4x ,知2p =4,故利用弦长公式|AB |=2p sin 2θ=92. 法二 因为|AF |=2|BF |,所以1|AF |+1|BF |=12|BF |+1|BF |=32|BF |=2p =1,解得|BF |=32,|AF |=3,故|AB |=|AF |+|BF |=92. 答案 B【例2】 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94[一般解法]由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0,因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,即4x -43y -3=0.与抛物线方程联立,化简得4y 2-123y -9=0, 故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94. [应用结论]由2p =3,及|AB |=2psin 2α 得|AB |=2p sin 2α=3sin 230°=12.原点到直线AB 的距离d =|OF |·sin 30°=38, 故S △AOB =12|AB |·d =12×12×38=94. 答案 D【例3】 如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( ) A.5 B.6 C.163D.203[一般解法]如图,设l 与x 轴交于点M ,过点A 作AD ⊥l 交l 于点D ,由抛物线的定义知,|AD |=|AF |=4,由F 是AC 的中点,知|AD |=2|MF |=2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,可得y 1=23,所以A (3,23),又F (1,0),所以直线AF 的斜率k =233-1=3,所以直线AF 的方程为y =3(x -1),代入抛物线方程y 2=4x 得3x 2-10x +3=0,所以x 1+x 2=103,|AB |=x 1+x 2+p =163.故选C.[应用结论]法一 设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,又x 1x 2=p 24=1,所以x 2=13,所以|AB |=x 1+x 2+p =3+13+2=163.法二 因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163. 答案 CA 级 基础巩固一、选择题1.抛物线y =4x 2的焦点到准线的距离为( ) A.2 B.1 C.14 D.18解析 由y =4x 2得x 2=14y ,所以2p =14,p =18,则抛物线的焦点到准线的距离为18. 答案 D2.(2019·福州调研)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A.4 B.6 C.8 D.12解析 如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作PA ⊥y 轴,垂足是A ,延长PA 交直线l 于点B ,则|AB |=2.由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6.故选B. 答案 B3.(2020·烟台调研)已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( ) A.y 2=4x B.y 2=-4x C.y 2=8x D.y 2=-8x解析 因为AB ⊥x 轴,且AB 过焦点F ,所以线段AB 是焦点弦,且|AB |=2p ,所以S △CAB =12×2p ×⎝ ⎛⎭⎪⎫p 2+4=24,解得p =4或-12(舍),所以抛物线方程为y 2=8x ,所以直线AB的方程为x =2,所以以直线AB 为准线的抛物线的标准方程为y 2=-8x ,故选D. 答案 D4.设抛物线C :y 2=3x 的焦点为F ,点A 为C 上一点,若|FA |=3,则直线FA 的倾斜角为( ) A.π3B.π4 C.π3或2π3D.π4或3π4解析 如图,作AH ⊥l 于H ,则|AH |=|FA |=3,作FE ⊥AH 于E ,则|AE |=3-32=32,在Rt △AEF 中,cos ∠EAF =|AE ||AF |=12,∴∠EAF =π3,即直线FA 的倾斜角为π3,同理点A 在x 轴下方时,直线FA 的倾斜角为2π3.答案 C5.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A.355 B.2 C.115 D.3解析 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.答案 B二、填空题6.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析 建立如图平面直角坐标系,设抛物线方程为x 2= -2py (p >0).由题意将点A (2,-2)代入x 2=-2py ,得p =1,故x 2=-2y .设B (x ,-3),代入x 2=-2y 中,得x =6,故水面宽为26米. 答案 2 67.(2020·昆明诊断)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|FA→|+|FB →|+|FC →|的值为________. 解析 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝ ⎛⎭⎪⎫12,0,所以x 1+x 2+x 3=3×12=32,则|FA →|+|FB →|+|FC →|=⎝ ⎛⎭⎪⎫x 1+12+⎝ ⎛⎭⎪⎫x 2+12+⎝ ⎛⎭⎪⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3. 答案 38.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为________.解析 因为双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以2=c a =1+b 2a 2,所以b a=3,所以渐近线方程为3x ±y =0,因为抛物线C 2:x 2=2py (p >0)的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,所以F 到双曲线C 1的渐近线的距离为⎪⎪⎪⎪⎪⎪p 23+1=2,由于p >0,所以p =8,所以抛物线C 2的方程为x 2=16y .答案 x 2=16y 三、解答题9.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解 (1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4.于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1. (2)由y =x 24,得y ′=x 2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y =x +m 代入y =x 24得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1.从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m =7.所以直线AB 的方程为x -y +7=0.10.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC→=OA →+λOB →,求λ的值. 解 (1)抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0, 所以直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2, 由⎩⎪⎨⎪⎧y =22⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去y 得4x 2-5px +p 2=0,所以x 1+x 2=5p 4,由抛物线定义得|AB |=x 1+x 2+p =9,即5p 4+p =9,所以p =4.所以抛物线的方程为y 2=8x .(2)由p =4知,方程4x 2-5px +p 2=0,可化为x 2-5x +4=0,解得x 1=1,x 2=4,故y 1=-22,y 2=4 2.所以A (1,-22),B (4,42).则OC→=OA →+λOB →=(1,-22)+λ(4,42)=(1+4λ,-22+42λ). 因为C 为抛物线上一点,所以(-22+42λ)2=8(1+4λ),整理得λ2-2λ=0,所以λ=0或λ=2.B 级 能力提升11.(2020·石家庄模拟)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22)的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于( )A.1∶2B.1∶3C.1∶ 2D.1∶ 3解析 抛物线y 2=4x 的焦点F 的坐标为(1,0),∵直线l 过点F 和点M (2,22),∴直线l 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y 2=4x ,y =22(x -1)得2x 2-5x +2=0,解得x =2或x =12,∴点N 的横坐标为12.∵抛物线y 2=4x 的准线方程为x =-1,∴|NF |=32,|MF |=3,∴|NF |∶|MF |=1∶2,故选A.答案 A12.(2020·长沙调研)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,且l 过点(-2,3),M 在抛物线C 上,若点N (1,2),则|MN |+|MF |的最小值为( )A.2B.3C.4D.5解析 由题意知p 2=2,即p =4.过点N 作准线l 的垂线,垂足为N ′,交抛物线于点M ′,则|M ′N ′|=|M ′F |,则有|MN |+|MF |=|MN |+|MT |≥|M ′N ′|+|M ′N |=|NN ′|=1-(-2)=3.答案 B13.(2020·湖南名校大联考)已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x轴、 y 轴交于M ,N 两点,点A (2,-4)且AP→=λAM →+μAN →,则λ+μ的最小值为________.解析 由题意得M (2,0),N (0,-4),设P (x ,y ),由AP→=λAM →+μAN →得(x -2,y +4)=λ(0,4)+μ(-2,0),∴x -2=-2μ,y +4=4λ.因此λ+μ=y +44-x -22=x 24-x 2+2=⎝ ⎛⎭⎪⎫x 2-122+74≥74,故λ+μ的最小值为74.答案 7414.(2019·全国Ⅲ卷)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎝ ⎛⎭⎪⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.(1)证明 设D ⎝ ⎛⎭⎪⎫t ,-12,A (x 1,y 1),则x 21=2y 1. 因为y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t =x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0.故直线AB 的方程为2tx -2y +1=0.所以直线AB 过定点⎝ ⎛⎭⎪⎫0,12. (2)解 由(1)得直线AB 的方程为y =tx +12.由⎩⎪⎨⎪⎧y =tx +12,y =x 22可得x 2-2tx -1=0. 于是x 1+x 2=2t ,x 1x 2=-1,y 1+y 2=t (x 1+x 2)+1=2t 2+1,|AB |=1+t 2|x 1-x 2|=1+t 2×(x 1+x 2)2-4x 1x 2=2(t 2+1).设d 1,d 2分别为点D ,E 到直线AB 的距离,则d 1=t 2+1,d 2=2t 2+1.因此,四边形ADBE 的面积S =12|AB |(d 1+d 2)=(t 2+3)t 2+1.设M 为线段AB 的中点,则M ⎝ ⎛⎭⎪⎫t ,t 2+12.因为EM →⊥AB →,而EM →=(t ,t 2-2),AB →与向量(1,t )平行,所以t +(t 2-2)t =0,解得t =0或t =±1.当t =0时,S =3;当t =±1时,S =4 2.因此,四边形ADBE 的面积为3或4 2.C 级 创新猜想15.(多选题)如图所示,抛物线y =14x 2,AB 为过焦点F 的弦,过A ,B 分别作抛物线的切线,两切线交于点M ,设A (x A ,y A ),B (x B ,y B ),M (x M ,y M ),则下列结论正确的有( )A.若AB 的斜率为1,则|AB |=8B.|AB |min =4C.若AB 的斜率为1,则x M =2D.x A ·x B =-4解析 由题意得,焦点F (0,1),对于A ,l AB 的方程为y =x +1,与抛物线的方程联立, 得⎩⎨⎧y =x +1,y =14x 2,消去x ,得y 2-6y +1=0, 所以y A +y B =6,则|AB |=y A +y B +p =8,则A 正确;对于B ,|AB |min =2p =4,则B 正确;对于C ,当AB 的斜率为1时,因为y ′=x 2,则x M 2=1,∴x M =2,则C 正确;设l AB 的方程为y =kx +1,与抛物线的方程联立,得⎩⎨⎧y =kx +1,y =14x 2,消去y ,得x 2-4kx -4=0, 所以x A +x B =4k ,x A ·x B =-4,则D 正确;答案 ABCD16.(多填题)已知抛物线C :y 2=2px (p >0)的焦点为F (2,0),则抛物线C 的方程是________;若M 是C 上一点,FM 的延长线交y 轴于点N ,且M 为FN 的中点,则|FN |=________.解析 抛物线C :y 2=2px (p >0)的焦点为F (2,0),可得p =4,则抛物线C 的方程是y 2=8x .由M 为FN 的中点,得M 的横坐标为1,代入抛物线方程得y =±22,则M (1,±22),则|FN |=2(1+2)=6. 答案 y 2=8x 6。

抛物线复习 最新版

抛物线复习  最新版

抛物线的简单几何性质一 抛物线的几何性质:抛物线不是双曲线的一支,抛物线不存在渐近线 二、1.抛物线的焦半径及其应用:定义:抛物线上任意一点M 与抛物线焦点F 的连线段,叫做抛物线的焦半径 焦半径公式:抛物线)0(22>=p px y ,0022x pp x PF +=+= 抛物线)0(22>-=p px y ,0022x pp x PF -=-= 抛物线)0(22>=p py x ,0022y pp y PF +=+=抛物线)0(22>-=p py x ,0022y pp y PF -=-= 2.直线与抛物线:(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点)下面分别就公共点的个数进行讨论:对于)0(22>=p px y当直线为0y y =,即0=k ,直线平行于对称轴时,与抛物线只有唯一的交点当0≠k ,设b kx y l +=:联立⎩⎨⎧=+=pxy b kx y 22,得关于x 的方程02=++c bx ax当0=a (二次项系数为零),唯一一个公共点(交点) 当0≠a ,则若0>∆,两个公共点(交点) 0=∆,一个公共点(切点) 0<∆,无公共点 (相离) (2)相交弦长:弦长公式:21k ad +∆=,其中a 和∆分别是02=++c bx ax (*)中二次项系数和判别式,k 为直线b kx y l +=:的斜率当代入消元消掉的是y 时,得到02=++c by ay ,此时弦长公式相应的变为:d =(3)焦点弦:定义:过焦点的直线割抛物线所成的相交弦。

焦点弦公式:设两交点),(),(2211y x B y x A ,可以通过两次焦半径公式得到: 当抛物线焦点在x 轴上时,焦点弦只和两焦点的横坐标有关:抛物线)0(22>=p px y , )(21x x p AB ++=抛物线)0(22>-=p px y , (21x x p AB +-=当抛物线焦点在y 轴上时,焦点弦只和两焦点的纵坐标有关:抛物线)0(22>=p py x , (21y y p AB ++=抛物线)0(22>-=p py x ,(21y y p AB +-=(4)通径:定义:过焦点且垂直于对称轴的相交弦直接应用抛物线定义,得到通径:d 2=(5)若已知过焦点的直线倾斜角θ则⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212p y y k p y y θsin 24422221p p k p y y =+=-⇒θθ221sin 2sin 1p y y AB =-=⇒ (6)常用结论:⎪⎩⎪⎨⎧=-=pxy p x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221p y y -=⇒和4221x x = 例1 若线段AB 是抛物线的焦点弦,A 、B 在抛物线准线上的射影分别为A 1、B 1,求证:∠A 1FB 1=90°证明:不妨设抛物线方程为y 2=2px(p>0) 由抛物线定义知|AA 1|=|AF|,|BB 1|=|BF|, ∴∠AFA 1=∠AA 1F ,∠BFB 1=∠BB 1F , ∵AA 1∥BB 1∥x 轴,∴∠AFO =∠AA 1F ,∠BFO =∠BB 1F ,∴∠AFA 1=∠AFO ,∠BFB 1=∠BFO ,∴∠A 1FB 2=90° 变1:以抛物线的焦点弦为直径的圆必与抛物线的准线相切。

高考抛物线知识点总结

高考抛物线知识点总结

高考抛物线知识点总结高中数学中的抛物线是一个重要的知识点,也是高考数学中经常会出现的考点。

在解题过程中,对于抛物线的性质、方程及应用需要有深入的理解。

本文将对高考抛物线知识点进行总结,帮助考生加深对这一部分内容的理解和应用能力。

一、抛物线的基本形状和性质抛物线是一种二次曲线,其基本形状为开口朝上或朝下的弧线。

抛物线由一个定点(焦点)和一条定线(准线)确定,焦点和准线之间的距离称为焦距。

抛物线的顶点为曲线上的最低点或最高点,称为顶点。

在图像上,抛物线呈现出对称性,即以顶点为对称中心将曲线分成两个对称的部分。

抛物线的开口方向取决于二次曲线的二次项的系数正负。

若为开口朝上,则二次项系数为正,反之为负。

二、抛物线的常见方程1. 顶点坐标形式:设抛物线的顶点为(h, k),焦点坐标为(F, k),则抛物线的顶点坐标形式方程为:(x-h)² = 4a(y - k),其中a为焦距的一半。

2. 标准形式:设抛物线的焦点坐标为(F, 0),焦距为2a,则抛物线的标准形式方程为:y² = 4ax。

3. 配方形式:将标准形式方程简化得到的抛物线的配方形式方程为:x = ay² + by + c。

三、抛物线的性质及相关公式1. 抛物线的对称轴是与准线垂直并通过抛物线的顶点的直线。

对称轴的方程为x = h。

2. 离心率和焦距之间的关系:抛物线的离心率e等于焦距与准线之间的比值:e = F/a。

3. 焦点和准线之间的关系:焦点关于对称轴对称,焦点到准线的距离等于焦距。

4. 定点和定线之间的关系:抛物线上任意一点到定点的距离等于该点到准线的距离。

5. 直角坐标系中的曲线长度公式:设函数y = f(x)在闭区间[a,b]上连续,则抛物线上的曲线长度:L = ∫[a,b]√(1+(f'(x))²)dx。

四、抛物线的应用抛物线的应用范围广泛,在数学、物理、经济等多个学科中都有应用。

以下是抛物线在几个常见领域中的应用案例:1. 圆锥曲线:抛物线是圆锥曲线的一种,它在天文学、建筑学等领域中有着广泛的应用。

人教版高中数学高考一轮复习--抛物线(课件)

人教版高中数学高考一轮复习--抛物线(课件)
y=k(x+2),代入抛物线方程,整理得k2x2+(4k2-8)x+4k2=0,
由Δ=(4k2-8)2-4k2·
4k2=64(1-k2)≥0,
解得-1≤k≤1.
第二环节
关键能力形成
能力形成点1
抛物线的定义和标准方程
命题角度1 抛物线的定义及应用
例1 (1)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标
交于A,B两点,|AB|=12,P为抛物线C的准线上一点,则△ABP的面积为( C )
A.18
B.24
C.36
D.48
依题意,不妨设抛物线 C 的方程为 y2=2px(p>0),
则焦点坐标为

,0
2
,将

x=2代入 y2=2px,可得
y=±p,
所以|AB|=2p=12,所以 p=6.
因为点 P 在准线上,所以点 P 到直线 l 的距离为 p=6,
如图,过点 M 作 MB⊥x 轴于点 B,

1
∵∠AMF=120°,∴∠BMF=30°,|BF|=2 − 2,
1
1

∴2|BF|=|MF|,即 2 2 - 2 = 2 + 2,解得 p=3.
故抛物线方程为 y2=6x.
7
(2)已知点 P 是抛物线 y =2x 上的动点,点 P 在 y 轴上的射影是点 M,点 A 2 ,4 ,
7
A.2
5
B.2
C.3
∵ =4,∴||=4||.

||
||
=
3
.
4
过点 Q 作 QQ'⊥l,垂足为 Q',
设 l 与 x 轴的交点为 A,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线的几个常见结论
抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。

结论一:若AB 是抛物线2
2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2
124
p x x =,212y y p =-。

证明:因为焦点坐标为F(
2
p
,0),当AB 不垂直于x 轴时,可设直线AB 的方程为: ()2p y k x =-,
由2
()22p y k x y px
⎧=-⎪⎨⎪=⎩
得: 2220ky py kp --= ∴212y y p =-,2242
12
1222244y y p p x x p p p =⋅==。

当AB ⊥x 轴时,直线AB 方程为2
p x =,则1y p =,2y p =-,∴2
12y y p =-,同上也有:2124p x x =。

例:已知直线AB 是过抛物线2
2(0)y px p =>焦点F ,求证:11AF BF
+为定值。

结论二:(1)若AB 是抛物线2
2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α
=(α≠0)。

(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。


证明:(1)设11(,)A x y ,22(,)B x y ,设直线AB:()2
p y k x =- 由2()22p y k x y px ⎧=-
⎪⎨
⎪=⎩
得:,2220ky py kp --= ∴122p y y k
+=,212y y p =-,
∴12AB y -=222222(1)2(1tan )2tan sin p k p P k ααα++===。

易验证,结论对斜率不存在时也成立。

(2)由(1):AB 为通径时,90α=,2
sin α的值最大,AB 最小。

例:已知过抛物线2
9y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。

结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。

(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。


已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。

(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN
证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线,
垂足分别为M 、P 、N ,连结AP 、BP 。

由抛物线定义:AM AF =,BN BF =,
∴111
()()222
QP AM BN AF BF AB =+=+=,
.
∴以AB 为直径为圆与准线l 相切 (2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,
∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO , ∴∠AFM=∠MFO 。

同理,∠BFN=∠NFO ,
∴∠MFN=
1
2
(∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴1
2
MP NP FP MN ===,
&
∴∠PFM=∠FMP
∴∠AFP=∠AFM+∠PFM=∠FMA+∠FMP=∠PMA=90°,∴FP ⊥AB ∴以MN 为直径为圆与焦点弦AB 相切。

结论四:若抛物线方程为2
2(0)y px p =>,过(2p ,0)的直线与之交于A 、B 两点,则OA ⊥OB 。

反之也成立。

证明:设直线AB 方程为:(2)y k x p =-,由 2
(2)2y k x p y px
=-⎧⎨
=⎩得, △>0,12x x k +=,12x x b =-
∵AO ⊥BO ,

AO

BO

22121212121212()()(1)()0x x y y x x kx b kx b k x x kb x x b +=+++=++++=
将12x x k +=,12x x b =-代入得,1b =。

∴直线AB 恒过定点(0,1)。

121112AOB S x x ∆=
-⨯==≥ $
∴当且仅当k=0时,AOB S ∆取最小值1。

结论五:对于抛物线22(0)x py p =>,其参数方程为2
22x pt y pt =⎧⎨=⎩,

设抛物线22x py =上动点P 坐标为2
(22)pt pt ,,O 为抛物线的顶点,显然2
22OP
pt k t pt
==,即t 的几何意义为过抛物线顶点O 的动弦OP 的斜率. 例 直线2y x =与抛物线22(0)y px p =>相交于原点和A 点,B 为抛物线上一点,OB 和OA 垂直,且线段
AB
长为,求P 的值.
解析:设点A B ,分别为22(22)(22)A A B B pt pt pt pt ,
,,,则112A OA t k ==,1
2B OA OB
t k k ==-=-. A B ,的坐标分别为(84)2p p p p ⎛⎫- ⎪⎝⎭,,,
.AB =
∴=.2p =∴.
练习:
1. 过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于P Q ,两点,若线段PF 与FQ 的长分别是p q ,,

11
p q
+= ~
【解析:化为标准方程,得21(0)x y a a =
>,从而1
2p a
=.取特殊情况,过焦点F 的弦PQ 垂直于对称轴,则PQ 为通径,即12PQ p a ==,从而1
2p q a ==,故114a p q +=】
2.设抛物线22(0)y px p =>的焦点为F ,经过点F 的直线交抛物线于A B ,两点.点C 在抛物线的准线上,且BC x ∥轴.证明直线AC 经过原点O .
【证明:抛物线焦点为02p F ⎛⎫
⎪⎝⎭

.设直线AB 的方程为2p x my =+,代入抛物线方程,得2220y pmy p --=.若设1122()()A x y B x y ,,,,则212y y p =-. BC x ∵∥轴,且点C 在准线1
2CO p k y =; 又由2
112y px =,得111
2AO y p
k x y =
=
, 故CO AO k k =,即直线AC 经过原点O .】 3.已知抛物线的焦点是(11)F ,,准线方程是20x y ++=,求抛物线的方程以及顶点坐标和对称轴方程.
【解:设()P x y ,

整理,得222880x y xy x y +---=,此即为所求抛物线的方程.
抛物线的对称轴应是过焦点(11)F ,且与准线20x y ++=垂直的直线,因此有对称轴方程y x =. 设对称轴与准线的交点为M ,可求得(11)M --,,于是线段MF 的中点就是抛物线的顶点,坐标是(00),】。

相关文档
最新文档