整体法和隔离法解连接体专题二
整体法与隔离法

2、五个质量相等的物体置于光滑的水平面上,如 图所示.现向右施加大小为F、方向向右的水平恒力, 则第3个物体对第4个物体的作用力等于( B )
1
2ห้องสมุดไป่ตู้
A.5F
B.5F
考点二 整体法和隔离法
1、连接体与隔离体
两个或两个以上物体相互连接组成的系统称为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体.
2、外力和内力
如果以系统为研究对象,受到系统以外的力,这些 力就是该系统受到的外力,而系统内相互作用的力则 称为内力。(举例)
应用牛顿第二定律求系统的加速度时,不考虑系统 的内力。如果把某物体隔离出来作为研究对象,则这 些力将转化为隔离体的外力。
3
4
C.5F
D.5F
3、如图所示,不计绳的质量及绳与滑轮的摩擦,物体A 的质量为M,水平面光滑,当在绳B端挂一质量为m的重物时, 物体A的加速度为a1.当在B端施以F=mg的竖直向下的拉力作 用时,A的加速度为a2.则a1与a2的大小关系是( C )
A.a1=a2 C.a1<a2
B.a1>a2 D.无法确定
5、如下图所示,用一根细线通过一只无摩擦、无 质量的滑轮,把静止在斜面上和悬挂在斜面边缘高 处的两块木块连接起来.悬挂木块的质量为M=16.0 kg,斜面上的木块的质量为m=8.0 kg.已知木块与斜 面间的动摩擦因数为μ=0.2.这两木块从静止释 放.(sin37°=0.6,cos37°=0.8,g=10 m/s2)
(1)木块的加速度为多大? (2)连接两木块的细线的张力为多大?
小专题4.2 动力学中连接体问题(解析版)

第四章力和运动的关系小专题2动力学中的连接体问题【知识清单】在分析和求解物理连接体问题时关键之一,就是研究对象的选取:隔离法与整体法.(1)在力与加速度的连接体问题中,只要,就可选用整体法,而物体间的加速度是否相同不是选用整体法的原则.(2)隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)为原则.(3)在物体系的运动加速度方向不同时,利用整体法时常需,如通过滑轮用绳连接的两物体,常可取沿绳方向即将绳等效拉直时的方向为坐标轴.【答案】(1)不涉及物体间的相互作用(2)尽可能避免或减少非待求量的出现(3)取曲线坐标系【考点题组】【题组一】绳与杆连接1.如图所示,一车内用轻绳悬挂着A、B两球,车向右做匀加速直线运动时,两段轻绳与竖直方向的夹角分别为a、θ,且a=θ,则()A.A球的质量一定等于B球的质量B.A球的质量一定大于B球的质量C.A球的质量一定小于B球的质量D.A球的质量可能大于、可能小于也可能等于B球的质量【答案】D【解析】对AB整体研究,根据牛顿第二定律得:m A+m B)gtanα=(m A+m B)a,解得:gtanα=a。
对B研究,根据牛顿第二定律得:m B gtanθ=m B a,解得:a=gtanα,因此不论A的质量是大于、小于还是等于B球的质量,均有α=θ,故D正确.2.如图所示,光滑水平桌面放置着物块A,它通过轻绳和轻质滑轮悬挂着物块B,已知A的质量为m,B的质量为3m,重力加速度大小为g,静止释放物块A、B后A. 相同时间内,A 、B 运动的路程之比为2:1B. 物块A 、B 的加速度之比为1:1C. 细绳的拉力为D. 当B 下落高度h 时,速度为知两物体的加速度之比也为2:1,B错误。
牛顿第二定律连接体问题(整体法与隔离法)

牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则三、连接体题型:1【例1】A、B 平力N F A 6=推A ,用水平力N F B 3=【练1】如图所示,质量为M 的斜面A 在水平向左的推力F 作用下,A 与B 体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g a D. gm M F g a )(,cot +==μθ【练2】如图所示,质量为2m 的物体2滑定滑轮连接质量为1m 的物体,与物体A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gm C. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m m g ,m B =0.4kg ,盘C 的质量O 处的细线瞬间,木F BC 多大?(g 取10m/s 2)连接体作业1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。
要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)球刚好离开斜面 球刚好离开槽底F= F= F= F=2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的摩擦力和弹力。
f= f= F AB = F AB = 3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a ,使三个物体保持静止,一起作加速运动,则各物体所受的合外力 ( ) A .a 最大 B .c 最大 C .同样大 D .b 最小4、如图所示,小车的质量为M,的前端相对于车保持静止,A.在竖直方向上,B.在水平方向上,C.若车的加速度变小,D.若车的加速度变大,5、物体A 、B 叠放在斜面体C 上,物体的作用下一起随斜面向左匀加速运动的过程中,物体A 、B摩擦力为2f F ,(02≠f F ),则(A. 01=f F B. 2f F C.1f F 水平向左 D. 2f F 6、如图3所示,质量为M A. 地面对物体M B. 地面对物体M C. 物块m D. 地面对物体M 7、如图所示,质量M =8kg 到1.5m/s μ=0.28、如图6所示,质量为A m 的物体A 沿直角斜面C 9、如图10所示,质量为M 的滑块C B B 、2a F a b c。
应用整体法和隔离法的解题技巧—内力公式(解析版)

高中物理题型解题技巧之力学篇03内力公式一、必备知识1.连接体问题母模型如图1所示,光滑地面上质量分别为m 1、m 2的两物体通过轻绳连接,水平外力F 作用于m 2上,使两物体一起加速运动,此时轻上的拉力多大?整体由牛顿第二定律求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F二:应用技巧(1).物理场景:轻绳或轻杆或轻弹簧等相连加速度相同的连接体,如下情形求m 2、m 3间作用力,将m 1和m 2看作整体F 23=m 1+m 2m 1+m 2+m 3F整体求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g (sin θ+μcos θ)隔离求内力T -m 1g (sin θ-μcos θ)=m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g隔离求内力T -m 1g =m 1a得T =m 1m 1+m 2Fa =F 2-F 1m 1+m 2−μg隔离T -F 1-μm 1g =m 1a得T =m 1F 2+m 2F 1m 1+m 2(2)方法总结:(内力公式)如上图所示,一起加速运动的物体系统,若力作用于m 1上,则m 1和m 2间的相互作用力为F 12=m 不m 1+m 2F (其中m 不即为外力不作用的物体的作用)此结论与有无摩擦无关(有摩擦,两物体与接触面的动摩擦因数必须相同),物体系统沿水平面、斜面、竖直方向运动时,此结论都成立。
两物体的连接物为轻弹簧、轻杆时,此结论不变。
注意:若整体受到多个外力时,可先将多点个外力分别应用内力公式a .两外力相反时,绳中的拉力为T =m 2m 1+m 2F 1+m 1m 1+m 2F2b .两外力相同时绳中的拉力为T =m 2m 1+m 2F 1-m 1m 1+m 2F2三、实战应用(应用技巧解题,提供解析仅供参考)一、单选题1如图,两物块P 、Q 置于水平地面上,其质量分别为m 、2m ,两者之间用水平轻绳连接。
高一物理大纲版专题二整体、隔离法求解连接体问题

高一物理大纲版专题二整体、隔离法求解连接体问题两个(或两个以上)物体组成的连接体,它们之间连接的纽带是 ,高中阶段只求相同的问题。
学会对连接体的受力分析,分清内力和外力【例题】如图所示,a 、b 、c 三块木块叠放在光滑的水平面上,在b 上施加水平向右的恒力,使其做加速运动,运动中三木块保持相对静止,则( ) A .c 对a 的摩擦力方向向右B .b 对a 的摩擦力方向向右C .b 受到的摩擦力比c 受到的摩擦力大D .b 受到的摩擦力与c 受到的摩擦力反向一. 求内力:先整体后隔离在连接体内,各物体具有相同的加速度,所以,可以把连接体当成一个整体,分析它所受的外力,利用牛顿第二定律求出加速度。
再把某物体隔离,对该物体单独进行受力分析,再一次利用牛顿第二定律进行列式求解。
【例1】如图所示,光滑水平面上,AB 两物体在水平恒力1F 、2F 作用下运动。
已知21F F >,则A 施于B 的作用力的大小是多少?【例1引申】若水平面粗糙,A 、B 是同种材料制成的,在推力F 1、F 2的作用下运动,物体A 对物体B 的作用力又为多大?思路点拨 此题设置的物理情景及所运用的物理规律都很简单,第一种情景与第二种情景的区别是:第一种情景无摩擦,A 和B 一起肯定匀加速运动,而第二种情景则有摩擦,A 和B 一起可能匀速运动,也可能匀加速运动.可用整体法求出A 、B 共同运动的加速度,用隔离法求出它们之间的相互作用力——内力.正确解答 (1)地面光滑时,以A 、B 系统为研究对象,由牛顿第二定律,有F 1-F 2=(m 1+m 2)a 1 ①以B 为研究对象,B 受到A 水平向右推力F N 1,由牛顿第二定律,有F N 1-F 2=m 2a 1 ②①、②联立求解得2112211m m F m F m F N ++=(2)当地面粗糙时,若A 、B 一起匀速运动,对A 、B 组成的系统,有 F 1-F 2-μ(m 1+m 2) g=0 ③以B 为研究对象,设A 对B 水平向右的推力为F N2,有 ④ F N2-F 2-μm 2g=0③、④联立求解得2112212m m F m F m F N ++=若A 、B 一起加速运动,由牛顿第二定律,有F 1-F 2-μ(m 1+m 2) g =(m 1+m 2)a 2 ⑤以A 为研究对象,设B 对A 水平向左的推力为F N 3,由牛顿第二定律有 F 1-F N 3-μm 1 g= m 1a 2 ⑥⑤、⑥联立求解得2112212m m F m F m F N ++=误点警示 因为A 、B 是同种材料制成的,它们与水平面的动摩擦因数相同,才有上述结论,若A 、B 与水平面间的动摩擦因数不同,则A 、B 间的相互作用力还与动摩擦因数有关.(请同学们自己证明)小结点评 (1)经计算可知,不论地面是否光滑,只要A 、B 与水平面间的动摩擦因数相同且A 、B 一起运动,A 、B 间的相互作用力是一样的.(2)若把A 、B 一起放在光滑的斜面上,用F 1、F 2沿斜面方向推,结果一样.(3)若用一个力推,令F 1=0或F 2=0代入上式即可.【例2】有5个质量均为m 的相同木块,并列地放在水平地面上,如下图所示。
牛二专题:整体法和隔离法

B恰好不移动时,即是绳子
拉力恰好为零时。此时推力 设为F.
对A受力分析如图, 由三角形关系得:
ma tan
mg
对整体: F (M m )g (M m )a
联立求解可得: F (M m )g ( ta)n
即:这个拉力必须满整体与隔离体法
规律总结:一个重要结论拓展:如下图所示,倾角
为 α 的斜面上放两物体 m1 和 m2,用与斜面平行的力 F 推 m1,使两物体加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 FN=m1m+2m2F.
有相互作用力的系统 整体与隔离体法
【例2】A、B的质量分别为m1和m2,叠放置于光滑的水 平地面上,现用水平力F拉A时,A、B一起运动的最大
牛二专题:整体法和隔离法
一、连接体 当两个或两个以上的物体之间通过轻绳、轻杆、弹 簧相连或直接叠放在一起的系统。
二、处理方法——整体法和隔离法
使用原则:
1、整体法:系统内各物体的运动状态相同(具有相同的a或平衡态); 问题不涉及物体间的内力。
2、隔离法:系统内各物体的运动状态不同(具有不同的a); 问题涉及物体间的内力。
加速度为a1,若用水平力F改拉B时,A、B一起运动的最
大加速度为a2,则a1:a2等于:(
)
A 1:1 B m1:m2 C m2:m1
D m12:m22
B
有相互作用力的系统 整体与隔离体法
【例3】水平桌面上放着质量为M的滑块,用细绳 通过定滑轮与质量为m的物体相连,滑块向右加速 运动。已知滑块与桌面间的动摩擦因数为μ.试求 滑块运动的加速度和细绳中的张力。
例:A、B两物体用轻绳连接,置于光滑水平面上,它们的质
量分别为M和m,现以水平力F拉A,求AB间绳的拉力T1为多少?
连接体问题专题详细讲解
连接体问题一, 连接体及隔离体两个或两个以上物体相连接组成的物体系统,称为连接体。
假如把其中某个物体隔离出来,该物体即为隔离体。
二, 外力和内力假如以物体系为探讨对象,受到系统之外的作用力,这些力是系统受到的外力,而系统内各物体间的相互作用力为内力。
应用牛顿第二定律列方程不考虑内力。
假如把物体隔离出来作为探讨对象,则这些内力将转换为隔离体的外力。
三, 连接体问题的分析方法1.整体法连接体中的各物体假如加速度相同,求加速度时可以把连接体作为一个整体。
运用牛顿第二定律列方程求解。
2.隔离法假如要求连接体间的相互作用力,必需隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。
3.整体法及隔离法是相对统一,相辅相成的。
原来单用隔离法就可以解决的连接体问题,但假如这两种方法交叉运用,则处理问题就更加便利。
如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。
简单连接体问题的分析方法1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。
2.“整体法”:把整个系统作为一个探讨对象来分析(即当做一个质点来考虑)。
留意:此方法适用于系统中各部分物体的加速度大小方向相同状况。
解决这个问题的最好方法是假设法。
即假定,若斜面光滑,示为:a=g sinθ-μg cosθ,明显,若a, b两物体及斜面间的动摩擦因数μA=μB,则有a A=a B,杆仍旧不受力,若μA>μB,则a A<a B,A, B间的距离会缩短,搭上杆后,杆会受到压力,若μA<μB,则a A>a B杆便受到拉力。
〖答案〗(1)斜面光滑杆既不受拉力,也不受压力(2)斜面粗糙μA>μB杆不受拉力,受压力斜面粗糙μA<μB杆受拉力,不受压力类型二, “假设法”分析物体受力【例题2】在一正方形的小盒内装一圆球,盒及球一起沿倾角为θ的斜面下滑,如图所示,若不存在摩擦,当θ角增大时,下滑过程中圆球对方盒前壁压力T及对方盒底面的压力N将如何变化(提示:令T不为零,用整体法和隔离法分析)()A.N变小,T变大; B.N变小,T为零;C.N变小,T变小; D.N不变,T变大。
专题整体法和隔离法解决连接体问题
02
03
连接体问题在物理学、 工程学和日常生活中具 有广泛的应用,如桥梁 、建筑、机械系统等。
解决连接体问题对于理 解物体间的相互作用和 运动规律具有重要意义 ,有助于解决实际问题
。
连接体问题在理论研究 和实际应用中都十分常 见,是力学领域的重要
研究课题。
Hale Waihona Puke 整体法和隔离法的理论价值与实践意义
整体法是通过研究整体系统的运动规律来求解连接体问题的方法,有助于全面理解系统内各物体间的 相互作用和运动关系。
隔离法
将相互连接的物体隔离分析,分别对 每个物体进行受力分析,从而求解每 个物体的运动状态。
整体法解决连接体问
02
题
整体法的应用场景
01
当连接体中各物体具有相同的加速度或速度时,可 以使用整体法。
02
当需要研究连接体整体受到的外力时,可以使用整 体法。
03
当连接体之间的内力远大于外力时,可以使用整体 法。
连接体问题的常见类型
1 2
直线运动中的连接体问题
涉及连接体的加速度、速度和位移等物理量的求 解。
曲线运动中的连接体问题
涉及连接体的加速度、速度、位移和力等物理量 的求解。
3
动力学中的连接体问题
涉及连接体的受力分析、牛顿第二定律等物理量 的求解。
整体法和隔离法的概念
整体法
将相互连接的物体视为一个整体,分 析整体受力情况,从而求解整体的运 动状态。
整体法的基本思路
将连接体视为一个整体,分析整体受到的外力和 内力。
根据牛顿第二定律,求出整体的加速度或速度。
根据加速度或速度,进一步分析连接体中各物体 的运动状态和受力情况。
专题:连接体问题(整体法和隔离法)
专题:连接体问题(整体法和隔离法)一、什么是连接体问题特征:两物体紧靠着或者依靠一根细绳(一根弹簧)相连接后一起做匀加速运动(1)用细线连接的物体系(2)相互挤压在一起的物体系(3)用弹簧连接的物体系二、连接体问题如何处理1.对整体写牛顿第二定律2.把其中任意一个物体隔离写牛顿第二定律三、常见的连接体问题的类型1.计算连接体的加速度2.计算连接体之间的拉力大小3.根据绳子的最大拉力判断水平拉力F的大小4.放在不同平面上判断拉力的变化、加速度的变化5.两个相反方向的力作用与两个物体上,撤去其中一个力后判断物体加速度变化和绳子拉力变化6.在连接体上的某个物体上再放一个物体判断拉力的变化、加速度的变化7.三个物体的连接体问题【典型例题剖析】例1:如图所示,置于光滑水平面上的木块A和B,其质量为m A和m B。
当水平力F作用于A左端上时,两物体一起作加速运动,其A、B间相互作用力大小为N11计算:(1)计算N1的大小(2)若将F作用在物体B上,AB间的相互作用力N2变为多少?(3)计算N 1与N 2之和,N 1与N 2之比(4)若物体A 、B 与地面的动摩擦因数为μ,分析AB 的加速度如何变化,AB 之间相互作用力如何变化?例2:如图所示,置于水平地面上的相同材料的质量分别为m 和m 0的两物体用细绳连接,在m 0上施加一水平恒力F ,使两物体做匀加速直线运动,对两物体间细绳上的拉力,下列说法正确的是( )A .地面光滑时,绳子拉力大小等于mFm 0+mB .地面不光滑时,绳子拉力大小等于mFm 0+mC .地面不光滑时,绳子拉力大于mFm 0+mD .地面不光滑时,绳子拉力小于mFm 0+m答案 AB例3:(多选)如图所示,质量为ml 的物体和质量为m 2的物体,放在光滑水平面上,用仅能承受6N 的拉力的线相连。
m l =2kg ,m 2=3kg 。
现用水平拉力F 拉物体m l 或m 2,使物体运动起来且不致把绳拉断,则F 的大小和方向应为( ) A .10N ,水平向右拉物体m 2B .10N ,水平向左拉物体m 1C .15N ,水平向右拉物体m 2D .15N ,水平向左拉物体m 1 答案:BC例4:如图所示,在水平地面上有A 、B 两个小物体,质量分别为m A =3.0kg 、m B =2.0kg ,它们与地面间的动摩擦因数均为μ=0.10。
牛顿第二定律整体法、隔离法专题分析
A.F1<F2 B.F1=F2 C.F1>F2 D.无法比较大小 A
有相互作用力的系统
整体法与隔离法
练习:如图所示,物体A放在物体B上,物体B放在光滑 的水平面上,已知mA=6kg,mB=2kg,A、B间动摩擦因数 =0.2.A物上系一细线,细线能承受的最大拉力是20N, 水平向右拉细线,假设A、B之间最大静摩擦力等于滑动 摩擦力.在细线不被拉断的情况下,下述中正确的是 (g=10m/s2) (CD)
A.当拉力F<12N时,A静止不动 B.当拉力F>12N时,A相对B滑动 C.当拉力F=16N时,B受A摩擦力等 于4N D.无论拉力F多大,A相对B始终静 止
有相互作用力的系统
整体法与隔离法
【解析】要判断A、B是否有相对滑动,可假设 F=F0时,A、B间的摩擦力达到最大值,求出此 时拉力的数值F0,若F>F0,则A、B有相对滑 动;若F<F0,则A、B无相对滑动. A、B间的最大静摩擦力为 f0=mAg=0.2×6×10=12N. 当A、B间的静摩擦力f=f0时,由牛顿第二定律 得: 对B: mAg=mBa, a=mAg/mB=0.2×6×10/2=6m/s2;
有相互作用力的系统
整体法与隔离法
• 因三物体加速度相同,本题可用整 体法。 • 解: 研究整体 F=(m1+m2+m3)a 为求a再研究m1: m1的受力图如右。 T= m1 a 为求T研究m2 T= m2g
故a= m2 g/ m1 F=(m1+m2+m3)a F =(m1+m2+m3) m2 g/ m1
m AmB g T g m A mB 1 / m A 1 / mB
对于C、D选项: (mA +mB)为恒量, 只有当mA=mB 时, mA· mB才最大, C、D错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整体法和隔离法解连接体专题二
1、如图所示,置于水平面上的相同材料的m和M用轻绳连接,在M上施一水平力F(恒力)使两物体作匀加速直线运动,对两物体间细绳拉力正确的说法是()
A、水平面光滑时,绳拉力等于mF/(M+m)
B、水平面不光滑时,绳拉力等于mF/(M+m)
C、水平面不光滑时,绳拉力大于mF/(M+m)
D、水平面不光滑时,绳拉力小于mF/(M+m)
2、在一根绳下串连者两个质量不同的小球,上面小球比下面小球质量大,当手提着绳端沿水平方向并使两球一起作匀加速运动时(空气阻力不计,)则下图正确的是()
3、一个劲度系数为k=800N/m的轻弹簧,两端分别连接着质量均为m=12kg的物体A、B,将它们竖直静止的放在水平地面上,如图所示,加一竖直向上的变力F在物体A上,使物体A开始向上做匀加速运动。
当0.4s物体B刚离开地面时(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2). 求此过程中所加外力F的最大值和最小值。
4、某长方形物体被锯成A、B、C三块,然后再拼在一起,放在光滑的水平面上,质量为M A=M B=1kg、M C=2kg,以10N的水平推力F沿对称轴线方向从底面推C,使ABC三块保持矩形整体沿力的方向平动,在运动过程中,C对A作用的摩擦力的大小为多少?
5、如图所示,两个叠在一起的滑块,置于固定的,倾角为θ的斜面上,滑块A、B的质量分别为M、m,A与斜面间的动摩擦因数为μ1,B与A间的动摩擦因数为μ2。
已知两滑块是从静止开始以相同加速度从斜面滑下,滑块B受到的摩擦力是多少?
6、如图所示,质量为m的物体A叠放在物体B上,物体B的上表面水平,斜面光滑,倾角为θ。
当A随B下滑时,它们保持相对静止,求A对B的压力和摩擦力。
a
A B
C
a
D。