江苏历届高考题分类汇编三角函数
(完整版)江苏高考函数真题汇编.docx

十年高考数学分类汇编 _02 函数江苏高考数学 _函数 _十年汇编( 2005-2017 )一.基础题组1. 【 2005 江苏,理 2】函数y 1 x3( x R) 的反函数的解 析表达式为()2+( A )ylog2 x2( B ) ylog 2 x 332( C ) y3 x ( D ) ylog 22 log 223 x2. 【 2005 江 苏 , 理15 】 函 数 ylog 0.5 (4x 23x) 的 定 义 域为 .3. 【 2005 江苏,理 aa ∈ k, k 1 , k ∈ ,则 k = .16】若 3 =0.618, Z 4.【2005江 苏 , 理17 】 已 知a b为 常 数 , 若, f ( x) x 24x 3, f (ax b)x 2 10 x 24, 则 5a b.5.【 2007 江苏,理 6】设函数 f (x )定义在实数集上,它的图像关于直线 x=1 对称,且当 x ≥1时, f ( x )= 3x -1 ,则有( )A. f ( 1 )< f ( 3 )< f ( 2 )B. f ( 2 )< f ( 3 )< f ( 1)32 3323C. f ( 2)< f ( 1)< f ( 3)D.f ( 3)< f ( 2)< f ( 1)3 3 2 2 3 36. 【 2007江苏,理 】设 f ( x ) =l g ( 2 a )是奇函数,则使 f ( x )< 0 8 1 x的 x 的取值范围是() A. (-1 , 0) B. (0,1)C.( - ∞, 0)D.( - ∞, 0)∪( 1,+∞)7. 【 2007 江苏,理 16】某时钟的秒针端点 A 到中心点 O 的距离为 5 cm ,秒针均匀地绕点 O 旋转,当时间 t =0 时,点 A 与钟面上标 12 的点 B 重合 . 将 A 、B 两 点间的距离 d (cm )表示成 t (s )的函数,则 d= __________,其中 t ∈0, 60].8. 【 2009 江苏,理 10】. 已知 a5 1 ,函数 f ( x) a x ,若实数 m 、 n 满足2f (m)f ( n) ,则 m 、 n 的大小关系为 ▲ .9. 【 2010 江苏,理 5】设函数 f ( x) =x(e x+ ae -x )( x ∈R) 是偶函数,则实数 a 的值为 __________.10. 【2011 江苏,理 2】函数 f ( x) log 5 (2x 1) 的单调增区间是.11. 【2011 江苏,理 8】在平面直角坐标系 xoy 中,过坐标原点的一条直线与函数 f x2的图象交于 P, Q 两点,则线段 PQ 长的最小值为.x12. 【 2011 江苏,理 11 】已知实数 a0 ,函数 2x a, x1f (x)2a, x,若x 1f (1 a) f (1 a) ,则 a 的值为.13. 【2012 江苏,理 5】函数 f (x)1 2log 6 x 的定义域为 __________.14. 【2012 江苏,理 10】设 f ( x) 是定义在 R 上且周期为 2 的函数,在区间- 1,1]上, f x ax 1, 1x0, a , b ∈ 13 =其中 R. 若 ,则 + 的值为bx2 ,0x1,22x 1__________.15. 【2014 江苏,理 10】已知函数 f ( x) x 2 mx 1,若对于任意的 xm,m 1都有 f ( x)0 ,则实数 m 的取值范围为.16. 【 2016 年高考江苏卷】函数 y= 3 - 2x - x 2 的定义域是.17.【2016 年高考江苏卷】设 f ( x) 是定义在 R 上且周期为 2 的函数,在区间 1,1)x a, 1 x 0,R. 若 f ( 5) f ( 9) ,则 f (5a) 的值是上, f ( x)2其中 ax ,0 x 1,225▲ .二.能力题组1. 【2010 江苏,理 14】将边长为 1 的正三角形薄片沿一条平行于某边的直线剪2成两块,其中一块是梯形,记S =(梯形的周长),则 S 的最小值是 __________.梯形的面积2. 【 2012 江苏,理 17】如图,建立平面直角坐标系 xOy , x 轴在地平面上, y 轴垂直于地平面, 单位长度为 1 千米,某炮位于坐标原点. 已知炮弹发射后的轨 迹在方程 y =kx - 1(1 +k 2) x 2( k >0) 表示的曲线上,其中 k 与发射方向有关. 炮20的射程是指炮弹落地点的横坐标.(1) 求炮的最大射程;(2) 设在第一象限有一飞行物 ( 忽略其大小 ) ,其飞行高度为 3.2 千米,试问它的横坐标 a 不超过多少时,炮弹可以击中它?请说明理由.3. 【2013 江苏,理 13】在平面直角坐标系xOy 中,设定点 A a ,a ,P 是函数1 ()y( xx> 0) 图象上一动点.若点 P ,A 之间的最短距离为 2 2 ,则满足条件的实数 a 的所有值为 __________.4. 【2014 江苏,理 13】已知 f ( x) 是定义在 R 上且周期为 3 的函数,当 x 0,3 时, f ( x) x22x1,若函数 y f (x)a 在区间 3,4 上有 10个零点(互不2相同),则实数 a 的取值范围是.5. 【 2015 高考江苏, 13】已知函数 f (x) | ln x |, g (x)0,0 x 14 | ,则方| x 22, x 1程 | f ( x) g (x) | 1实根的个数为三.拔高题组1. 【 2005 江苏,理 22】已知 a R, 函数 f (x) x 2 x a .a =2 时,求使 f ( x )= x 成立的 x 的集合;(Ⅰ)当(Ⅱ)求函数 y =f ( x) 在区间 1,2] 上的最小值 .2. 【 2006 江苏,理 20】设 a 为实数,设函数f (x) a 1x 2 1x 1x 的最大值为 g( a).(Ⅰ)设 t = 1x1 x ,求 t 的取值范围,并把 f ( x) 表示为 t 的函数m( t )(Ⅱ)求 g( a)(Ⅲ)试求满足 g( a) g ( 1) 的所有实数 aa3. 【2007 江苏,理 21】已知 a ,b ,c ,d 是不全为零的实数, 函数 f (x )=bx 2 +cx+d ,g(x )=ax 2+bx 2 +cx +d. 方程 f ( x ) =0 有实数根,且 f (x )=0 的实数根都是 g (f( x ))=0 的根;反之, g ( f ( x ))=0 的实数根都是 f (x )=0 的根 . ( 1)求 d 的值;(3 分)( 2)若 a=0,求 c 的取值范围;( 6 分)( 3)若 a=l ,f (1)=0,求 c 的取值范围 . (7 分)4. 【 2008 江苏,理 20】已知函数 f1( x) 3x p1, f2 (x) 2 3x p2(x R, p1, p2为常数).函数 f (x)定义为:对每个给定的实数 x ,f 1 ( x ), 若 f 1 ( x ) f 2 ( x )f ( x )f 2 ( x )f 2 ( x ), 若 f1 ( x )( 1)求f ( x) f1( x)对所有实数x成立的充分必要条件(用p1, p2表示);( 2)设a,b是两个实数,满足 a b ,且p1, p2(a,b) .若f (a) f (b),求证:函数f ( x) 在区间 [ a, b] 上的单调增区间的长度之和为b a(闭区间 [m, n] 的长度定义2为 n m )5.【2009 江苏,理 19】按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m元,则他的满意度为m;如果他买进该m a产品的单价为 n 元,则他的满意度为n. 如果一个人对两种交易( 卖出或买进 )n a的满意度分别为 h1和 h2,则他对这两种交易的综合满意度为h1h2.现假设甲生产 A、B 两种产品的单件成本分别为12 元和 5 元,乙生产 A、B 两种产品的单件成本分别为 3 元和 20 元,设产品 A、B 的单价分别为m A元和m B元,甲买进 A 与卖出 B 的综合满意度为h甲,乙卖出 A 与买进 B 的综合满意度为h乙(1)求 h甲和 h乙关于m A、m B的表达式;当m A5m B时,求证:h3甲 = h乙;(2)设 m 3m ,当m A、m B分别为多少时,甲、乙两人的综合满意度均最大?A5 B最大的综合满意度为多少?(3)记 (2)中最大的综合满意度为 h0,试问能否适当选取 m A、 m B的值,使得h甲h0和 h乙 h0同时成立,但等号不同时成立?试说明理由.6.【2009江苏,理20】设a为实数,函数 f (x) 2x2( x a) | x a |.(1)若 f (0) 1,求a的取值范围;(2)求 f (x) 的最小值;(3) 设函数h(x) f (x), x (a,) ,直接写出(不需给出演算步骤)不等式....h( x) 1的解集.7.【2016 年高考江苏卷】(本小题满分 16 分)已知函数 f (x) a x b x( a 0,b 0, a 1,b1) .a 2,b1( 1)设 2 .①求方程f (x)=2 的根;②若对任意xR ,不等式f (2x)mf (x)6恒成立,求实数 m的最大值;( 2)若 0 a1,b>1,函数g x f x 2 有且只有1个零点,求ab的值.2017-14.( 5 分)(2017?江苏)设 f(x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上, f( x) =,其中集合D={ x| x=,n∈N*},则方程f ( x)﹣ lgx=0 的解的个数是.2017-20.( 16 分)(2017?江苏)已知函数 f(x) =x3+ax2+bx+1( a>0,b∈R)有极值,且导函数 f ′( x)的极值点是 f (x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求 b 关于 a 的函数关系式,并写出定义域;(2)证明: b2>3a;( 3)若 f( x),f (′x)这两个函数的所有极值之和不小于﹣,求a的取值范围.答案一.基础题组1. 【 2005 江苏,理 2】函数y 1 x3( x R) 的反函数的解析表达式为( )2+( A ) y log 22( B ) y x 33log 22x( C ) y3 x ( ) y log 2 2log 22Dx32. 【 2005江 苏 , 理15 】 函 数 ylog 0.5 (4x 23x) 的 定 义 域为.【答案】 [1,0) ( 3,1]44由题意得:log 0..5 (4x 23x) 0则由对数函数性质得:0 4x 23x10 4 x 2 3x[1,0) (3,1] 即 4x 23x1, 求得函数的定义域为:44 .3. 【2005 江苏,理】若 aa ∈k, k 1 ,k ∈ ,则 k=.163 =0.618,Z【答案】 k1.如图观察分析指数函数 y=3x 的图象,函数值为 0.168[ 1,0) 上,与 3a =0.168,a [ k, k 1)比较得 : k1.4.【 2005 江 苏 , 理17 】 已 知 a, b为 常 数 , 若f ( x)x 2 4x 3, f (axb) x 210 x 24, 则 5a b.【答案】 2由 f(x)=x 2+4x+3, f(ax+b)=x 2+10x+24,得:( ax+b )2+4(ax+b)+3=x 2+10x+24, 即: a 2x 2 +2abx+b 2+4ax+4b+3=x 2+10x+24,a 2 1比较系数得 : 2ab 4a 10b 24b 3 24【 求得:a=-1,b=-7, 或 a=1,b=3 ,则 5a-b=2.x5. 2007 江苏,理 】设函数 f (x )定义在实数集上,它的图像关于直线=16对称,且当 x ≥1时, f ( x )= 3x -1 ,则有( )A. f ( 1 )< f ( 3 )< f ( 2 )B. f ( 2 )< f ( 3 )< f ( 1)32 33 23C. f ( 2 )< f ( 1)< f ( 3 )D.f ( 3)< f ( 2)< f ( 1)3 3 2 2 3 3【答案】 B6. 【 2007 江苏,理8】设 f ( x )=l g (2a )是奇函数,则使 f ( x )< 0的 x 的取值范围是( 1 x)A. (-1 , 0)B. (0,1)C.( - ∞, 0)D.( - ∞, 0)∪( 1,+∞)【答案】 A7.【 2007 江苏,理 16】某时钟的秒针端点 A 到中心点 O的距离为 5 cm,秒针均匀地绕点 O旋转,当时间 t =0 时,点 A 与钟面上标 12 的点 B 重合 . 将 A、B 两点间的距离 d(cm)表示成 t (s)的函数,则 d= __________,其中 t ∈0, 60]. 【答案】 10sin t608.【2009江苏,理10】. 已知a 5 1,函数 f ( x) a x,若实数m、n满足2f (m) f ( n) ,则 m 、 n 的大小关系为▲.9.【 2010 江苏,理 5】设函数 f ( x) =x(e x+ ae-x)( x∈R) 是偶函数,则实数 a 的值为 __________.【答案】- 1∵函数 f ( x) =x(e x+ae-x) ,x∈R 是偶函数,x- x∴设 g( x) = e + ae,x∈R.由题意知g( x) 应为奇函数 ( 奇函数×奇函数=偶函数) ,又∵ x∈R,∴ g(0) =0,则 1+ a= 0,∴ a=- 1.10.【2011江苏,理2】函数f ( x)log 5 (2x 1) 的单调增区间是.1,【答案】211,由 2x 10 ,得x22,所以函数的单调增区间是.11.【2011 江苏,理 8】在平面直角坐标系 xoy 中,过坐标原点的一条直线与函数 f x2 的图象交于P, Q两点,则线段PQ长的最小值为.x12. 【 2011 江苏,理 11】已知实数 a2x a, x10 ,函数 f (x)2a, x,若x 1f (1 a) f (1a) ,则 a 的值为.3【答案】 4本题考查了函数的概念及函数和方程的关系,是 A 级要求, 中档题 . 由题意得,a3当 a 0 时,1 a 1,1a1 , 2(1 a)a(1 a) 2a 2,不合,解之得3舍去;当a 0时,1 a1,1 a 1, 2(1 a) a (1 a) 2a ,解之得a4 .本题只要根据题意对 a分类,把问题化为方程问题求解即可,而无需画图,否则较易错 . 要分析各类问题的特点,恰当转化是解决问题的关键,要培养相关的意识 .13. 【2012 江苏,理 5】函数 f (x)1 2log 6 x 的定义域为 __________.【答案】 (0 , 6]要使函数 f (x)1 2log 6 x有意义,则需1,2log 6 x 0x ,解得 0<x ≤ 6 ,故 f(x) 的定义域为 (0 , 6] . 014. 【2012 江苏,理 10】设 f ( x) 是定义在 R 上且周期为 2 的函数,在区间- 1,1]ax 1, 1x0,13上, f ( x) =其中 a , b ∈R. 若+ 3 的值为f ( ) f ( ) ,则bx2 ,0x1,2 2a bx 1__________.15. 【2014 江苏,理 10】已知函数f ( x)x2mx1,若对于任意的x m,m 1都有 f ( x)0 ,则实数 m 的取值范围为.【答案】 (2 ,0) 2f ( m) m2m2 10,解得2据题意(m 1)2m(m 1)1m 0 .f ( m 1)0,216. 【 2016 年高考江苏卷】函数 y= 3 -2x - x2的定义域是.【答案】3,1试题分析:要使函数式有意义,必有 3 2x x20 ,即 x2 2 x 30 ,解得3 x 1.故答案应填:3,1【考点】函数定义域【名师点睛】函数定义域的考查,一般是多知识点综合考查,先“列”后“解”是常规思路 . 列式主要从分母不为零、偶次根式下被开方数非负、对数中真数大于零等出发,而解则与一元二次不等式、指(对)数不等式、三角不等式等联系在一起 .17.【2016 年高考江苏卷】设f ( x)是定义在R上且周期为2的函数,在区间1,1)x a, 1 x 0,R. 若f (5) f (9) ,则 f (5a)的值是上, f ( x)2其中 ax ,0 x 1,22 5▲ .二.能力题组1. 【2010 江苏,理 14】将边长为 1 的正三角形薄片沿一条平行于某边的直线剪2成两块,其中一块是梯形,记S =(梯形的周长),则 S 的最小值是 __________.梯形的面积32 3【答案】 3设剪成的上一块正三角形的边长为x.- x) 243 - x) 2则 S =(3(3(0 < x < 1) ,3 - x 23 - 3 x 2144S ′=43 - 6x 2 -- 20x 63 2 ) 2(1 x =- 4 3 - 6x 2 - 6 ,- 20x3 x 2 ) 2(1令 S ′= ,得 x = 1或 3(舍去 .0 3 )x = 1是 S 的极小值点且是最小值点 .3tanC tan C sin C cos S sin C cos B sin C (sin B cos A cos B sin A)tan Atan B sin A cosCsin B cosCsin A sin B cosC∴ S min =4-123 . 3 (3 3)323 - 1 31 917】如图,建立平面直角坐标系 xOy , x 轴在地平面上, y 2. 【 2012 江苏,理轴垂直于地平面, 单位长度为 1 千米,某炮位于坐标原点. 已知炮弹发射后的轨迹在方程 y =kx - 1(1 +k 2) x 2( k >0) 表示的曲线上,其中 k 与发射方向有关. 炮20的射程是指炮弹落地点的横坐标.(1) 求炮的最大射程;(2) 设在第一象限有一飞行物 ( 忽略其大小 ) ,其飞行高度为 3.2 千米,试问它的横坐标 a 不超过多少时,炮弹可以击中它?请说明理由.3. 【2013 江苏,理 13】在平面直角坐标系 xOy 中,设定点 A( a ,a) ,P 是函数 y1( x >0) 图象上一动点.若点 P ,A 之间的最短距离为 2 2 ,则满足条件的x实数 a 的所有值为 __________.4. 【2014 江苏,理 13】已知 f ( x) 是定义在 R 上且周期为 3 的函数,当 x 0,3时, f ( x) x 22x1,若函数 yf (x) a 在区间 3,4 上有 10 个零点(互不2相同),则实数 a 的取值范围是. 【答案】 (0, 1)2作 出函 数 f (x)x22x1, x [0,3) 的 图象 , 可 见 f (0)1 ,当 x 1 时,22f ( x)极大 1 , f (3)7,方程 f (x)a0 在 x [ 3,4] 上有10 个零点,即函数22y f ( x) 和图象与直线 y a 在 [ 3,4] 上有 10 个交点,由于函数 f (x) 的周期为 3,因此直线 y a 与函数 f (x) x22x1, x [0,3) 的应该是4 个交点,则有21a (0, ) .5. 【 2015 高考江苏, 13】已知函数 f (x) | ln x |, g (x)0,0 x 1 ,则方| x 2 4 | 2, x 1程 | f ( x) g (x) | 1实根的个数为十年高考数学分类汇编_02 函数三.拔高题组1. 【 2005 江苏,理 22】已知a R,函数 f (x)x2 x a .a时,求使 f ( x)= x 成立的 x 的集合;(Ⅰ)当=2(Ⅱ)求函数 y=f( x) 在区间 1,2]上的最小值 .1a,当 a1时 ;0,当1 a2时; m4(a 2),当 2 a 7时 ; 3【答案】(Ⅰ){0,12}. (Ⅱ)a1,当 a7时;3( Ⅰ) 由题意 ,f(x)=x2x 2.当 x<2 时 ,f(x)=x2(2-x)=x,解得 x=0, 或 x=1;当 x 2时 , f ( x) x2( x 2)x, 解得 x 1 2.综上所述 , 所求解集为{0,12}. .( Ⅱ) 设此最小值为 m.①当 a 1时,在区间 [1,2]上,f(x)x3ax2 .f / (x) 3x22ax3x( x 2a)0, x(1,2),因为 :3则 f(x)是区间 1,2]上的增函数 , 所以 m=f(1)=1-a..十年高考数学分类汇编_02 函数2. 【 2006 江苏,理 20】设 a 为实数,设函数f (x) a 1x 2 1x 1x 的最大值为 g( a).(Ⅰ)设 t = 1x1 x ,求 t 的取值范围,并把 f ( x) 表示为 t 的函数m( t )(Ⅱ)求 g( a)(Ⅲ)试求满足 g( a) g ( 1) 的所有实数 aa【答案】(Ⅰ) m t )= 12t a, t [ 2,2](at2十年高考数学分类汇编_02 函数a 1a2,2(Ⅱ) g (a)a 1 ,2a 1 ,2a222,a2 2(Ⅲ)2a 2, 或a=1 2十年高考数学分类汇编_02 函数a12a2,2 a 1 ,g (a)a1 ,2 22a22,a综上有2g( 1)2 a1 2, 解得 a2,与 a2矛盾 .a2a221a 012g ( 1)2情形 5:当2时,a,此时 g(a)=a+2,aa2 2,与 a1由a22矛盾 .2解得11 )1 情形 6:当 a>0 时,ag (2,此时 g(a)=a+2,aaa21 12解得 a由a,由 a>0 得 a=1.g (a) g( 1)2 a2 ,综上知,满足a的所有实数 a 为2或 a=1.3. 【2007 江苏,理 21】已知 a ,b ,c ,d 是不全为零的实数, 函数 f (x )=bx 2 +cx+d ,g (x )=ax 2+bx 2 +cx +d. 方程 f ( x ) =0 有实数根,且 f (x )=0 的实数根都是 g (f( x ))=0 的根;反之, g ( f ( x ))=0 的实数根都是 f (x )=0 的根 .( 1)求 d 的值;(3 分)( 2)若 a=0,求 c 的取值范围;( 6 分)( 3)若 a=l ,f (1)=0,求 c 的取值范围 . (7 分)16【答案】(1)d=0. (2)0,4). (3)0,)( 3)由 a=1,f (1)=0 得 b= - c ,f (x )=bx 2+cx =cx ( - x+1),g (f (x )) f ( x )f 2( x ) cf (x ) c ]. ③= - +由 f (x )=0 可以推得 g (f (x ))=0,知方程 f (x ) =0 的根一定是方程 g (f ( x ))=0 的根 .当 c=0 时,符合题意 . 2(x )当 c ≠0时, b ≠0,方程 f (x )=0 的根不是方程 f cf ( x ) c ④- + =0 的根,因此,根据题意,方程④应无实数根,那么2 2当( - c ) -4 c <0,即 0< c < 4 时, f ( x ) - cf (x )+c>0,符合题意 .f x )=- cx 2 cxcc 2 4c ,即 cx 2 cx c c 2 4c⑤( + =– +2 =0,2则方程⑤应无实数根,所以有( - c )2-4 ccc 24c<0 且( - c )2-4 ccc 24c<0.22当 c <0 时,只需 - c 2 -2c c 2 4c < ,解得 < < 16 ,矛盾,舍去 .0 0 c 3当 c ≥ 4 时,只需 - c 2 c c 2 4c < ,解得 < < 16 .+20 0 c 3因此,4≤ c <16.30, 16综上所述,所示 c 的取值范围为 ) .34. 【 2008 江苏,理 20】已知函数 f 1( x)3x p 1, f 2 (x) 2 3x p 2 ( x R, p 1, p 2 为常 数 ). 函 数 f (x) 定 义 为 : 对 每 个 给 定 的 实 数 x ,f 1 ( x ), 若 f 1 ( x )f 2 ( x )f ( x )f 2 ( x )f 2 ( x ), 若 f 1 ( x )( 1)求 f ( x)f 1( x) 对所有实数 x 成立的充分必要条件(用 p 1, p 2 表示);( 2)设 a,b 是两个实数,满足 a b ,且 p 1, p 2 (a,b) .若 f (a) f (b) ,求证:函数f ( x) 在区间 [ a, b] 上的单调增区间的长度之和为 ba(闭区间 [m, n] 的长度定义为 n m )2b a【答案】(1)p 1p 2log 32;(2) 23p 1x, xp 1f 1 ( x)再由3x p 1, x p 1 的单调性可知,函数f ( x) 在区间[ a,b]上的单调增区间的长度abb ab221)为(参见示意图y (a,f(a)(b,f( b)O图 1x解得f 1( x)与 f 2(x)图象交点的横坐标为x 0p 1 p 21log 3 2⑴22p 1 x 0 p 21[( p 2 p 1 ) log 3 2]p 2显然2,这表明x 0在p 1与p 2之间 . 由⑴易知f 1( x) , p 1x x 0f (x)xp 2f 2 (x) , x 0f 1 ( x) , a xx 0f (x)综上可知,在区间[a,b] 上,f 2 ( x) , x 0 x b(参见示意图 2)y(a,f(a))(b,f(b))(x 0,y 0)(p 2,2)(p 1,1)Ox图 25. 【2009 江苏,理 19】按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为 m 元,则他的满意度为m;如果他买进该m a产品的单价为 n 元,则他的满意度为n. 如果一个人对两种交易 ( 卖出或买进 )na的满意度分别为1和 2 ,则他对这两种交易的综合满意度为h hh h1 2 .现假设甲生产 A 、B 两种产品的单件成本分别为 12 元和 5 元,乙生产 A 、B 两种产品的单件成本分别为 3 元和 20 元,设产品 A 、B 的单价分别为 m A 元和 m B 元,甲买进 A 与卖出 B 的综合满意度为 h 甲 ,乙卖出 A 与买进 B 的综合满意度为 h 乙(1) 求 h 甲 和 h 乙 关于 m A 、 m B 的表达式;当 m3m 时,求证: h 甲 = h 乙 ;A5B(2) 设 m3m ,当 m A 、m B 分别为多少时, 甲、乙两人的综合满意度均最大?A5B最大的综合满意度为多少?(3) 记 (2) 中最大的综合满意度为 h 0 ,试问能否适当选取 m A 、 m B 的值,使得h 甲 h 和 h 乙 h 同时成立,但等号不同时成立?试说明理由 .0 0【答案】 (1) 详见解 +析; (2)m B 20, m A12 时,甲乙两人同时取到最大的10综合满意度为 5(3) 不能本小题主要考查函数的概念、基本不等式等基础知识,考查数学建模能力、抽象概括能力以及数学阅读能力 . 满分 16 分.(1)3m Bm Bm B2h 甲533 m12 m B 5(m B20)( m B 5)m Am B时,5 B,当53m Bm B2 h 乙5m B3 m3mB20(m B 5)(m B 20)h 甲 = h 乙5 B ,( 3)由( 2)知:h 0= 105h 甲 =m A m Bh 010m A 12 m B 5 5m A 12 m B 55m Am B 2由得: ,35y,1 ,1](1 4x)(1y)5令 m Ax,x 、 y [2 .m B 则 4,即:h 乙 h 010(1 x)(1 54y)同理,由5 得:2x 、 y [ 1,1] 1 4x 、 1+4y[2,5], 1x 、 1+y [ 5,2],另一方面, 42(1 4x)(1 y)5 x)(1 5, xy1,(1 4y)4 ,即m A=mB时,取等号 .22 当且仅当所以不能否适当选取 m A甲h 0 和 h 乙 h、 m B的值,使得h同时成立,但等号不同时成立 .6. 【 2009 江苏,理 20】设 a 为实数,函数 f (x)2x 2( x a) | x a |.(1) 若 f (0) 1,求 a 的取值范围;(2) 求 f (x) 的最小值;(3) 设 函数 h(x) f (x), x (a,) ,直接 写出 ( 不 需给 出演算步 骤 ) 不 等式. .. .h( x) 1的解集 .a 0 1( 1)若 f(0) 1,则a | a | 1aa 2 1f (a), a 02a 2, af ( x) mina), a 0 2a 2( 2)当xa 时,f (x)3x 2 2ax a 2 ,f (, a 033f ( x) min f ( a), a 02a 2 , aa 时,f (x)f (a), a2a 2, a当xx 2 2axa 2 ,f ( x) min2a 2 , a 02a 2,a 0综上3( 3)x(a,)时,h( x) 1得3x 22ax a 21 0 ,4a 2 12(a 2 1) 12 8a 2a6或 a6 0, x (a,) ;当22 时,a 3 2a 2 a3 2a 2 ) 066( x3)( x3a当22 时,△ >0, 得: x aa( 2, 6 )时,解集为 (a,) ;讨论得:当2 2a (6 , 2 )(a,a3 2a 2 ] [ a 3 2a 2 , )当22时,解集为33;a [2 , 2 ][a3 2a 2 , )当 22 时,解集为3.7. 【2016 年高考江苏卷】(本小题满分 16 分) 已知函数 f (x)a xb x ( a 0,b 0, a 1,b 1) .1a 2,b( 1)设2 .①求方程f (x)=2 的根;②若对任意xR ,不等式f (2x)mf (x)6恒成立,求实数 m 的最大值;( 2)若 0 a 1,b >1,函数 g x f x2 有且只有 1 个零点,求 ab 的值 .十年高考数学分类汇编_02 函数所以 m( f ( x))24对于 x R 恒成立 .f ( x)而 ( f ( x))24 f ( x)4 2 f ( x)44,且 ( f (0))24 4 ,f ( x) f (x) f ( x) f (0)所以 m4,故实数m 的最大值为 4.间断,所以在x0和 loga2 之间存在 g (x) 的零点,记为 x1.因为0 a1,所以2log a 20 ,又x00 ,所以x10与“0是函数g(x)的唯一零点”矛盾 . 2若 x00 ,同理可得,在x0和 loga 2 之间存在 g( x) 的非0的零点,矛盾. 2因此, x00 .于是ln a 1 ,故 ln a ln b0 ,所以 ab 1.ln b【考点】指数函数、基本不等式、利用导数研究函数单调性及零点【名师点睛】对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图等确定其中参数的范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充14.( 5 分)( 2017?江苏)设 f(x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上,f(x)=,其中集合D={ x| x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中 f( x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上, f( x)=,其中集合D={ x| x=,n∈ N*},分析f(x)的图象与y=lgx图象交点的个数,进而可得答案.【解答】解:∵在区间 [ 0,1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又 f( x)是定义在 R 上且周期为 1 的函数,∴在区间 [ 1,2)上, f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间 [ 2, 3)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 3, 4)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 4, 5)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 5, 6)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 6, 7)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 7, 8)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 8, 9)上, f( x)的图象与 y=lgx 有且只有一个交点;在区间 [ 9,+∞)上, f(x)的图象与 y=lgx 无交点;故f( x)的图象与 y=lgx 有 8 个交点;即方程 f(x)﹣ lgx=0 的解的个数是 8,故答案为: 8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.20.(16 分)(2017?江苏)已知函数 f(x) =x3+ax2+bx+1(a>0,b∈R)有极值,且导函数 f ′(x)的极值点是 f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求 b 关于 a 的函数关系式,并写出定义域;(2)证明: b2>3a;( 3)若 f( x),f (′x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【分析】(1)通过对 f(x)=x3+ax2+bx+1 求导可知 g( x)=f ′(x)=3x2+2ax+b,进而再求导可知 g′(x) =6x+2a,通过令 g′(x)=0 进而可知 f ′(x)的极小值点为﹣,从而(﹣)=0,整理可知 b=+(>),结合3+ax2+bx+1x=f a0f( x)=x( a> 0,b∈ R)有极值可知 f ′(x)=0 有两个不等的实根,进而可知 a>3.( 2)通过( 1)构造函数 h( a) =b2﹣ 3a=﹣+ =(4a3﹣27)( a3﹣ 27),结合 a> 3 可知 h( a)> 0,从而可得结论;( 3)通过( 1)可知 f ′( x)的极小值为 f ′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f( x)的两个极值之和为﹣+2,进而问题转化为解不等式 b﹣+﹣+2= ﹣≥﹣,因式分解即得结论.【解答】(1)解:因为 f(x)=x3+ax2+bx+1,所以 g(x)=f ′( x) =3x2 +2ax+b,g′(x)=6x+2a,令 g′(x)=0,解得 x=﹣.由于当 x>﹣时 g′( x)> 0, g( x) =f ′(x)单调递增;当 x<﹣时 g′(x)<0,g(x)=f (′x)单调递减;所以 f ′(x)的极小值点为 x=﹣,由于导函数 f ′(x)的极值点是原函数 f( x)的零点,所以 f (﹣) =0,即﹣+ ﹣+1=0,所以 b=+(a>0).因为f (x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以 f ′(x)=3x2+2ax+b=0 有两个不等的实根,所以 4a2﹣12b> 0,即 a2﹣+>0,解得a>3,所以 b=+(a>3).( 2)证明:由( 1)可知 h( a) =b2﹣ 3a=﹣+ =(4a3﹣27)( a3﹣ 27),由于 a>3,所以 h(a)> 0,即 b2>3a;( 3)解:由( 1)可知 f ′( x)的极小值为 f ′(﹣)=b﹣,设 x1, 2 是y=f ()的两个极值点,则12, 12,x x x +x =x x =所以 f (x1)+f ( 2)=(+)+b( 12)+2 x+ +a x +x=(x1+x2)[ (x1+x2)2﹣3x1x2]+ a[ ( x1 +x2)2﹣2x1 x2]+ b(x1+x2)+2 =﹣+2,又因为 f(x), f ′(x)这两个函数的所有极值之和不小于﹣,所以 b﹣+﹣+2= ﹣≥﹣,因为 a>3,所以 2a3﹣63a﹣54≤0,所以 2a(a2﹣36)+9( a﹣6)≤ 0,所以( a﹣6)( 2a2+12a+9)≤ 0,由于 a>3 时 2a2+12a+9>0,所以 a﹣6≤0,解得 a≤6,所以 a 的取值范围是( 3,6] .【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.。
真题推荐江苏省高考数学 真题分类汇编 三角函数

三、三角函数(一)填空题1、(2008江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 【解析】本小题考查三角函数的周期公式.2105T ππωω==⇒=2、(2009江苏卷4)函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= . 【解析】 考查三角函数的周期知识。
32T π=,23T π=,所以3ω=3、(2010江苏卷10)定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为____________。
【解析】考查三角函数的图象、数形结合思想。
线段P 1P 2的长即为sinx 的值, 且其中的x 满足6cosx=5tanx ,解得sinx=23。
线段P 1P 2的长为234、(2010江苏卷13)在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,6cos baC ab+=,则tan tan tan tan C CA B+=_________。
【解析】考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。
一题多解。
(方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性。
当A=B 或a=b 时满足题意,此时有:1cos 3C =,21cos 1tan 21cos 2C C C -==+,2tan 2C =, 1tan tan 2tan 2A B C===,tan tan tan tan C CA B+= 4。
(方法二)226cos 6cos b a C ab C a b a b +=⇒=+,2222222236,22a b c c ab a b a b ab +-⋅=++=2tan tan sin cos sin sin cos sin sin()1sin tan tan cos sin sin cos sin sin cos sin sin C C C B A B A C A B CA B C A B C A B C A B+++=⋅=⋅=⋅5、(2011江苏卷7)已知,2)4tan(=+πx 则xx2tan tan 的值为__________.解析】221tan 1tan tan 1tan 4tan()2,tan ,2tan 41tan 3tan 2291tan x x x x x x x x x xπ++==∴=∴=-(-)==-. 本题主要考查三角函数的概念,同角三角函数的基本关系式,正弦余弦函数的诱导公式,两角和与差的正弦余弦正切,二倍角的正弦余弦正切及其运用,中档题.6、(2011江苏卷9)函数()sin(),(,,f x A x A ωϕωϕ=+是常数,0,0)A ω>>的部分图象如图所示,则____)0(=f 【解析】由图可知:72,,2,41234T A πππω==-== 7322,2,1223k k πππϕπϕπ⨯+=+=+ 6(0)2sin(2)3f k ππ=+= 由图知:6(0)f =本题主要考查正弦余弦正切函数的图像与性质,sin()y A x ωϕ=+的图像与性质以及诱导公式,数形结合思想,中档题. 7(2013江苏卷1)函数)42sin(3π+=x y 的最小正周期为 。
江苏省各地市高考数学 最新联考试题分类汇编(5) 三角函数

一、填空题:7.(江苏省苏锡常镇四市2013年3月高三教学情况调研—)已知01cos(75)3α+=,则0cos(302)α-的值为 ▲ .【答案】7911. (江苏省南通市2013届高三第二次调研) 设()αβ∈0π,,,且5sin()13αβ+=, 1tan 22α=.则cos β的值为 ▲ .【答案】1665- 7. (江苏省无锡市2013年2月高三质量检测)函数f (x )=sinx +sin (x -p3)的单调递增区间为 ▲ .【答案】[2k -p 3,2k +2p3],k ∈Z1、(常州市2013届高三期末)函数(1)()cos cos22x x f x -=的最小正周期为 ▲ . 答案:22、(连云港市2013届高三期末)如果函数y =3sin(2x +ϕ)(0<ϕ<π)的图象关于点(π3,0)中心对称,则ϕ= ▲ .答案:π3;5、(苏州市2013届高三期末)(苏州市2013届高三期末)已知θ为锐角,4sin(15)5θ+=,则cos(215)θ-= .6、(无锡市2013届高三期末)在△ABC 中,∠A=45o,∠C=105o,BC=2,则AC 的长度为 . 答案:17、(扬州市2013届高三期末)在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,且5,3,sin 2sin a b C A ===,则sin A = ▲ .58、(镇江市2013届高三期末)5. 已知0ω>,函数3sin()4y x πωπ=+的周期比振幅小1,则ω= ▲ .答案:19、(镇江市2013届高三期末) 在△ABC 中,sin :sin :sin 2:3:4A B C =,则cos C = ▲ .41-10、(南京市、盐城市2013届高三期末)在ABC ∆中, 若9cos 24cos 25A B -=, 则BCAC的值为 ▲ .2311、(南京市、盐城市2013届高三期末)若x ,y 满足22221log [4cos ()]ln ln 4cos ()22y e xy y xy +=-+, 则cos 4y x 的值为 ▲ . 答案:-1二、解答题:⒖(江苏省盐城市2013年3月高三第二次模拟)(本小题满分14分)已知函数(Ⅱ)因为46x ππ-≤≤,所以22633x πππ-≤+≤……………………………………9分 所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,所以()12f x -≤≤,当2,36x ππ+=-即4x π=-时,()min 1f x =-,当2,32x ππ+=即12x π=时,()min 2f x =,………………………………………14分⒘(江苏省盐城市2013年3月高三第二次模拟)(本小题满分14分)如图,在海岸线l 一侧C 处有一个美丽的小岛,某旅游公司为方便游客,在l 上设立了A 、B 两个报名点,满足A 、B 、C 中任意两点间的距离为10千米。
2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
2010~2018江苏高考三角函数汇编(文)

2010~2018高考三角函数汇编1、考纲要求:三角函数的概念B同角的三角函数的基本关系式B正弦函数、余弦函数的诱导公式B三角函数图像与性质B函数y=Asin(ωx+φ)的图像与性质A 两角和与差的正弦、余弦及正切C二倍角的正弦、余弦及正切B正弦定理、余弦定理及应用B2、高考解读:高考中,对三角计算题的考查始终围绕着求角、求值问题,以和、差角公式的运用为主,可见三角式的恒等变换比三角函数的图象与性质更为重要.三角变换的基本解题规律是:寻找联系、消除差异.常有角变换、函数名称变换、次数变换等简称为:变角、变名、变次.备考中要注意积累各种变换的方法与技巧,不断提高分析与解决问题的能力.三角考题的花样翻新在于条件变化,大致有三类:第一类是给出三角式值见2014年三角解答题,第二类是给出在三角形中见2011年、2015年、2016年三角解答题,第三类是给出向量见2013年、2017年三角解答题.而2012年三角解答题则是二、三类的混合.通常一大一小也会出现两小一大情况,还有可能出现应用题,主要考察三角公式、三角函数的图像与性质、解三角形知识,一般都是容易题或中档题。
一、三角公式★7.(5分)(2011•江苏)已知,则的值为.★★11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.★8.(5分)★5.(5分)(2017•江苏)若tan(α﹣)=.则tanα=.★★★15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.★★★15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.★★★16.(14分)(2018•江苏)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.二、三角函数图像与性质★★★10.(5分)(2010•江苏)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx 的图象交于点P2,则线段P1P2的长为.★★9.(5分)(2011•江苏)函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.★1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为.★5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.★★★9.(5分)(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.★★7.(5分)(2018•江苏)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.★★★16.(14分)(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.三、解三角形★★★13.(5分)(2010•江苏)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若+=6cosC,则+的值是.★★★★14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.★★★★14.(5分)(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.★★★13.(5分)(2018•江苏)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.★★★15.(14分)(2011•江苏)在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.★★★15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.★★★15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.★★★15.(14分)(2016•江苏)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.★★★17.(14分)(2010•江苏)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α﹣β最大?★★★18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C 处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?★★★17.(14分)(2018•江苏)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.。
江苏高考分类汇编02三角函数、解三角形、平面向量学生版

专题二 三角函数、解三角形、平面向量第1讲 三角函数高考考试说明:三角函数的概念(B 级);同角三角函数的基本关系式(B 级);正弦函数、余弦函数的诱导公式(B 级);函数y =A sin (ωx +φ)的图像与性质(A 级);正弦、余弦、正切的图像与性质(B 级),两角和(差)的正弦、余弦及正切(C 级);二倍角的正弦、余弦及正切(B 级). 一、填空题:1.(2008.江苏.1)若函数y =cos (ωx -π6)(ω>0)最小正周期为π5,则ω= .2.(2009.江苏.4)函数y = y =A sin (ωx +φ)(A ,ω,φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω= .3.(2010.江苏.10)定义在区间(0,π2)上的函数y =6cos x 的图像与y =5tan x 的图像的交点为P ,过点P作PP 1⊥x 轴于点P 1,直线PP 1与y =sin x 的图像交于点P 2,则线段P 1P 2的长为 .4.(2011.江苏.7)已知tan (x +π4)=2,则tan xtan 2x 的值为 .5.(2011.江苏.9)函数f (x )=A sin (ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值为 .6.(2012.江苏.11)设α为锐角,若cos (α+π6)=45,则sin (2α+π12)的值为 .7.(2013.江苏.1)函数y =3sin (2x +π4)的最小正周期为 .8.(2014江苏5)已知函数y =cos x 与y =sin (2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是 .9.(2015.江苏.8)已知tan α=-2,tan (α+β)=17,则tan β的值为_______.10.(2015.江苏.14)设向量a k =(cos k π6,sin k π6+cos k π6)(k =0,1,2,...,12),则11k =∑(a k →˙a k +1→)的值为 .11.(2016.江苏.9)定义在区间 [0,3π] 上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是______.12.(2017.江苏.5)若tan (α-π4)=16,则 tan α= .13.(2018.江苏.7)已知函数f (x )=sin (2x +φ)(-π2<φ<π2)的图象关于直线x =π3对称,则φ的值是 .二、解答题:1.(2008.江苏.15)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别交单位圆于A ,B 两点.已知A ,B 两点的横坐标分别是210,255. (1)求tan (α+β)的值; (2)求α+2β的值.2.(2010.江苏.17)某兴趣小组测量电视塔AE 的高度H (单位:m ),如示意图,垂直放置的标杆BC 高度h =4m ,仰角∠ABE =α,∠ADE =β.(1)该小组已经测得一组α,β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,α-β最大.3.(2014.江苏.15)已知α∈(π2,π),sin α=55.(1)求sin (π4+α)的值;(2)求cos (5π6-2α)的值.4.(2017.江苏.16)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π] . (1)若a ∥b ,求x 的值;(2)记f (x )=a ∙b ,求f (x )的最大值和最小值以及对应的x 的值.5.(2018.江苏.16)已知α,β为锐角,tan α=43,cos (α+β)=-55.(1)求cos2α的值; (2)求tan (α-β)的值.6.(2018.江苏.17)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ 内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.第2讲 解三角形高考考试说明:正弦定理、余弦定理及其应用(B 级) 一、填空题:1.(2008.江苏.13)满足条件AB =2,AC =2BC 的三角形ABC 的面积的最大值是 .2.(2010.江苏.13)在锐角三角形ABC 中,A 、B 、C 的对边分别为a 、b 、c ,b a +a b =6cos C ,则 tan C tan A +tan Ctan B = .3.(2014.江苏.14)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是 .4.(2016.江苏.14)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.5.(江苏.2018.13)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 与点D ,且BD =1,则4a +c 的最小值为 .二、解答题:1.(2011.江苏.15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若sin (A +π6)=2cos A ,求A 的值;(2)若cos A =13,b =3c ,求sin C 的值.2.(2012.江苏.15)在△ABC 中,已知AB →·AC →=3BA →·BC →. (1)求证:tan B =3tan A ; (2)若cos C =55,求A 的值.3.(2013.江苏.18)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再以匀速步行到C .假设缆车匀速直线运动的速度为130m /min ,山路AC 长为1260m ,经测量,cos A =1213,cos C =35. (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?4.(2015.江苏.15)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin2C 的值.5.(2016.江苏.15)在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)cos (A -π6)的值.第3讲 平面向量高考考试说明:平面向量的概念(B 级),平面向量的加法、减法及数乘运算(B 级),平面向量的坐标表示(B 级),平面向量的概平行与垂直(B 级),平面向量的数量积(C 级),平面向量的应用(A 级) 一、填空题:1.(2008.江苏.5)已知向量a 和b 的夹角为120°,|a |=1,|b |=3,则 |5a -b |= .2.(2009.江苏.2)已知向量a 和向量b 的夹角为30°,|a |=2,|b |=3,则向量a 和向量b 的数量积a·b = .3.(2011.江苏.10)已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2,若a·b =0,则实数k 的值为 .4.(2012.江苏.9)如图,在矩形ABCD 中,AB,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则 AE →·BF → 的值是 .第4题5.(2013.江苏.10)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为 .6.(2014.江苏.12)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是 .7.(2015.江苏.6)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n R ),m -n 的的值为______.P(第6题)8.(2015.江苏.14.)(见第1讲第10题)设向量a k =(cos k π6,sin k π6+cos k π6)(k =0,1,2,...,12),则11k =∑(a k →˙a k +1→)的值为 .9.(2016.江苏.13)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.第9题 第10题10.(2017.江苏. 12)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),则m +n = .11.(2017.江苏.13)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若P A →·PB →≤20,则点P 的横坐标的取值范围是 .12.(江苏.2018.12)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为 . 二、解答题:1.(2009.江苏.15)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,4sin β-). (1)若a 与b -2c 垂直,求tan()αβ+的值; (2)求 |b +c | 的最大值;(3)若tan tan 16αβ=,求证:a ∥b .2.(2010.江苏.15)在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;(2)设实数t 满足(AB →-t OC →)·OC →=0,求t 的值.3.(2012.江苏.15)在△ABC 中,已知AB →·AC →=3BA →·BC →.(1)求证:tan B =3tan A ;(2)若cos C =55,求A 的值.A4.(2013.江苏.15)已知向量a=(cos α,sin α),b=(cos β,sin β),0<β<α<π.(1)若| a-b | =2,求证:a⊥b;(2)设c=(0,1),若a+b=c,求α,β的值.5.(2017.江苏.16)已知向量a=(cos x,sin x),b=(3,-3),x∈[0,π].(1)若a∥b,求x的值;(2)记f(x)=a∙b,求f(x)的最大值和最小值以及对应的x的值.。
江苏省泰州市高考数学真题分类汇编专题15:三角函数(综合题)

江苏省泰州市高考数学真题分类汇编专题 15:三角函数(综合题)姓名:________班级:________成绩:________一、 三角函数 (共 7 题;共 50 分)1. (10 分) (2019 高二上·蛟河期中) 在△ .中,角 , , 的对边分别为 , , ,且(1) 求角 的大小;(2) 若,△的面积是,求三角形边 , 的长.由,得,∴,2. (5 分) (2017 高二下·正定期末) 在,,.中,角 , , 所对的边分别为 , , ,若(1) 求 的值;(2) 求的面积.3. (5 分) (2016 高一下·河源期中) 已知函数 f(x)=2sinxcosx﹣2cos2x.(Ⅰ)求 f( ) ; (Ⅱ)求 f(x)的最大值和单调递增区间.4. (5 分) (2017 高一下·庐江期末) △ABC 的内角 A,B,C 的对边分别为 a,b,c,已知△ABC 的面积为.(1) 求 sinBsinC;(2) 若 6cosBcosC=1,a=3,求△ABC 的周长.5. (10 分) (2019 高三上·平遥月考) 已知向量(1) 若,求角 的大小;(2) 若,求的值.第1页共5页,其中.6. (5 分) 已知 α,β∈( , π),sin(α+β)=﹣ , sin(β﹣ )= .(1)求 cos(β+ )的值;(2)求 cos(α+ )的值; (3)求 cos(α﹣β)的值. 7. (10 分) (2018 高一下·桂林期中) 已知,求(1) (2)第2页共5页一、 三角函数 (共 7 题;共 50 分)参考答案1-1、1-2、2-1、 2-2、3-1、第3页共5页4-1、4-2、5-1、5-2、第4页共5页6-1、 7-1、 7-2、第5页共5页。
江苏省12市高三数学 分类汇编 三角函数

江苏省12市2015届高三上学期期末考试数学试题分类汇编三角函数一、填空题1、(常州市2015届高三)函数()cos sin 222x x x f x ⎛⎫= ⎪⎝⎭的最小正周期为 ▲ 2、(连云港、徐州、淮安、宿迁四市2015届高三)将函数π2sin()(0)4y x ωω=->的图象分别向左、向右各平移π4个单位长度后,所得的两个图象对称轴重合,则ω的最小值为 ▲3、(南京市、盐城市2015届高三)若函数()sin()(0)6f x x πωω=+>图象的两条相邻的对称轴之间的距离为2π,且该函数图象关于点0(,0)x 成中心对称,0[0,]2x π∈,则0x =▲ .4、(南通市2015届高三)已知函数()sin 26f x x π⎛⎫=+ ⎪⎝⎭.若()(0)2y f x πϕϕ=-<<是偶函数,则ϕ=5、(苏州市2015届高三上期末)已知函数()sin()5f x kx π=+的最小正周期是3π,则正数k的值为6、(泰州市2015届高三上期末)函数()sin(3)6f x x π=+ 的最小正周期为 ▲ 7、(无锡市2015届高三上期末)已知角a 的终边经过点(),6P x -,且3tan 5a =-,则x 的值为8、(扬州市2015届高三上期末)已知4(0,),cos 5απα∈=-,则tan()4πα+=____9、(泰州市2015届高三上期末)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若B C ∠=∠且2227a b c ++=,则ABC ∆面积的最大值为 ▲10、(无锡市2015届高三上期末)将函数()cos sin y x x x =+?¡的图像向左平移个()0m m >单位长度后,所得的图像关于y 轴对称,则m 的最小值是二、解答题1、(常州市2015届高三)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知b c =,3A C p +=.(1)求cos C 的值;(2)求sin B 的值;(3)若b =,求△ABC 的面积.2、(南京市、盐城市2015届高三)在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点11(,)P x y ,将射线OP 绕坐标原点Oπ后与单位圆交于点22(,)Q x y . 记12()f y y α=+.(1)求函数()f α的值域;(2)设ABC ∆的角,,A B C 所对的边分别为,,a b c , 若()f C =a =1c =,求b .3、(南通市2015届高三)在∆ABC 中,角,,A B C 的对边分别为,,.a b c 已知cos cos 2cos .b C c B a A +=()1求角A 的大小; ()2若AB AC ⋅=u u u r u u u r,求∆ABC 的面积.4、(泰州市2015届高三上期末)在平面直角坐标系xOy 中,角α的终边经过点(3,4)P .第15题图(1)求sin() 4πα+的值;(2)若P关于x轴的对称点为Q,求OP OQ⋅u u u r u u u r的值.5、(扬州市2015届高三上期末)已知函数()sin()(0,0,0)2f x A x Aπωϕωϕ=+>><<部分图象如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历届江苏高考试题汇编(三角函数1)(2010江苏高考第10题) 10、定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_______▲_____。
(2010江苏高考第13题)13、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,6cos b a C ab+=,则tan tan tan tan C C AB+=____▲_____。
(2010江苏高考第17题) 17、(本小题满分14分)某兴趣小组测量电视塔AE 的高度H(单位:m ),如示意图,垂直放置的标杆BC 的高度h=4m ,仰角∠ABE=α,∠ADE=β。
(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精确度。
若电视塔的实际高度为125m ,试问d 为多少时,α-β最大? (2011江苏高考第7题) 7、已知,2)4tan(=+πx 则xx2tan tan 的值为__________ (2011江苏高考第8题)8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________ (2011江苏高考第15题)15、(本小题满分14分)在△ABC 中,角A 、B 、C 所对应的边为c b a ,,(1)若,cos 2)6sin(A A =+π求A 的值;(2)若c b A 3,31cos ==,求C sin 的值.(2012江苏高考第11题)11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(πα+的值为▲. (2012江苏高考第15题) 15.(本小题满分14分) 在ABC ∆中,已知3AB AC BA BC =u u u r u u u r u u u r u u u rg g . (1)求证:tan 3tan B A =; (2)若5cos C =,求A 的值.(2013江苏高考第1题)1.(5分)(2013?江苏)函数y=3sin (2x+)的最小正周期为 .(2013江苏高考第15题)15.(14分)(2013?江苏)已知=(cos α,sin α),=(cos β,sin β),0<β<α<π. (1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值. (2012江苏高考第18题)9第题图18.(16分)(2013?江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量,cosA=,cosC=(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【答案】(2010江苏高考第10题) 10、定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_______▲_____。
[解析]考查三角函数的图象、数形结合思想。
线段P 1P 2的长即为sinx 的值,且其中的x 满足6cosx=5tanx ,解得sinx=23。
线段P 1P 2的长为23(2010江苏高考第13题)13、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,6cos b aC ab+=,则tan tan tan tan C C AB+=____▲_____。
[解析]考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。
一题多解。
(方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性。
当A=B 或a=b 时满足题意,此时有:1cos 3C =,21cos 1tan 21cos 2C C C-==+,2tan2C =,1tan tan 2tan 2A B C===,tan tan tan tan C CA B+=4。
(方法二)226cos 6cos b aC ab C a b a b+=⇒=+,2222222236,22a b c c ab a b a b ab +-⋅=++=2tan tan sin cos sin sin cos sin sin()1sin tan tan cos sin sin cos sin sin cos sin sin C C C B A B A C A B C A B C A B C A B C A B+++=⋅=⋅=⋅由正弦定理,得:上式=22222214113cos ()662c c c c C ab a b =⋅===+⋅ (2010江苏高考第17题) 17、(本小题满分14分)某兴趣小组测量电视塔AE 的高度H(单位:m ),如示意图,垂直放置的标杆BC 的高度h=4m ,仰角∠ABE=α,∠ADE=β。
(3)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(4)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精确度。
若电视塔的实际高度为125m ,试问d 为多少时,α-β最大?[解析]本题主要考查解三角形的知识、两角差的正切及不等式的应用。
(1)tan tan H H AD AD ββ=⇒=,同理:tan HAB α=,tan h BD β=。
AD—AB=DB ,故得tan tan tan H H h βαβ-=,解得:tan 4 1.24124tan tan 1.24 1.20h H αβα⨯===--。
因此,算出的电视塔的高度H 是124m 。
(2)由题设知d AB =,得tan ,tan H H h H hdAD DB dαβ-====,()H H h d d-+≥(当且仅当d =取等号)故当d =tan()αβ-最大。
因为02πβα<<<,则02παβ<-<,所以当d =α-β最大。
故所求的d是。
(2011江苏高考第7题) 7、已知,2)4tan(=+πx 则xx2tan tan 的值为__________ 解析:22tan()11tan tan 1tan 44tan tan(),2tan 443tan 229tan()141tan x x x x x x x x x xππππ+-+-===++(-)===-(2011江苏高考第8题)8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________ 解析:由图可知:72,,2,41234T A πππω==-==22,,33k k πϕπϕππ⨯+==- (2011江苏高考第15题)15、(本小题满分14分)在△ABC 中,角A 、B 、C 所对应的边为c b a ,,(1)若,cos 2)6sin(A A =+π求A 的值;(2)若c b A 3,31cos ==,求C sin 的值.解析:(1)sin()2cos ,sin 3cos ,63A A A A A ππ+=∴=∴=Q(2)22221cos ,3,2cos 8,223A b c a b c bc A c a c ==∴=+-==Q由正弦定理得:22sin sin c cA C=,而222sin 1cos ,3A A =-=1sin 3C ∴=。
(也可以先推出直角三角形) (2012江苏高考第11题)11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(πα+的值为▲. 【答案】50217【解析】根据4cos 65απ⎛⎫+= ⎪⎝⎭,2571251621)6(cos 2)32cos(2=-⨯=-+=+παπα, 因为0)32cos(φπα+,所以25242571)32sin(2=⎪⎭⎫⎝⎛-=+πα,因为9第题图502174sin)32cos(4cos)32sin(]4)32sin[()122sin(=+-+=-+=+ππαππαππαπα. 【点评】本题重点考查两角和与差的三角公式、角的灵活拆分、二倍角公式的运用.在求解三角函数值时,要注意角的取值情况,切勿出现增根情况.本题属于中档题,运算量较大,难度稍高. (2012江苏高考第15题) 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =u u u r u u u r u u u r u u u rg g .(1)求证:tan 3tan B A =;(2)若cos 5C =求A 的值.【答案及解析】【点评】本题主要考查向量的数量积的定义与数量积运算、两角和与差的三角公式、三角恒等变形以及向量共线成立的条件.本题综合性较强,转化思想在解题中灵活运用,注意两角和与差的三角公式的运用,考查分析问题和解决问题的能力,从今年的高考命题趋势看,几乎年年都命制该类型的试题,因此平时练习时加强该题型的训练.本题属于中档题,难度适中. (2013江苏高考第1题)1.(5分)(2013?江苏)函数y=3sin (2x+)的最小正周期为 π .考点: 三角函数的周期性及其求法. 专题: 计算题;三角函数的图像与性质.分析:将题中的函数表达式与函数y=Asin (ωx+φ)进行对照,可得ω=2,由此结合三角函数的周期公式加以计算,即可得到函数的最小正周期.解答:解:∵函数表达式为y=3sin(2x+),∴ω=2,可得最小正周期T=||=||=π故答案为:π(2013江苏高考第15题)15.(14分)(2013?江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.考点:平面向量数量积的运算;向量的模;同角三角函数间的基本关系;两角和与差的余弦函数;两角和与差的正弦函数.专题:平面向量及应用.分析:(1)由给出的向量的坐标,求出的坐标,由模等于列式得到cosαcosβ+sinαsinβ=0,由此得到结论;(2)由向量坐标的加法运算求出+,由+=(0,1)列式整理得到,结合给出的角的范围即可求得α,β的值.解答:解:(1)由=(cosα,sinα),=(cosβ,sinβ),则=(cosα﹣cosβ,sinα﹣sinβ),由=2﹣2(cosαcosβ+sinαsinβ)=2,得cosαcosβ+sinαsinβ=0.所以.即;(2)由得,①2+②2得:.因为0<β<α<π,所以0<α﹣β<π.所以,,代入②得:.因为.所以.所以,.点评:本题考查了平面向量的数量积运算,考查了向量的模,考查了同角三角函数的基本关系式和两角和与差的三角函数,解答的关键是注意角的范围,是基础的运算题.(2012江苏高考第18题)18.(16分)(2013?江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?考点:余弦定理.专题:解三角形.分析:(1)作出相应的图形,根据cosC的值,求出tanC的值,设出BD表示出DC,由cosA的值,求出tanA的值,由BD表示出AD,进而表示出AB,由CD+AD=AC,列出关于k的方程,求出方程的解得到k的值,即可确定出AB的长;(2)设乙出发xmin后到达点M,此时甲到达N点,如图所示,表示出AM与AN,在三角形AMN中,由余弦定理列出关系式,将表示出的AM,AN及cosA的值代入表示出MN2,利用二次函数的性质即可求出MN取最小值时x的值;(3)由(1)得到BC的长,由AC的长及甲的速度求出甲到达C的时间,分两种情况考虑:若甲等乙3分钟,此时乙速度最小,求出此时的速度;若乙等甲3分钟,此时乙速度最大,求出此时的速度,即可确定出乙步行速度的范围.解答:解:(1)∵cosA=,cosC=,∴tanA=,tanC=,如图作BD⊥CA于点D,设BD=20k,则DC=15k,AD=48k,AB=52k,由AC=63k=1260m,解得:k=20,则AB=52k=1040m;(2)设乙出发xmin后到达点M,此时甲到达N点,如图所示,则AM=130xm,AN=50(x+2)m,由余弦定理得:MN2=AM2+AN2﹣2AM?ANcosA=7400x2﹣14000x+10000,其中0≤x≤10,当x=min时,MN最小,此时乙在缆车上与甲的距离最短;(3)由(1)知:BC=500m,甲到C用时为1260÷50=(min),若甲等乙3分钟,则乙到C用时为+3=(min),在BC上同时为(min),此时乙的速度最小,且为500÷=≈29.07(m/min);若乙等甲3分钟,则乙到C用时为﹣3=(min),在BC上用时为(min),此时乙的速度最大,且为500÷=≈35.21(m/min),则乙步行的速度控制在[29.07,35.21]范围内.点评:此题考查了余弦定理,锐角三角函数定义,以及勾股定理,利用了分类讨论及数形结合的思想,属于解直角三角形题型.。