2014高考数学三轮冲刺 基本初等函数课时提升训练(1)
高考数学三轮冲刺 基本初等函数课时提升训练(3)(1)

2014高考数学三轮冲刺基本初等函数课时提升训练(3)2、已知函数f(x)=log a(1﹣x)+log a(x+3),其中0<a<1,记函数f(x)的定义域为D.(1)求函数f(x)的定义域D;(2)若函数f(x)的最小值为﹣4,求a的值;(3)若对于D内的任意实数x,不等式﹣x2+2mx﹣m2+2m<1恒成立,求实数m的取值范围.5、设,,Q=;若将,lgQ,lgP适当排序后可构成公差为1的等差数列的前三项.(1)试比较M、P、Q的大小; (2)求的值及的通项;(3)记函数的图象在轴上截得的线段长为,设,求,并证明.6、已知真命题:“函数的图像关于点成中心对称图形”的充要条件为“函数是奇函数”.(1)将函数的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数图像对称中心的坐标;(2)求函数图像对称中心的坐标;7、设集合A为函数y =ln(-x2-2x+8)的定义域,集合B为函数y=x+的值域,集合C为不等式(ax-)(x +4)≤0的解集. (1) 求A∩B; (2) 若,求a的取值范围.8、已知函数(a、b是常数且a>0,a≠1)在区间[-,0]上有y max=3,y min=,试求a和b的值.10、已知函数是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).(1)求实数m的值,并写出区间D;(2)若底数a>1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.11、设函数(x∈[﹣π,π])的最大值为M,最小值为m,则M+m= .14、用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用一个单位的水可洗掉蔬菜上残留农药的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数.⑴试规定的值,并解释其实际意义;⑵试根据假定写出函数应满足的条件和具有的性质;⑶设,现有单位量的水,可以清洗一次,也可以把水平均分成两份后清洗两次.试问用那种方案清洗后蔬菜上残留的农药量比较少?说明理由.17、函数的反函数________________.19、设a=log32,b=ln2,c=,则a,b,c的大小关系为.20、函数f(x)=log5(2x+1)的单调增区间是.23、27、已知函数f(x)=x﹣4+,x∈(0,4),当x=a时,f(x)取得最小值b,则在直角坐标系中函数g(x)=的图象为()28、设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0)时,f(x)=﹣1,若在区间(﹣2,6)内的关于x的方程f(x)﹣log a(x+2)=0(a>0且a≠1)恰有4个不同的实数根,则实数a的取值范围是(),31、对于a>0,a≠1,下列说法中正确的是 ( )①若M=N,则log a M=log a N;②若log a M=log a N,则M=N;③若log a M 2=log a N 2,则M=N;④若M=N,则log a M 2=log a N 2.A.①②③④ B.①③ C.②④ D.②32、已知,则的大小关系是()A. B. C. D.33、函数的图象必经过点()A. (0,1)B. (1,1)C. (2,0)D. (2,2)34、设函数f(x)=lg(x2+ax﹣a﹣1),给出下述命题:①函数f(x)的值域为R;②函数f(x)有最小值;③当a=0时,函数f(x)为偶函数;④若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围a≥﹣4.正确的命题是()36、设p:f(x)=lnx+2x2+mx+1在(0,+∞)内单调递增,q:m≥﹣5,则p是q的()37、给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是()39、下列不等式对任意的恒成立的是()A. B. C. D.40、已知偶函数f(x)=log4(4x+1)+kx(k∈R),(Ⅰ)求k的值;(Ⅱ)设,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.2、解:(1)要使函数有意义:则有,解得﹣3<x<1∴函数的定义域D为(﹣3,1)…(2分)(2)f(x)=log a(1﹣x)+log a(x+3)=log a(1﹣x)•(x+3)=log a[﹣(x+1)2+4],∵x∈(﹣3,1)∴0<﹣(x+1)2+4≤4∵0<a<1∴log a[﹣(x+1)2+4]≥log a4,f(x)的最小值为log a4,∴log a4=﹣4,即a=(3)由题知﹣x2+2mx﹣m2+2m<1在x∈(﹣3,1)上恒成立,⇔x2﹣2mx+m2﹣2m+1>0在x∈(﹣3,1)上恒成立,…(8分)令g(x)=x2﹣2mx+m2﹣2m+1,x∈(﹣3,1),配方得g(x)=(x﹣m)2﹣2m+1,其对称轴为x=m,①当m≤﹣3时,g(x)在(﹣3,1)为增函数,∴g(﹣3)=(﹣3﹣m)2﹣2m+1=m2+4m+10≥0,而m2+4m+10≥0对任意实数m恒成立,∴m≤﹣3.…(10分)②当﹣3<m<1时,函数g(x)在(﹣3,﹣1)为减函数,在(﹣1,1)为增函数,∴g(m)=﹣2m+1>0,解得m<.∴﹣3<m<…(12分)③当m≥1时,函数g(x)在(﹣3,1)为减函数,∴g(1)=(1﹣m)2﹣2m+1=m2﹣4m+2≥0,解得m≥或m≤,∴﹣3<m<…(14分)综上可得,实数m的取值范围是(﹣∞,)∪[,+∞)…(15分)点评:本题考查的知识点是函数恒成立问题,函数的定义域及求法,函数的最值,熟练掌握二次函数的图象和性质是解答的关键.5、解析:(1)由……1分得……2分3分…4分,又当时,,当时,即,则 5分当时,,则当时,,则……6分(2)当时,即解得,从而…7分当时,即 , 无解. …8分(3)设与轴交点为,当=0时有…9分又,……10分…11分…14分6、(1)平移后图像对应的函数解析式为, 整理得,由于函数是奇函数, 由题设真命题知,函数图像对称中心的坐标是.(2)设的对称中心为,由题设知函数是奇函数.设则,即.由不等式的解集关于原点对称,得. 此时.任取,由,得, 所以函数图像对称中心的坐标是. 7、解:(1)由-x2-2x+8>0,解得A=(-4,2),又y=x+=(x+1)+-1,所以B=(-∞,-3]∪ [1,+∞).所以A∩B=(-4,-3]∪[1,2).(2)因为∁R A=(-∞,-4]∪[2,+∞).由(x+4)≤0,知a ≠0.①当a>0时,由(x+4)≤0,得C=,不满足C⊆∁R A;②当a<0时,由(x+4)≥0,得C=(-∞,-4)∪,欲使C⊆∁R A,则≥2,解得-≤a<0或0<a≤.又a<0,所以-≤a<0.综上所述,所求a的取值范围是.8、解:令u=x2+2x=(x+1)2-1 x∈[-,0] ∴当x=-1时,u min=-1 当x=0时,u max=010、解(1)∵y=f(x)是奇函数,∴对任意x∈D,有f(x)+f(﹣x)=0,即.(2分)化简此式,得(m2﹣1)x2﹣(2m﹣1)2+1=0.又此方程有无穷多解(D是区间),必有,解得m=1.(4分)∴.(5分)(2)当a>1时,函数上是单调减函数.理由:令.易知1+x在D=(﹣1,1)上是随x增大而增大,在D=(﹣1,1)上是随x增大而减小,(6分)故在D=(﹣1,1)上是随x增大而减小.(8分)于是,当a>1时,函数上是单调减函数.(10分)(3)∵A=[a,b)⊆D,∴0<a<1,a<b≤1.(11分)∴依据(2)的道理,当0<a<1时,函数上是增函数,(12分)即,解得.(14分)若b<1,则f(x)在A上的函数值组成的集合为,不满足函数值组成的集合是[1,+∞)的要求.(也可利用函数的变化趋势分析,得出b=1)∴必有b=1.(16分)因此,所求实数a、b的值是.11、解:==2+令g(x)=(x∈[﹣π,π]),则g(﹣x)=﹣g(x),∴函数g(x)是奇函数∴g(x)max+g (x)min=0∴M+m=4+g(x)max+g(x)min=4故答案为:414、 15、16、解:由题知:log2(x﹣1)≠0,且x﹣1>0,解得x>1且x≠2,又因为|x﹣2|﹣1≥0,解得:x≥3或x ≤1,所以x≥3.故答案为:{x|x≥3}.17、 18、19、解:∵a=log32=<ln2b=In2<lne=1且b=In2>ln=c==<∴c<a<b20、解:要使函数的解析有有意义则2x+1>0故函数的定义域为(﹣,+∞)由于内函数u=2x+1为增函数,外函数y=log5u也为增函数故函数f(x)=log5(2x+1)在区间(﹣,+∞)单调递增故函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞)故答案为:(﹣,+∞)22、.-18 23、 26、B27、解:∵x∈(0,4),∴x+1>1∴f(x)=x﹣4+=x+1+=1当且仅当x+1=即x=2时取等号,此时函数有最小值1∴a=2,b=1,此时g(x)==,此函数可以看着函数y=的图象向左平移1个单位结合指数函数的图象及选项可知B正确28、解:∵当x∈[﹣2,0)时,f(x)=﹣1,∴当x∈(0,2]时,﹣x∈[﹣2,0),∴f(﹣x)=﹣1=﹣1,又f(x)是定义在R上的偶函数,∴f(x)=﹣1(0<x≤2),又f(2+x)=f(2﹣x),∴f(x)的图象关于直线x=2对称,且f(4+x)=f(﹣x)=f(x),∴f (x)是以4为周期的函数,∵在区间(﹣2,6)内的关于x的方程f(x)﹣log a(x+2)=0(a>0且a≠1)恰有4个不同的实数根,令h(x)=log a(x+2),即f(x)=h(x)=log a(x+2)在区间(﹣2,6)内有有4个交点,在同一直角坐标系中作出f(x)与h(x)=log a(x+2)在区间(﹣2,6)内的图象,∴0<log a(6+2)<1,∴a>8.故选D.30、B 31、D 32、C 33、D34、解:∵u=x2+ax﹣a﹣1的最小值为﹣(a2+4a+4)≤0∴①函数f(x)的值域为R为真命题;但函数f(x)无最小值,故②错误;当a=0时,易得f(﹣x)=f(x),即③函数f(x)为偶函数正确;若f(x)在区间[2,+∞)上单调递增,则解得a>﹣3,故④错误;故选A36、解:若f(x)=lnx+2x2+mx+1在(0,+∞)内单调递增,则f′(x)=+4x+m≥0在(0,+∞)上恒成立即m≥﹣(+4x)在(0,+∞)上恒成立∵﹣(+4x)≤﹣2=﹣4∴m≥﹣4,∵{m|m≥﹣4}⊆{m|m≥﹣5}∴p是q的充分不必要条件故选A37、解:f(x)=3x是指数函数满足f(xy)=f(x)+f(y),排除A.f(x)=log2x是对数函数满足f(x+y)=f(x)f(y),排除Cf(x)=tanx满足,排除D.故选B38、B 39、A40、解:(Ⅰ)由f(x)=f(﹣x)得到:f(﹣1)=f(1)⇒log4(4﹣1+1)﹣k=log4(4+1)+k,∴.(Ⅱ)函数f(x)与g(x)的图象有且只有一个公共点即方程有且只有一个实根化简得:方程有且只有一个实根令t=2x>0,则方程有且只有一个正根①,不合题意;②或﹣3若,不合题意;若③若一个正根和一个负根,则,即a>1时,满足题意.所以实数a的取值范围为{a|a>1或a=﹣3}。
高考数学三轮冲刺 三角函数课时提升训练(1)

三角函数课时提升训练(1)1、A.B. C. D.2、函数是()A.周期为π的偶函数 B.周期为2π的偶函数 C.周期为π的奇函数 D.周期为2π的奇函数3、设,则有 ( )A.O>b>c B.O<b<c C.O<c<6 D.6<c<O4、已知的值为 ( )A. B. C. D.5、已知函数f(x)=asinx+acosx(a<0)的定义域为[0,π],最大值为4,则a的值为()6、将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为()A. B. C.0D.7、函数(其中A>0,|ω|<)的图象如图所示,为得到的图象,则只要将的图象( )A. 向右平移个单位长度 B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度8、的值为A. B. C.D..9、已知函数的最大值为,最小值为,最小正周期为,直线是其图像的一条对称轴,则符合条件的解析式为A .B.C. D.10、如图为函数(其中)的部分图象,其中两点之间的距离为,那么 ( )A.B.C.D. 111、若,是第三象限的角,则等于( ) A. B. C. -2 D. 2 12、设函数,其中为已知实数,,则下列各命题中错误的是…().若,则对任意实数恒成立; .若,则函数为奇函数; .若,则函数为偶函数; .当时,若,则13、已知,函数在单调递减,则的取值范围是()A. B. C. D.14、函数的部分图象如图所示,则函数表达式()A. B.C. D.15、如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①;②;③;④.其中“同簇函数”的是A.①②B.①④C.②③ D.③④16、若且则的可能取值是()A. B C. D.17、已知,且在第三象限,则的值为 A. B. C. D.18、设函数f(x)=sin(w x+)+sin(w x-)(w>0)的最小正周期为π,则A.f(x)在(0,)上单调递增 B.f(x)在(0,)上单调递减 C.f(x)在(0,)上单调递增 D.f(x)在(0,)上单调递减19、已知,,那么的值是()A. B. C. D.20、已知,,则等于()A.B.C.D.21、若直线与函数的图像不相交,则 A. B. C.或 D.或22、等于( )A. B. C. D.23、已知f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0,若f(x)≤|f()|对一切x∈R恒成立,且f()>0,则f(x)的单调递增区间是 A.[kπ-,kπ+](k∈Z) B.[k π+,kπ+](k∈Z)C.[kπ,kπ+](k∈Z) D.[kπ-,kπ](k∈Z)24、给出下列命题,其中正确的有()①存在实数,使得;②若,则是第一象限角或第四象限角;③函数是偶函数;④若是第二象限角,且是终边上异于坐标原点的一点,则.(A)1个(B)2个(C)3个(D)4个25、函数的值域是:(A) (B) (C) (D)26、设函数 (,为自然对数的底数).若曲线上存在使得,则的取值范围是( )(A) (B) (C) (D)27、已知函数y=sin在区间[0,t]上至少取得2次最大值,则正整数t的最小值是()28、已知函数,则A.函数的周期为 B.函数在区间上单调递增C.函数的图象关于直线对称 D.函数的图象关于点对称29、设函数为() A.周期函数,最小正周期为B.周期函数,最小正周期为C.周期函数,最小正周期为 D.非周期函数30、已知锐角θ的终边上有一点,则锐角θ= A.85° B.65° C.10°D.5°31、有四个关于三角函数的命题:其中真命题的是 A. B. C. D.32、对于函数,则下列说法正确的是A.该函数的值域是 B.当且仅当时,C.当且仅当时,该函数取得最大值1D.该函数是以为最小正周期的周期函数33、若(为常数)的最大值是,最小值是,则的值为()A.B.或C.D.34、的值为()A. B. C.D.35、已知点在圆上,则函数的最小正周期和最小值分别为()A.B.C.D.36、若函数,则是()A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为2的偶函数D.最小正周期为的奇函数37、函数y=的图象的一条对称轴为( ) A.B.C.D.38、设函数,对任意,若,则下列式子成立的是A. B. C. D.39、= () A.4 B.2C. D.40、已知函数的图象过点,若有4个不同的正数满足,且,则等于()A.12 B.20 C.12或20 D.无法确定1、B2、D3、C4、A5、D6、B7、B8、C9、A 10、C11、A 12、D 【解析】试题分析:由函数,可化简得:,则,,则在中,若,则,即正确; 在中,若,则函数,有是奇函数,即正确; 在中,若,则函数,有是偶函数,即正确;在中,由知不同时为,则函数的最小正周期为,若,则,即错误.13、A 14、D 15、 D 16、A17、A 18、B 19、B 20、C 21、C 22、B 23、B 24、A25、B 26、A 27、C28、C29、A 30、A 31、B 32、B【解析】由图象知,函数值域为,A错;当且仅当时,该函数取得最大值,C错;最小正周期为,D错.故选B.33、B 34、B 35、B 36、D 37、 C 38、B 39、D 40、C。
高考数学三轮冲刺:基本初等函数课时提升训练(1)(含答案)

基本初等函数(1)1、已知函数在区间上是减函数,则的最小值是______.4、已知函数的图像过点(2,1),的反函数为,则的值域为_____________. 5、若实数满足,且,则的值为 .6、如果函数在定义域的某个子区间上不存在反函数,则的取值范围是 _____.7、使不等式成立的实数a的范围是.10、定义“正对数”:,现有四个命题:①若,则②若,则③若,则④若,则其中的真命题有:(写出所有真命题的编号)12、函数的单调递增区间是13、已知函数,若,则实数的取值范围是.14、设若是与的等比中项,则的最小值为_____________.15、已知函数在实数集R 上具有下列性质:①直线是函数的一条对称轴;②;③当时,、、从大到小的顺序为_______.17、设点P 在曲线上,点Q 在曲线上,则的最小值为()A .B .C .D .21、设a=log36,b=log510,c=log714,则(A)c>b>a (B)b>c>a(C)a>c>b (D)a>b>c22、函数的图象是24、函数满足,那么函数的图象大致为()25、函数f(x)=|log3x|在区间[a,b]上的值域为[0,1],则b-a的最小值为( )A.2 B. C.D.1 26、.已知函数,(),若对,,使得,则实数,的取值范围是()A., B., C.,D.,27、对于定义域和值域均为[0,1]的函数f(x),定义,,…,,n=1,2,3,….满足的点x∈[0,1]称为f的阶周期点.设则f的阶周期点的个数是(A) 2n (B) 2(2n-1) (C) 2n (D) 2n231、定义:对函数,对给定的正整数,若在其定义域内存在实数,使得,则称函数为“性质函数”。
(1)若函数为“1性质函数”,求;(2)判断函数是否为“性质函数”?说明理由;(3)若函数为“2性质函数”,求实数的取值范围;1、2 4、【答案】【解析】因为函数的图像过点(2,1),所以,所以,所以,所以,令,则,易知函数的值域为,所以函数的值域为。
2014届高考数学(人教版)总复习提高分冲刺模拟卷2.8函数与方程

第2章 第8节 课时作业一、选择题1.设f(x)=x3+bx +c 是 [-1,1]上的增函数,且 f(-12)·f(12)<0,则方程f(x)=0在[-1,1]内( ) A .可能有3个实数根 B .可能有2个实数根 C .有唯一的实数根 D .没有实数根【解析】 由f(x)在[-1,1]上是增函数且f(-12)·f(12)<0,知f(x)在[-12,12]上有唯一实数根,所以方程f(x)=0在[-1,1]上有唯一实数根. 【答案】 C 2.(2013·烟台模拟)如图是函数f(x)=x2+ax +b 的图象,则函数g(x)=ln x +f′(x)的零点所在区间是( )A.⎝⎛⎭⎫14,12 B .(1,2) C.⎝⎛⎭⎫12,1 D . (2,3)【解析】 由f(x)的图象知0<b<1,f(1)=0,从而-2<a<-1,g(x)=ln x +2x +a ,g(x)在定义域内单调递增,g ⎝⎛⎭⎫12=ln 12+1+a<0,g(1)=2+a>0,g ⎝⎛⎭⎫12·g(1)<0,故选C. 【答案】 C3.若函数f(x)的零点与g(x)=4x +2x -2的零点之差的绝对值不超过0.25,则f(x)可以是( ) A .f(x)=4x -1 B .f(x)=(x -1)2 C .f(x)=ex -1 D .f(x)=ln(x -12) 【解析】 ∵4个选项中的零点是确定的. A :x =14,B :x =1;C :x =0;D :x =32. 又∵g(0)=40+2×0-2=-1<0, g(12)=412+2×12-2=1>0,∴g(x)=4x +2x -2的零点介于(0,12)之间.从而选A. 【答案】 A4.若函数f(x)=2ax2-x -1在(0,1)内恰有一个零点,则a 的取值范围是( ) A .(-1,1) B .[1,+∞)C .(1,+∞)D .(2,+∞)【解析】 当a =0时,函数的零点是x =-1;当a≠0时,若Δ>0,f(0)·f(1)<0,则a >1;若Δ=0,即a =-18,函数的零点是x =-2,故选C.【答案】 C 5.(2012·湖北高考)函数f(x)=xcos 2x 在区间[0,2π]上的零点个数为( ) A .2 B .3 C .4 D .5【解析】 由f(x)=xcos 2x =0,得x =0或cos 2x =0;其中,由cos 2x =0,得2x =kπ+π2(k ∈Z),故x =kπ2+π4(k ∈Z).又因为x ∈[0,2π],所以x =π4,3π4,5π4,7π4,所以零点的个数为1+4=5个.故选D. 【答案】 D6.(2012·北京高考)函数f(x)=x 12-⎝⎛⎭⎫12x 的零点个数为( )A .0B .1C . 2D .3【解析】 f(x)=x 12-⎝⎛⎭⎫12x 的零点,即令f(x)=0,根据此题可得x 12=⎝⎛⎭⎫12x ,在平面直角坐标系中分别画出幂函数y =x 12和指数函数y =⎝⎛⎭⎫12x 的图象,可得交点只有一个,所以零点只有一个,故选B.【答案】 B 二、填空题7.已知函数f(x)=x|x -4|-5,则当方程f(x)=a 有三个根时,实数a 的取值范围是________.【解析】 f(x)=x|x -4|-5=⎩⎪⎨⎪⎧x2-4x -5,x≥4-x2+4x -5,x<4,在平面直角坐标系中画出该函数的图象,可得当直线y =a 与该函数的图象有三个交点时,a 的取值范围是-5<a<-1.【答案】 -5<a<-1 8.(2013·济南模拟)若函数f(x)=x3+x2-2x -2的一个正数零点附近的函数值用二分法计算,其参考数值如下:那么方程x3+【解析】 通过参考数据可以得到:f(1.375)=-0.260<0,f(1.437 5)=0.162>0,且1.4375-1.375=0.062 5<0.1,所以,方程x3+x2-2x -2=0的一个近似根为1.437 5. 【答案】 1.437 59.若函数f(x)=x2+ax +b 的两个零点是-2和3,则不等式af(-2x)>0的解集是________ 【解析】 ∵f(x)=x2+ax +b 的两个零点是-2,3. ∴-2,3是方程x2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧ -2+3=-a -2×3=b ,∴⎩⎪⎨⎪⎧a =-1b =-6,∴f(x)=x2-x -6.∵不等式af(-2x)>0,即-(4x2+2x -6)>0⇔2x2+x -3<0,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-32<x <1.【答案】 ⎩⎨⎧⎭⎬⎫x ⎪⎪ -32<x <1三、解答题10.函数f(x)=x3-3x +2. (1)求f(x)的零点;(2)求分别满足f(x)<0,f(x)=0,f(x)>0的x 的取值范围.【解】 f(x)=x3-3x +2=x(x -1)(x +1)-2(x -1)=(x -1)(x2+x -2)=(x -1)2(x +2). (1)令f(x)=0,函数f(x)的零点为x =1或x =-2. (2)令f(x)<0,得x <-2;所以满足f(x)<0的x 的取值范围是(-∞,-2); 满足f(x)=0的x 的取值集合是{1,-2};令f(x)>0,得-2<x <1或x >1,满足f(x)>0的x 的取值范围是(-2,1)∪(1,+∞).11.若关于x 的方程3x2-5x +a =0的一个根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围.【解】 设f(x)=3x2-5x +a ,则f(x)为开口向上的抛物线(如图所示).∵f(x)=0的两根分别在区间(-2,0),(1,3)内,∴⎩⎪⎨⎪⎧->0,<0,<0,>0,即⎩⎪⎨⎪⎧---+a >0,a <0,3-5+a <0,3×9-5×3+a >0,解得-12<a <0.∴所求a 的取值范围是(-12,0).12.已知函数f(x)=x2+bx +c(b ,c ∈R),满足f(1)=0. (1)若函数f(x)有两个不同的零点,求b 的取值范围;(2)若对x1,x2∈R ,且x1<x2,f(x1)≠f(x2),方程f(x)=12[f(x1)+f(x2)]有两个不相等的实根,证明必有一实根属于(x1,x2).【解】 (1)由题意知:b +c +1=0,即c =-(1+b), ∴f(x)=x2+bx -(1+b), 若f(x)有两个零点,则f(x)=0有两个不相等的实根, ∴b2+4(1+b)=(b +2)2>0,∴b≠-2. 即b 的取值范围是{b|b ∈R 且b≠-2}. (2)证明:设g(x)=f(x)-12[f(x1)+f(x2)] 则g(x1)=12[f(x1)-f(x2)], g(x2)=-12[f(x1)-f(x2)], ∴g(x1)·g(x2)=-14[f(x1)-f(x2)]2, ∵f(x1)≠f(x2),∴g(x1)·g(x2)<0, ∴g(x)必有一根属于(x1,x2),即方程f(x)=12[f(x1)+f(x2)]必有一实根属于(x1,x2). 四、选做题13.(2013·菏泽模拟)若A ={a,0,-1},B =⎩⎨⎧⎭⎬⎫c +b ,1b +a ,1,且A =B ,f(x)=ax2+bx +c. (1)求f(x)零点的个数;(2)当x ∈[-1,2]时,求f(x)的值域;(3)若x ∈[1,m]时,f(x)∈[1,m],求m 的值. 【解】 (1)∵A =B ,∴⎩⎪⎨⎪⎧a =10=c +b-1=1b +a,∴⎩⎪⎨⎪⎧a =1b =-2c =2.∴f(x)=x2-2x +2.又Δ=4-4×2=-4<0,所以f(x)没有零点.(或因为f(x)=(x -1)2+1>0,所以f(x)没有零点.) (2)∵f(x)的对称轴x =1,∴当x ∈[-1,2]时,f(x)min =f(1),f(x)max =f(-1)=5, ∴f(x)∈[1,5].(3)∵f (x)在x ∈[1,m]上为增函数,∴⎩⎪⎨⎪⎧=1=m ⇒⎩⎪⎨⎪⎧1=1,m2-2m +2=m.∴m=1或m=2,m=1不成立,则m=2.。
四川省成都七中2014届数学(理)三轮复习综合训练(一) Word版含答案

成都七中高2014届数学三轮复习理科(一)一、选择题:本大题共10小题,每小题5分,共50分.1、已知2弧度的圆心角所对的弦长为2,那么此圆心角所夹扇形的面积为( ) A 、1sin 1 B 、1sin 12C 、2cos 11-D 、1tan2、设集合M={06|2<--x x x },N={)1(log |2-=x y x },则M N=( )A 、(1,2)B 、(1-,2)C 、(1,3)D 、(1-,3)3、如图给出的是计算301614121+⋅⋅⋅+++的值是一个框图,其中菱形判断框内应填入的条件是( )A 、?15i <B 、?15i >C 、?16i <D 、?16i >4、已知圆F 的圆心为双曲线14522=-y x 的右焦点,且与该双曲线的渐近线相切,则圆F 的方程为A 、4)3(22=++y x B 、2)3(22=++y x C 、4)3-(22=+y x D 、2)3-(22=+y x5、104)12(xx -的展开式中的常数项为( )A 、170B 、180C 、190D 、2006、在三角形ABC 中,a=2,A=030,C=045,则三角形的面积S 的值是( )A 、2B 、13+C 、)(1321+ D 、227、将参加冬季越野跑的600名选手编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,把编号分50组后,在第一组的001到012这12个编号中随机抽得的号码为004.这600名选手分别穿着三种颜色的衣服,从001到311穿红色衣服,从312到496穿白色衣服,从497到600穿黄色衣服.若从样本中任意抽取一个,则抽到穿白色衣服的选手的概率为 A 、253 B 、254 C 、258 D 、2578、已知函数,1)391ln()(2+-+=x x x f 则=+)21(lg )2(lg f f ( )A 、1-B 、0C 、1D 、29、某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A 、31200元B 、36 000元C 、36800元D 、38400元10、设)(x f 是定义在R 上的偶函数,且当0≥x 时,.)(xe xf =若对任意],1,[+∈a a x 的的最大值是恒成立,则实数不等式a x f a x f )()(2≥+( )A 、23-B 、32-C 、43- D 、2二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上. 11、函数)sin(ϕω+=x A y 的部分图像如图所示,其中2||,0,0A πϕω<>>,则其解析式为12、如图,已知正三角形ABC 的边长为1,点P 是AB 边上的动点, 点Q 是AC 边上的动点,且,,)1(,R AC AQ AB AP ∈-==λλλ 则CP BQ ⋅的最大值为13、过定点P (1,2)的直线在x 轴、y 轴的正半轴上的截距分别为b a ,, 则b a +的最小值是14、关于x 的方程0234=+⋅-+m m xx )(有两个不相等的实数根,则实数m 的取值范围为 15、设S 为实数集R 的非空子集,若对任意,,S y x ∈都有,,,S xy y x y x ∈-+则称S 为封闭集。
2014届高考数学(理)一轮复习【配套文档】:小题专项集训(三)基本初等函数 含答案

小题专项集训(三) 基本初等函数(时间:40分钟 满分:75分)一、选择题(每小题5分,共50分)1.幂函数y =f (x )的图象经过点错误!,则f 错误!的值为( ).A .1B .2C .3D .4解析 设f (x )=x n,∴f (4)=12,即4n =错误!,∴f 错误!=错误!n =4-n =2.答案 B2.(2013·湖南长郡中学一模)设函数f (x )=错误!若f (x )〉1成立,则实数x 的取值范围是( ).A .(-∞,-2)B 。
错误!C.错误!D .(-∞,-2)∪错误!解析 当x ≤-1时,由(x +1)2〉1,得x 〈-2,当x >-1时,由2x +2>1,得x 〉-错误!,故选D.答案D3.(2013·银川一模)设函数f(x)是奇函数,并且在R上为增函数,若0≤θ≤错误!时,f(m sin θ)+f(1-m)>0恒成立,则实数m的取值范围是( ).A.(0,1) B.(-∞,0)C.错误!D.(-∞,1)解析∵f(x)是奇函数,∴f(m sin θ)〉-f(1-m)=f(m-1).又f (x)在R上是增函数,∴m sin θ>m-1,即m(1-sin θ)〈1.当θ=错误!时,m∈R;当0≤θ〈错误!时,m〈错误!。
∵0<1-sin θ≤1,∴错误!≥1.∴m〈1。
故选D.答案D4.(2013·济南模拟)已知函数f(x)是奇函数,当x>0时,f(x)=a x(a〉0且a≠1),且f错误!=-3,则a的值为().A。
3 B.3 C.9 D。
错误!解析∵f(log错误!4)=f错误!=f(-2)=-f(2)=-a2=-3,∴a2=3,解得a=±错误!,又a>0,∴a=错误!。
答案A5.(2013·福州质检)已知a=20.2,b=0。
40.2,c=0。
40。
6,则().A.a〉b〉c B.a〉c〉bC.c>a〉b D.b>c>a解析由0.2〈0.6,0.4〈1,并结合指数函数的图象可知0。
山东省2014届高考冲刺提升测试文科数学试题一

山东省2014届高考冲刺提升测试试题一高三数学(文科)本试卷共4页,满分150分,考试时间120分钟第Ⅰ卷(选择题)第I 卷(选择题)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项.)1. i 是虚数单位,=+-)21(i i ( )A .2+iB .2-iC .i --2D .i -2 2.设集合={|2}S x x >-,={|41}T x x -≤≤,则ST =( )A .[4,)-+∞B .(2,)-+∞C .[4,1]-D .(2,1]- 3.已知f(x)是定义在R 上的奇函数,当x>0 时,f(x)=2+f(12)log 2x ,则f(-2)=( )A. 1B. 3 C .一1 D .一34.某几何体的三视图如图所示,则该几何体的体积的最大值为( ) A 、12 B 、14 C 、32 D 、345.根据某市环境保护局公布2008~2013这六年的空气质量优良的天数,绘制成折线图如图,根据图中的信息可知,这六年的每年空气质量优良天数的中位数是( ) A. 300 B. 302.5 C. 305 D. 3106. 函数ln ||||x x y x =的图像可能是( )7. 若向量a 、b 满足||1a =、||2b =,()a a b ⊥+,则a 与b 的夹角为( )A .2πB .23πC .34πD .56π8. 阅读右边的程序框图,则输出的S 等于( ) A. 14 B. 20 C. 30 D. 559. 当变量,x y 满足约束条件34,3y x x y z x y x m ≥⎧⎪+≤=-⎨⎪≥⎩时的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-110.若直线l 被圆422=+y x 所截得的弦长为32,则l 与曲线1322=+y x 的公共点个数为( )A .1个B .2个C .1个或2个D .1个或0个第II 卷(非选择题)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡上)11. 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为__________. 12. 设y x ,满足约束条件⎩⎨⎧≤-≤-≤≤0131y x x ,则y x z -=2的最大值为________.13. 已知等差数列{}n a 中,2466a a a ++=,则()235log a a +的值为_________.14. 在实数集R 中定义一种运算“*”,对任意,R a b ∈,a b *为唯一确定的实数,且具有性质: (1)对任意R a ∈,0a a *=;(2)对任意,R a b ∈,(0)(0)a b ab a b *=+*+*.则函数1()()xxf x e e =*的最小值为_________. 15. 定义在R 上的函数f (x ),如果存在函数g (x )=kx +b (k ,b 为常数),使得f (x )≥ g (x )对一切实数x 都成立,则称g (x )为函数f (x )的一个“承托函数”.现有如下命题:①g (x )=2x 为函数f (x )=2x 的一个承托函数;②若g (x )=kx ﹣1为函数f (x )=x ln x 的一个承托函数,则实数k 的取值范围是[1,+∞); ③定义域和值域都是R 的函数f (x )不存在承托函数;④对给定的函数f (x ),其承托函数可能不存在,也可能有无数个. 其中正确的命题是_________.三、解答题(本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程)16. (本题满分12分) 已知函数2()sin(2)2cos 16f x x x π=-+-. (Ⅰ)求函数()f x 的单调增区间;(Ⅱ)在ABC ∆中,a b c 、、分别是角A B C 、、的对边,且11,2,()2a b c f A =+==,求ABC ∆的面积. 17. (本题满分12分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(I )求证://EF 平面PAD ; (II )求证:EF CD ⊥;(III )设PD=AD=a, 求三棱锥B-EFC 的体积. 18.(本小题满分12分)某公司欲招聘员工,从1 000名报名者中筛选200名参加笔试,按笔试成绩择优取50名面试,再从面试对象中聘用20名员工.(1)随机调查了24名笔试者的成绩如下表所示:请你预测面试的录取分数线大约是多少?(2)公司从聘用的四男a 、b 、c 、d 和二女e 、f 中选派两人参加某项培训,则选派结果为一男一女的概率是多少?19.(本小题满分12分)设等差数列{n a }的前n 项和为S ,且S 3=2S 2+4,a 5=36. (I)求n a ,S n ;(Ⅱ)设*1()n n b S n N =-∈,1231111...n nT b b b b =++++,求T n 20.(本小题满分13分) 已知函数(1)求函数f (x )的单调区间。
【步步高】高考数学 考前三个月抢分训练3 基本初等函数.doc

训练3 基本初等函数1.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α的值为________.2.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形.要使正方形与圆的面积之和最小,则正方形的周长应为________.3.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)<f (x 2)”的是________.(填序号)①f (x )=1x; ②f (x )=(x -1)2;③f (x )=e x ;④f (x )=1n(x +1).4.已知y =log a (3-ax )在[0,2]上是x 的减函数,则实数a 的取值范围为________.5.函数f (x )=⎩⎪⎨⎪⎧ x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为________.6.(·全国Ⅰ改编)设a =log 32,b =ln 2,c =5-12,则a 、b 、c 的大小关系为________. 7.(·天津改编)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧ a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是________.8.(·天津改编)若函数f (x )=212log ,0log (),0x x x x >-<⎧⎨⎩若f (a )>f (-a ),则实数a 的取值范围是________.9.(·山东改编)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为________.10.下列四个命题中,真命题的序号是________.(写出所有真命题的序号)①若a ,b ,c ∈R ,则“a >b ”是“ac 2>bc 2”成立的充分不必要条件;②当x ∈(0,π4)时,函数y =sin x +1sin x的最小值为2; ③命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”;④函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点.11.方程2-x +x 2=3的实数解的个数为________. 12.已知定义在R 上的函数f (x )满足f (x )=-f ⎝ ⎛⎭⎪⎫x +32,且f (0)=1,则f (2 010)=________.13.函数f (x )对一切实数x 都满足f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,并且方程f (x )=0有三个实根,则这三个实根的和为________.14.设a >1,函数y =|log a x |的定义域为[m ,n ] (m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值为56,则实数a 的值为________. 答案1.1,3 2.4π+4 3.③④ 4.1<a <325.2 6.c <a <b 7.(-2,-1]∪(1,2] 8.(-1,0)∪(1,+∞) 9.710.③④ 11.2 12.1 13.3214.6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数(1)
1、已知函数在区间上是减函数,则的最小值是______.
4、已知函数的图像过点(2,1),的反函数为,则的值域为_____________.
5、若实数满足,且,则的值为 .
6、如果函数在定义域的某个子区间上不存在反函数,则的取值范围是 _____.
7、使不等式成立的实数a的范围是 .
10、定义“正对数”:,现有四个命题:
①若,则②若,则
③若,则④若,则
其中的真命题有:(写出所有真命题的编号)
12、函数的单调递增区间是
13、已知函数,若,则实数的取值范围是.
14、设若是与的等比中项,则的最小值为_____________.
15、已知函数在实数集R上具有下列性质:①直线是函数的一条对称轴;②;
③当时,、、从大到小的顺序为_______.
17、设点P在曲线上,点Q在曲线上,则的最小值为()
A. B. C. D.
21、设a=log36,b=log510,c=log714,则
(A)c>b>a (B)b>c>a(C)a>c>b (D)a>b>c
22、函数的图象是
24、函数满足,那么函数的图象大致为()
25、函数f(x)=|log3x|在区间[a,b]上的值域为[0,1],则b-a的最小值为( )
A.2 B. C. D.1
26、.已知函数,(),若对,,使得,则实数,的取值范围是()
A .
, B ., C ., D .,
27、对于定义域和值域均为[0,1]的函数f(x),定义,,…,,
n=1,2,3,….满足的点x∈[0,1]称为f的阶周期点.设则f的阶周期点的个数是(A) 2n (B) 2(2n-1) (C) 2n (D) 2n2
31、定义:对函数,对给定的正整数,若在其定义域内存在实数,使得,则称函数为“性质函数”。
(1)若函数为“1性质函数”,求;
(2)判断函数是否为“性质函数”?说明理由;
(3)若函数为“2性质函数”,求实数的取值范围;
1、2 4、【答案】【解析】因为函数的图像过点(2,1),所以,
所以,所以,所以
,令,则,易知函数的值域为,所以函数的值域为。
5、【答案】【解析】因为,所以,又,所以
,解得:。
6、【答案】【解析】画出函数的图像,若存在反函数,函数必须是一一对应的,所以若函数在定义域的某个子区间上不存在反函数,根据图像得:
,解得:,所以的取值范围是。
7、【答案】【解析】因为,所以
,解得实数a的范围是。
10、①③④ 12、
_ 13、 14、【参考答案】4【解题思路】因为,所以,
,当且仅当即时“=”成立.
15、由得,所以周期是4所以
,,。
因为直线是函数的一条对称轴,所以。
.由,可知当时,函数单调递减。
所以。
17、D 21、22、B 24、 C 25、 B 26、
D
27、C31、解:(1)由得,… 2分,。
4分(2)若存在满足条件,则即,. 7分
,方程无实数根,与假设矛盾。
不能为“k性质函数”。
10分(3)由条件得:, 11分即(,化简得
, 14分当时,; 15分当时,由,
即,。
…. 17分
综上,。
33、
38、。