影响化学平衡移动的因素

合集下载

化学平衡的移动影响平衡位置的因素

化学平衡的移动影响平衡位置的因素

化学平衡的移动影响平衡位置的因素化学平衡的移动:影响平衡位置的因素化学平衡是指反应物和生成物之间达到相对稳定的状态,此时反应物和生成物的浓度保持不变。

然而,平衡位置并非不可改变。

在一些条件下,可以移动平衡位置,使得反应更偏向反应物或生成物。

本文将讨论影响平衡位置移动的因素以及各个因素的作用机制。

1. 反应物浓度当反应物浓度增加时,根据Le Chatelier原理,平衡位置会向生成物方向移动,以消耗过量的反应物。

相反,如果反应物浓度减少,平衡位置则会向反应物方向移动,以补充反应物的不足。

这种移动是为了保持平衡状态,并减少浓度梯度。

2. 生成物浓度正如反应物浓度会影响平衡位置一样,生成物浓度的变化也会导致平衡位置的移动。

增加生成物浓度会使平衡位置向反应物方向移动,以减少过量生成物的浓度。

而减少生成物浓度则会使平衡位置向生成物方向移动,以增加生成物的浓度。

3. 温度温度是影响平衡位置的重要因素之一。

在化学反应中,吸热反应和放热反应对温度的变化有不同的响应。

对于吸热反应,增加温度会使平衡位置移动向生成物方向,以吸收多余的热量。

减少温度则会使平衡位置向反应物方向移动,以释放更多的热量。

对于放热反应,情况正好相反。

4. 压力(或体积)在涉及气体的平衡反应中,压力的变化可能会导致平衡位置的移动。

根据Le Chatelier原理,增加压力将导致平衡位置移动向压力较小的一方,以减少压力。

类似地,减少压力会使平衡位置移动向压力较大的一方,以增加压力。

这一原理也适用于反应涉及液体或溶液体积变化的情况。

5. 催化剂催化剂是影响平衡位置的另一重要因素。

催化剂通过降低反应的活化能,增加反应速率,但不参与反应本身。

催化剂的存在可以使平衡位置更快地达到,然而,它不会改变平衡位置本身。

因此,催化剂对平衡位置的移动没有直接影响。

总结起来,反应物和生成物浓度的变化、温度、压力(或体积)以及催化剂的存在都可以影响平衡位置的移动。

理解这些因素的作用机制有助于我们优化化学反应条件,达到所需的平衡位置。

化学平衡的移动方向影响因素

化学平衡的移动方向影响因素

化学平衡的移动方向影响因素化学平衡是指化学反应在一定条件下达到动态平衡的状态,即化学反应的正反应速率相等。

移动方向是指在平衡状态下,化学反应向正向反应或逆向反应进行的倾向。

在化学平衡中,移动方向的影响因素主要包括温度、浓度、压力和催化剂等。

接下来将对这些因素进行详细的论述。

1. 温度温度是影响化学平衡移动方向的重要因素之一。

根据Le Chatelier原理,当温度增加时,反应被视为吸热反应,系统会通过吸收热量的方式来减小温度。

因此,移动方向会偏向于吸热的反应方向,以吸收更多的热量来降低温度。

反之,当温度降低时,反应被视为放热反应,系统会通过释放热量来增加温度,移动方向会偏向于放热的反应方向,以释放更多的热量。

2. 浓度浓度是化学平衡移动方向的另一个重要因素。

根据Le Chatelier原理,当某一物质的浓度增加时,系统会减小浓度差,以达到平衡。

因此,移动方向会偏向于减小浓度的反应方向。

反之,当某一物质的浓度减小时,系统会增大浓度差,移动方向会偏向于增大浓度的反应方向。

需要注意的是,对于液体和固体物质的浓度变化,对移动方向影响较小,因为它们的浓度变化相对较小。

3. 压力对于气态反应而言,压力是影响移动方向的因素之一。

当压力增大时,分子的碰撞频率增加,系统会通过减少分子数量来降低压力。

因此,移动方向会偏向于减少分子数量的反应方向。

反之,当压力减小时,系统会增加分子数量,移动方向会偏向于增加分子数量的反应方向。

需要注意的是,对于液体和固体物质,压力的变化对移动方向几乎没有影响。

4. 催化剂催化剂是一种能够改变化学反应速率但不参与反应的物质。

在化学平衡中,催化剂可以影响移动方向。

催化剂提供了一个新的反应路径,降低了反应的活化能,从而加快了反应速率。

由于催化剂不改变反应的平衡常数,它在两个反应方向中起到相同的作用。

因此,催化剂对移动方向没有直接的影响。

综上所述,化学平衡的移动方向受到多种因素的影响,包括温度、浓度、压力和催化剂。

化学平衡的移动条件

化学平衡的移动条件

化学平衡的移动条件化学平衡是指当反应物和生成物在一定条件下达到动态平衡状态时,它们的浓度、压力或其他相关物态参数不再发生变化。

为了使化学反应达到平衡状态,可以通过改变温度、压力、浓度和添加催化剂等手段来移动平衡。

本文将讨论影响化学平衡移动的条件以及它们的作用机理。

一、温度的影响温度是影响化学平衡移动的重要因素之一。

根据利奥·香特列定律,当温度发生变化时,平衡反应的正向和逆向反应速率都会发生变化。

对于吸热反应(放热反应),升高温度会使平衡转向生成物一侧,而降低温度则会偏向反应物一侧。

对于放热反应(吸热反应),情况相反。

以氨的合成反应为例:N2(g) + 3H2(g) ⇌ 2NH3(g) + 92.4 kJ该反应是一个放热反应,因此当温度升高时,反应向生成物一侧移动,生成氨的产率增加。

而当温度降低时,反应向反应物一侧移动,生成氨的产率减少。

二、压力的影响压力是影响化学平衡移动的另一个关键因素。

对于气体反应,改变压力会对平衡产生影响。

根据洪特定律,当体积不变的情况下,提高压力会使平衡转向摩尔数较少的一侧,而减小压力则会偏向摩尔数较多的一侧。

以二氧化碳和一氧化碳反应生成一氧化碳和氧化碳的平衡反应为例:CO2(g) + CO(g) ⇌ 2CO(g)该反应为气体反应,增加压力会使平衡向CO2和CO的生成物一侧移动,生成CO的产率增加。

减小压力则会偏向反应物一侧,生成CO的产率减少。

三、浓度的影响浓度也是影响化学平衡移动的重要因素之一。

对于溶液反应,改变物质的浓度会对平衡产生影响。

根据一般来说,增加浓度会使平衡转向生成物一侧,而降低浓度则会偏向反应物一侧。

以还原铁离子为例:Fe3+(aq) + SCN-(aq) ⇌ Fe(SCN)2+(aq)该反应为溶液反应,增加铁离子或硫氰离子的浓度会使平衡向生成配合物Fe(SCN)2+的一侧移动,生成铁离子配合物的产率增加。

减小浓度则会偏向反应物一侧,生成铁离子配合物的产率减少。

化学反应的平衡移动

化学反应的平衡移动

化学反应的平衡移动在化学反应中,平衡是指反应物和生成物的浓度或分压达到一定的比例,使反应达到一个动态平衡的状态。

平衡的移动是指改变反应条件,如温度、压力、浓度等,导致反应平衡位置的改变。

本文将探讨化学反应中平衡移动的原因、影响因素以及与平衡移动相关的应用。

一、化学反应的平衡移动原因化学反应的平衡移动是基于Le Chatelier原理,即“系统在受到扰动时,会产生使该扰动缓解的变化”。

根据这个原理,当化学反应受到外界条件的改变时,系统会通过移动平衡位置来缓解这种扰动。

具体而言,以下是一些导致平衡移动的原因:1. 温度变化:改变反应温度会影响反应速率和平衡位置。

一般而言,通过增加或降低温度,反应平衡位置可以相应地向生成物或反应物方向移动。

2. 压力变化:只对气态反应有效,改变反应体系的总压力会导致反应平衡位置的变化。

通过增加或减少总压力,反应平衡位置可以向分子数较多的一方移动。

3. 浓度变化:改变反应物或生成物的浓度会导致反应平衡位置发生变化。

增加反应物浓度会使反应平衡位置向生成物方向移动,而增加生成物浓度会使反应平衡位置向反应物方向移动。

4. 催化剂的使用:催化剂可以影响反应速率,但对反应平衡位置没有直接的影响。

二、影响化学反应平衡移动的因素除了上述的原因外,还有其他因素可以影响化学反应平衡移动。

以下是一些重要的因素:1. 反应物和生成物的物态:固态反应物和生成物不会因体积的变化而引起平衡移动,而气态和溶液态的反应物和生成物则会受到压力和浓度的影响。

2. 反应的平衡常数:平衡常数描述了反应体系在平衡状态下物质浓度之间的比例。

平衡常数越大,反应偏向生成物的概率越大;平衡常数越小,反应偏向反应物的概率越大。

3. 反应速率:平衡是反应速率相等时达到的,因此改变反应速率会导致平衡位置的移动。

例如,通过增加反应物的浓度或降低生成物的浓度,可以加快反应速率,导致平衡位置向生成物方向移动。

三、平衡移动的应用1. 工业应用:平衡移动的原理在工业生产中广泛应用。

化学平衡的移动与影响因素

化学平衡的移动与影响因素

化学平衡的移动与影响因素化学平衡是指在一定条件下,反应物和生成物之间的摩尔浓度保持不变。

然而,通过改变影响化学反应平衡的因素,我们可以移动平衡位置,使得反应偏向于生成物或反应物的方向。

本文将探讨化学平衡的移动和各种影响因素。

一、浓度的影响改变反应物或生成物的浓度是移动平衡的一种方法。

根据勃朗斯特洛传递原理,当浓度增加时,反应的平衡位置将移向生成物的方向。

相反,当浓度减少时,平衡位置会朝着反应物的方向移动。

这是因为更高浓度的物质会增加碰撞的频率,从而推动反应向生成物的方向进行。

例如,考虑下列反应方程式:A +B ⇌C + D如果A或B的浓度增加,平衡位置将移向生成物C和D的方向。

相反,如果C或D的浓度增加,平衡位置会朝着反应物A和B的方向移动。

二、压力的影响对于涉及气体的反应,改变压力也可以移动平衡位置。

根据Le Chatelier原理,当压力增加时,平衡位置会移向分子数更少的一方。

相反,当压力减小时,平衡位置会移向分子数更多的一方。

考虑下列反应方程式:2A + 3B ⇌ C如果压力增加,平衡位置将移向反应物A和B的方向,因为这个方向上的分子数更多。

如果压力减少,平衡位置会向生成物C的方向移动。

三、温度的影响温度是影响平衡位置的另一个重要因素。

根据热力学原理,当温度升高时,平衡位置会移向吸热反应的方向,即吸热反应的平衡位置会随温度升高而移动。

相反,当温度降低时,平衡位置会移向放热反应的方向。

考虑以下反应方程式:2A + B ⇌ C + heat如果温度升高,平衡位置将移向C的方向,因为这是一个吸热反应。

如果温度降低,平衡位置会朝着反应物A和B的方向移动。

四、催化剂的影响催化剂是影响平衡位置的另一个因素。

催化剂可以加速化学反应的速率,但不改变平衡位置。

它通过提供新的反应途径,降低活化能,从而加快反应的前进和后退速率。

因此,催化剂对平衡位置没有直接影响。

综上所述,化学平衡的移动可以通过改变浓度、压力和温度来实现。

高中化学平衡移动的超全知识点总结

高中化学平衡移动的超全知识点总结

高中化学平衡移动的超全知识点总结一、化学平衡的移动1.化学平衡的移动(1)定义达到平衡状态的反应体系,条件改变,引起平衡状态被破坏的过程。

(2)化学平衡移动的过程2.影响化学平衡移动的因素(1)温度:在其他条件不变的情况下,升高温度,化学平衡向吸热反应方向移动;降低温度,化学平衡向放热反应方向移动。

(2)浓度:在其他条件不变的情况下,增大反应物浓度或减小生成物浓度,化学平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,化学平衡向逆反应方向移动。

(3)压强:对于反应前后总体积发生变化的化学反应,在其他条件不变的情况下,增大压强,化学平衡向气体体积减小的方向移动;减小压强,化学平衡向气体体积增大的方向移动。

(4)催化剂:由于催化剂能同时同等程度地增大或减小正反应速率和逆反应速率,故其对化学平衡的移动无影响。

3.勒夏特列原理在密闭体系中,如果改变影响化学平衡的一个条件(如温度、压强或浓度等),平衡就向能够减弱这种改变的方向移动。

对于反应mA(g)+nB(g)pC(g)+qD(g),分析如下:2.浓度、压强和温度对平衡移动影响的几种特殊情况(1)改变固体或纯液体的量,对平衡无影响。

(2)当反应混合物中不存在气态物质时,压强的改变对平衡无影响。

(3)对于反应前后气体体积无变化的反应,如H2(g)+I2(g)2HI(g),压强的改变对平衡无影响。

但增大(或减小)压强会使各物质的浓度增大(或减小),混合气体的颜色变深(或浅)。

(4)恒容时,同等程度地改变反应混合物中各物质的浓度时,应视为压强的影响,增大(减小)浓度相当于增大(减小)压强。

(5)在恒容容器中,当改变其中一种气态物质的浓度时,必然会引起压强的改变,在判断平衡移动的方向和物质的转化率、体积分数变化时,应灵活分析浓度和压强对化学平衡的影响。

若用α表示物质的转化率,φ表示气体的体积分数,则:①对于A(g)+B(g)C(g)类反应,达到平衡后,保持温度、容积不变,加入一定量的A,则平衡向正反应方向移动,α(B)增大而α(A)减小,φ(B)减小而φ(A)增大。

化学平衡的移动

化学平衡的移动

化学平衡的移动化学平衡是指在化学反应中,反应物转化为生成物的速率与生成物转化为反应物的速率相等的状态。

在化学反应过程中,因为温度、压力、浓度等条件的变化,平衡位置会发生移动。

本文将介绍化学平衡的移动原理和影响因素,并探讨一些常见化学反应中平衡位置的移动情况。

1. 化学平衡的移动原理化学平衡的移动原理是根据勒夏特列原理提出的。

根据该原理,在一定温度下,反应物和生成物的浓度与平衡常数有关。

平衡常数表示反应物与生成物浓度的比值,它是与温度有关的固定值。

当反应物和生成物浓度发生变化时,反应系统会通过移动平衡位置,使浓度重新达到平衡常数所对应的值。

2. 影响化学平衡移动的因素2.1 温度的影响温度是影响化学反应速率的重要因素,也会影响化学平衡的移动。

一般来说,温度的升高会使反应速率加快,平衡位置向生成物方向移动;而温度的降低则会使反应速率减慢,平衡位置向反应物方向移动。

2.2 压力的影响对于气相反应,压力也会影响化学平衡的移动。

根据反应物和生成物的物质摩尔数关系,压力的升高或降低会导致平衡位置的移动。

例如,在气体反应中,当压力增加时,系统会向摩尔数较小的一方移动,以减少压力;而压力降低则会导致平衡位置向摩尔数较大的一方移动。

2.3 浓度的影响反应物和生成物的浓度变化也是引起化学平衡移动的重要因素。

一般来说,当反应物浓度增加时,平衡位置会向生成物方向移动,以消耗过量的反应物;反之,当反应物浓度减少时,平衡位置会向反应物方向移动,以补充反应物。

3. 常见化学反应中的平衡位置移动情况3.1 酸碱中和反应酸碱中和反应中,平衡位置的移动可以通过加入过量的酸或碱来实现。

例如,在硫酸和氢氧化钠的中和反应中,如果加入过量的硫酸,平衡位置会向反应物一侧移动,生成更多的盐和水。

3.2 氧化还原反应氧化还原反应中,平衡位置的移动可以通过改变氧化态来实现。

例如,在二氧化硫与氧气反应生成三氧化硫的反应中,通过增加氧气浓度或减少二氧化硫浓度,可以使平衡位置向生成三氧化硫的一侧移动。

化学平衡的移动与影响因素

化学平衡的移动与影响因素

化学平衡的移动与影响因素化学平衡是指反应物转化为生成物的速率等于生成物转化为反应物的速率,达到动态平衡的状态。

在化学反应中,平衡的移动以及影响因素是十分关键的。

本文将探讨化学平衡的移动规律以及影响因素。

一、化学平衡的移动规律化学平衡的移动取决于温度、压力以及物质浓度。

根据勒夏特列的原理,化学平衡的转移方向与反应前后的平衡常数有关。

平衡常数(K)是指在给定温度下,反应物浓度和生成物浓度之比的平衡值。

根据平衡常数可判断化学反应是偏向反应物还是生成物。

当反应在加热过程中发生时,根据热力学原理,温度上升会促进化学反应的进行,所以一般来说,加热能够使平衡向生成物的方向移动。

然而,有些反应也可能存在反应热效应,因此温度的影响并不是绝对的,而是需要具体情况具体分析。

压力对于固态和液态反应通常没有影响,但对于气态反应有重要作用。

根据利希帕尔原理,总压力的增加会导致平衡向摩尔数较少的物质转移,以减少总压力。

因此,增加气体反应中的压力会推动反应物转化为生成物,降低压力则会使平衡向反应物方向移动。

物质浓度是控制平衡移动的重要因素之一。

根据库仑原理,增加浓度使得反应物浓度升高,平衡会向生成物方向移动。

反之,如果减少反应物浓度,则平衡会朝着反应物方向移动,以增加反应物。

二、影响化学平衡的因素1. 温度:温度是影响化学平衡的关键因素之一。

根据反应热学原理,温度的变化会改变反应物分子的动能,从而影响平衡的移动方向。

一般来说,温度升高,反应速度增加,平衡向生成物方向移动;温度降低,反应速度减慢,平衡向反应物方向移动。

2. 压力:对于气态反应而言,压力对平衡移动有显著的影响。

增加压力会增加反应物分子碰撞的频率,有利于生成物的形成,平衡向生成物方向移动。

降低压力则相反。

对于固态和液态反应,压力的影响相对较小。

3. 物质浓度:物质浓度是一个主要的平衡移动因素。

增加反应物浓度会增加生成物的生成速率,平衡向生成物方向移动。

减少反应物浓度则反之。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原因分析:
运用浓度对化学反应速率的影响以及化学平衡的
新课标人教版选修四
第三节化学平衡 (第二课时----平衡移动)
2021/
如何判断可逆反应 达到平衡状态?
2021/3/10
讲解:XX
2
3、可逆反应达到化学平衡状态的标志
①速率:v正=v逆 直 (即任何一种物质的生成速率等于
其消耗速率) 接
②各组分的浓度保持不变
2021/3/10
思考——加少量NaOH,溶液颜色有何变化。
Fe3+ + 3OH- Fe(OH)3↓
有红褐色沉淀生成,溶液红色变浅
2021/3/10
讲解:XX
19
浓度对化学平衡的影响结论:
在其他条件不变时, 增大反应物或减小生成物的浓度 平衡向右移动
化学平衡向正反应方向移动
减小反应物或增大生成物的浓度 平衡向左移动 化学平衡向逆反应方向移动
❖化学平衡的特征:
逆 ——可逆反应(或可逆过程) 等 ——V正 =V逆(不同的平衡对应不同的速率) 动 ——动态平衡。达平衡后,正逆反应仍在进行(V正=V逆≠0) 定 ——平衡时,各组分浓度、含量保持不变(恒定)
变 ——条件改变,平衡发生改变
2021/3/10
讲解:XX
14
化学平衡的移动
V正=V逆≠0 条件改变 V′正≠V逆′一定时间 V′正=V′逆≠0
2021/3/10
讲解:XX
5
如:
(1)对于反应前后的气体物质的分
子总数不相等的可逆反应:
(2SO2+O2
2SO3)
来说,可利用混合气体的总压、总
体积、总物质的量是否随着时间的
改变而改变来判断是否达到平衡。
2021/3/10
讲解:XX
6
(2)对于反应前后气体物质的分子 数相等的可逆反应:
H2(g)+I2(g)
A(g)+3B(g)
2C(g)+D(g)?
2021/3/10
讲解:XX
9
练习在一定温度下,下列叙述不是可逆反应A(气)+3B(气) 2C(气)+2D(固)达到平衡的标志的是 ( )
①C的生成 速率与C的分解速率相等
A
②单位时间内生成amolA,同时生成3amolB
③A、B、C的浓度不再变化
④A、B、C的分压强不再变化 ⑤混合气体的总压强不再变化
(6)容器内密度不再发生变化
(7)容器内的平均摩尔质量不再发生变化
2021/3/10
讲解:XX
12
第三节 化学平衡
(第2课时)
2021/3/10
讲解:XX
13
【复习】化学平衡状态的定义(化学反应的限度)
一定条件下,可逆反应里,正反应速率和逆反应速率相 等,反应混合物中各组分的浓度保持不变的状态。
C.加少量KCl固体呢?
Fe3+ + 3SCN-
Fe(SCN)3 (硫氰化铁)
注:对于离子反应,只能改变实际参加反应的离子的
浓度才能改变平衡。
2021/3/10
讲解:XX
18
Fe3+ + 3SCN-
Fe(SCN)3 (硫氰化铁)
增加Fe3+ 或 SCN-的浓度,平衡向生成Fe(SCN)3的 方向移动,故红色加深。
讲解:XX
3
(2)间接标志: ①各成分的百分组成不随时间改变而改变
②各物质的物质的量不随时间改变而改变
③反应混合物的颜色不随时间改变而改变
④气体压强不随时间改变而改变
⑤气体的密度或平均相对分子质量不随时
间改变而改变
2021/3/10
讲解:XX
4
注意!
对于不同类型的可逆反应,某 一物理量不变是否可作为平衡已到达 的标志,取决于该物理量在平衡到达 前(反应过程中)是否发生变化。若 是则可;否则,不行。
⑥混合气体的物质的量不再变化 ⑦单位时间内消耗amolA,同时生成 3amolB ⑧A、B、C、D的分子数之比为1:3:2:2 A.②⑧ B.②⑤⑧ C.①③④⑦ D.②⑤⑥⑧
2021/3/10
讲解:XX
10
课堂 练 习
1.在固定容积的密闭容器中发生反应: 2NO2 (g) 2NO (g) + O2 (g)
2HI(g)
不能用此标志判断平衡是否到达,
因为在此反应过程中,气体的总压、
总体积、总物质的量都不随时间的
改变而改变。
2021/3/10
讲解:XX
7
判断可逆反应达到平衡状态?
【例4】 在一定温度下,可逆反应A(气)+3B(气)
2C(气)达到平衡的标志是( AC )
A. C的生成速率与C分解的速率相等 B. 单位时间内生成nmolA,同时生成3nmolB C. A、B、C的浓度不再变化 D. A、B、C的分子数比为1:3:2
2021/3/10
讲解:XX
8
怎样理解平衡与体系特征物理量的关系?
【例5】在一定温度下的恒容容器中,当下列物理量 不再发生变化时,表明反应: A(固)+3B(气) 2C(气)+D(气)已达平衡状态的是(其中只有B气体
有颜色) ( BCD )
A.混合气体的压强 B.混合气体的密度
C.气体的平均分子量 D.气体的颜色
2.能够说明 N2 (g) +3H2 (g)
2NH3 (g)反应
在密闭容器中已达到平衡状态的是 :
(1)容器内N2、H2、NH3三者共存
(2)容器内N2、H2、NH3三者浓度相等 (3) 容器内N2、H2、NH3的浓度比恰为
1:3:2
(4)混合物质量不随时间的变化而变化
(5)容器内压强不随时间的变化而变化
平衡1
不平衡
平衡2
破坏旧平衡
建立新平衡
定义:可逆反应中,旧化学平衡的破坏,新化学平
衡建立过程叫做化学平衡的移动。
【思考与交流】有哪些条件能改变化学平衡
呢?
2021/3/10
讲解:XX
15
影响化学平衡状态的因素:实验2-5
Cr2O72-(橙色)+H2O CrO42-(黄色)+2H+
滴加 3~10滴 浓硫酸
该反应达到平衡的标志是:
(1)混合气体的颜色不再改变 ( )
(2)混合气体的平均相对分子质量不变( ) (3)混合气体的密度不变 ( ) (4)混合气体的压强不变 ( ) (5)单位时间内消耗2molNO2的同时
生成1molO2 ( ) (620)21/3O/10 2气体的物质的讲量解:X浓X 度不变 ( )11
滴加 10~20滴
NaOH
2021/3/10
讲解:XX
16
1、浓度对化学平衡的影响(P27)
2021/3/10
溶液橙色加深
讲解:XX
溶液黄色加深
17
• 实验探究(P27实验2-6)
FeCl3+3KSCN
(黄色) (无色)
Fe(SCN)3+3KCl
(血红色) (无色)
A.加少量FeCl3,红色加深; B.加少量KSCN,红色加深;
相关文档
最新文档