函数极限的十种求法
求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
求极限方法总结

差、积、商。
2. 换元法求极限 当一个函数的解析式比较复杂或不便于观察时,可
采用换元的方法加以变形。
3. 利用两个重要极限公式求极限 在利用重要极限求函数极限时,关键在于把要求的 函数极限化成重要极限标准型或者是它们的变形式。 若用到第一个重要极限来求极限时,往往要利用三 角公式对变量进行变形,设法化成标准型,如果是 用到第二个重要极限求极限时,有时要对自变量作 适当的代换,使所求的极限变成这一形式。
注意: 等价无穷小代换可以用于乘除运算的各因式, 而不能随意用于和差运算。
利用等价无穷小代换求函数的极限时,必须把分子 (或分母)看作一个整体,用整个分子(或分母)的等价 无穷小去代换。若分子(或分母)是两个等价无穷小 之差,就不能用各自的等价无穷小代换;若分子(或分 母)不是两个等价无穷小之差,就可以用穷大和无穷小的性质求极限 在同一极限过程中,无穷大与无穷小互为倒数。
无穷小与常量、有界函数的乘积仍为无穷小。 5. 利用函数的连续性求极限 求连续函数极限时,极限和函数符号可以交换顺序。
6. 利用等价无穷小的代换求极限
求两个无穷小量之比的极限时,分子,分母均可用等价 无穷小量之比的极限时,分子,分母均可用等价无穷小 量代替,从而使计算大大简化。
函数极限的十种求法

函数极限的十种求法信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。
时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例 1求lim( x 2 − 3x + 5).x→ 2解:lim( x 2 − 3x + 5) = lim x 2 − lim 3x + lim 5= (lim x) 2 − 3 lim x + lim 5= 2 2 − 3 ⋅ 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx)' = 1 / (cosx)^2(x)' = 1原式= lim 1/(cosx)^2当x --> 0 时,cosx ---> 1原式= 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:①分子、分母为无穷小,即极限为0 ;②分子上取正弦的角必须与分母一样。
极限的求法总结

n2
11 lim (1 )
n2 n
1 2
.
例ln i m (1 133 15 ...4 n 1 2 1 )
拆 项 :4 n 2 1 1 ( 2 n 1 ) 1 ( 2 n 1 ) 1 2 (2 n 1 1 2 n 1 1 )
lim( 1 1 ... 1 )
n 13 35
4n2 1
x 0
x
e e e e. 11 lim 1x x 0 2x
x lim1x x 02x
lim 1 x 02(1x)
1 2
14. 将数列极限转化成函数极限求解
例:求极限
lim
n
n
sin
1 n
n2
【说明】这是 1 形式的极限,由于数列极限不能使用
解: 当0x1时,(积分不容易计算)
01xnssiinn33xx xn
故 01xnsin 3xd x1 xnd xxn 11, 01 sin 3x 0 n 10n 1
因为 lim0lim 1 0 x xn1
所以
lim 1xnsin3xdx0
x 01sin3x
10. 用等价无穷小量代换求极限
limx2( x2+93)3 x0 x2( x2+42) 2
9.利用夹逼准则(两边夹法)则求极限
说明:两边夹法则需要放大和缩小不等式,常用的方法 是都换成最大的和最小的。
例 求 li(m 11 1). n n 2 1 n 2 2 n 2 n
解
n1 1n, n 2 nn 2 1 n 2 nn 2 1
(n1,2,3,)
(1)证明
lim
n
xn
存在;
(2)求
lim
例说中学数学极限问题解题常用十法

例说中学数学极限问题解题常用十法作者:韩勇来源:《中学教学参考·理科版》2012年第12期中学数学解决极限问题的基本思路是先通过恒等变形化归为极限的基本问题,然后用极限四则运算法则进行处理,其恒等变形是解决极限问题的最关键一步.本文将结合实例介绍解决极限问题常用恒等变形的十种方法.一、利用约分零因子法【例1】求极限(-4-1x-2 )解析:分母有零因式的,首先分子、分母约去零因子,化归为连续函数的极限问题去求解.(-4-1x-2 )(2--4 )-1x+2 =-14 .二、利用分子、分母同除以相同因子法【例2】求极限-解析:∞∞ 型且分子、分母都是以多项式给出的极限,可以通过分子、分母同除以相同因子再求极限.--三、利用分子或分母有理化法【例3】求极限(x-)-解析:求含根式的极限,其主要方法为分子或分母有理化化去无理式,再求极限.(x-)-()()-四、利用数列公式求和法【例4】求极限().解析:对于数列的和、差或积求极限,若项数有限时可以直接利用极限的四则运算求极限,若项数为无限项时,应先把无限项化成有限项,如先求出前n项的和(差)或积再求极限.()-(13 )n+11-13 ]=32 .五、利用组合公式法【例5】求极限-n.解析:∵,∴-1-(14 )-1 =-12 .六、利用函数连续性法【例6】求极限-解析:初等函数(一次函数、二次函数、指数函数、对数函数、三角函数)在其定义域内是连续的,即在定义域内每一点均连续.如果函数f(x)、g(x)在某一点处连续,那么函数f(x)±g(x)、f(x)·g (x)、f(x)g(x)(g(x)≠0)在点处连续,则在点处的极限等于处的函数值.因为x=0是函数f(x)-的一个连续点,所以--=0.七、利用配凑法【例7】已知(3x)=2 ,求极限(2x)x.解析:把问题结合已知条件,从整体考虑,通过恰当的拼凑、配凑,使问题的解决能用已知条件,从而达到比较容易解决的目的.因为(3x)=2 ,所以(3x)=6 ,则(2x)=6 ,即(2x)2x=16 ,所以(2x)x=13.八、利用换元法【例8】求极限-1x.解析:因为当x→0时,直接从101+x-1x 的分子、分母中约去x比较困难,而101+x-1x 中当x→0时也趋近于0,因而可以考虑整体换元法,即设y=101+x,则x=y10-1,所以当x→0时,等价于y→1.解析:--1y10-1 =九、利用讨论法【例9】求极限(a为常数且a>0).解析:当数列中含有不确定的参数时,需要对参数进行分类讨论求解,其依据是:(|q|1或q=-1);(q=1).(1)当0() =01+0=0;(2)当a>1时,;(3)当a=1时,十、利用特殊观察法【例10】求极限(1)!= ;(2)()= .解析:(1)利用n→∞时,n!变化比变多得多,即n!的变化速率比的变化速率快得多,故!相当于1∞=0 ,所以!=0.(2)利用三角函数性质-,得-,又因为(-|x|),所以()=0.求极限问题时恒等变形方法灵活多样,要对题目进行全面分析,合理、恰当地选择方法,整体思考,往往可以化繁为简,在解题中起到事半功倍的效果.。
16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。
求极限的方法有很多种,下面将介绍16种常见的求极限方法。
1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。
2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。
例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。
3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。
4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。
5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。
反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。
6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。
利用无穷小量和无穷大量的性质,可以简化极限的求解过程。
7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。
8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。
9.取对数法:将函数取对数后,利用对数的性质进行极限计算。
10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。
11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。
12.导数法则:利用导数的性质,对函数进行极限计算。
例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。
13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。
14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。
高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数极限的十种求法信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。
时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例 1求lim( x 2 − 3x + 5).x→ 2解:lim( x 2 − 3x + 5) = lim x 2 − lim 3x + lim 5= (lim x) 2 − 3 lim x + lim 5= 2 2 − 3 ⋅ 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx)' = 1 / (cosx)^2(x)' = 1原式= lim 1/(cosx)^2当x --> 0 时,cosx ---> 1原式= 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:①分子、分母为无穷小,即极限为0 ;②分子上取正弦的角必须与分母一样。
应用第二重要极限时,必须同时满足四个条件:①带有“1”;②中间是“+ ”号;③“+ ”号后面跟无穷小量;④指数和“+ ”号后面的数要互为倒数。
例1:求lim(arcsinx/x),x趋于0解A.令x=sint,则当t 趋于0时,x趋于0,且arcsinx=t所以 B.lim(arcsinx/x),x趋于0.=lim(t/sint),t趋于0=14.利用等价无穷小代换定理利用此定理求函数的极限时,一般只在以乘除形式出现时使用。
若以和或差形式出现时,不要轻易代换,因为经此代换后,往往会改变无穷小之比的阶数。
要用好等价无穷小代换定理,必须熟记一些常用的等价无穷小。
例1lim<x→0->√(1-cosx)/tanx=lim<x→0->-√2sin(x/2)/tanx=lim<x→0->-√2/2x/x=-√2/2lim<x→0+>√(1-cosx)/tanx=lim<x→0->√2sin(x/2)/tanx=lim<x→0->√2/2x/x=√2/2因为lim<x→0->√(1-cosx)/tanx≠lim<x→0+>=√(1-cosx)/tanx所以极限不存在5.柯西收敛准则数列{Xn}收敛的充分必要条件是对于任意给定的正数ε存在着这样的正整数N使得当m>N,n>N时就有|Xn-Xm|<ε这个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:该数列中足够靠后的任意两项都无限接近。
例1证明:xn=1-1/2+1/3-1/4+......+ [(-1)^(n+1)]/n 有极限证:对于任意的m,n属于正整数,m>n|xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |当m-n为奇数时|xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-1)m=(1/n-1/m)→0由收敛原理得{xn}收敛当m-n为偶数时|xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-2)(m-1)-1/m=(1/n-1/(m-1)-1/m)→0由柯西收敛原理得{xn}收敛综上{xn}收敛,即{xn}存在极限6.利用函数连续性:(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)描述函数的一种连绵不断变化的状态,即自变量的微小变动只会引起函数值的微小变动的情况。
确切说来,函数在某点连续是指:当自变量趋于该点时,函数值的极限与函数在该点所取的值一致。
例1设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求:当a ,b 为何值时,f (x )在x=0处的极限存在?当a ,b 为何值时,f (x )在x=0处连续?注:f (x )=xsin 1/x +a, x< 0b+1, x=0X^2-1, x>0解:f(0)=b+1左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a左极限:lim(x→0+) f(x)=lim (x→0+) (x^2-1)=0-1=-1f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0),所以a =-1=b+1,所以a =-1,b =-27.利用等价无穷小量代换求极限例 8 求极限30tan sin lim sin x x x x →-. 解 由于()sin tan sin 1cos cos x x x x x-=-,而 ()sin ~0x x x →,()21cos ~02x x x -→,()33sin ~0x x x → 故有23300tan sin 112lim lim sin cos 2x x x x x x x x x →→⋅-=⋅=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()tan ~0x x x →,()sin ~0x x x →,而推出3300tan sin lim lim 0sin sin x x x x x x x x→→--==, 则得到的式错误的结果.附 常见等价无穷小量()sin ~0x x x →,()tan ~0x x x →,()21cos ~02x x x -→, ()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→,()()ln 1~0x x x +→,()()11~0x x x αα+-⋅→.8 利用洛比达法则求极限洛比达法则一般被用来求00型不定式极限及∞∞型不定式极限.用此种方法求极限要求在点0x 的空心领域()00Ux 内两者都可导,且作分母的函数的导数不为零. 例1求极限21cos lim tan x x xπ→+. 解 由于()2lim 1cos lim tan 0x x x x ππ→→+==,且有()1cos 'sin x x +=-,()22tan '2tan sec 0x x x =≠,由洛比达法则可得21cos lim tan x x xπ→+ 2sin lim 2tan sec x x x xπ→-= 3cos lim 2x x π→⎛⎫=- ⎪⎝⎭ 12=. 8.利用定义求极限1.()()()000'lim x x f x f x f x x x →-=-, 2.()()()0000'lim h f x h f x f x h→+-=. 其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.例1求极限0x →()0,0p q >>.分析 此题是0x →时00型未定式,在没有学习导数概念之前,常用的方法是消去分母中的零因子,针对本题的特征,对分母分子同时进行有理化便可求解.但在学习了导数的定义式之后,我们也可直接运用导数的定义式来求解.解 令()f x =()g x = 则0x → ()()()()000lim 00x f x f x g x g x →--=-- ()()'0'0f g = p q =. 9. 利用归结原则求极限归结原则设f 在()00;'U x δ内有定义,()0lim x x f x →存在的充要条件是:对任何含于()00;'U x δ且以0x 为极限的数列{}n x ,极限()lim n n f x →∞都存在且相等. 例1 求极限211lim 1nn n n →∞⎛⎫++ ⎪⎝⎭. 分析 利用复合函数求极限,令()21211x x x u x x ++⎛⎫=+ ⎪⎝⎭,()1x v x x+=求解. 解 令()21211x x x u x x ++⎛⎫=+ ⎪⎝⎭,()1x v x x +=则有 ()lim n u x e →+∞=;()lim 1n v x →+∞=,由幂指函数求极限公式得()()211lim 1lim xv x x x u x e x x →+∞→+∞⎛⎫++== ⎪⎝⎭, 故由归结原则得221111lim 1lim 1n x n x e n n x x →∞→+∞⎛⎫⎛⎫++=++= ⎪ ⎪⎝⎭⎝⎭. 注 1 归结原则的意义在于把函数归结为数列极限问题来处理,对于0x x +→,0x x -→,x →+∞和x →-∞这四种类型的单侧极限,相应的归结原则可表示为更强的形式. 注 2 若可找到一个以0x 为极限的数列{}n x ,使()lim n n f x →∞不存在,或找到两个都以0x 为极限的数列{}'n x 与{}''n x ,使()'lim n n f x →∞与()"lim n n f x →∞都存在而不相等,则()0lim x x f x →不存在10.利用泰勒公式求极限在此种求极限的方法中,用得较多的是泰勒公式在00x =时的特殊形式,即麦 克劳林公式.也可称为带有佩亚诺余项的麦克劳林公式()()()()()()()2"000'02!!n n n f f f x f f x x x x n ο=+++⋯⋯++. 例1 求极限2240cos lim x x x ex -→-.解 由于极限式的分母为4x ,我们用麦克劳林公式表示极限的分子,取4n =:()245cos 1224x x x x ο=-++, ()22452128x x x e x ο-=-++, ()2452cos 12x x x e x ο--=-+. 因而求得()24524400cos 112lim lim 12x x x x x x ex x ο-→→-+-==-. 利用此种方法求极限时,必须先求函数的麦克劳林公式,选取恰当的n .2.10用导数的定义求极限常用的导数定义式,设函数()y f x =在点0x 处可导,则下列式子成立: 1.()()()000'lim x x f x f x f x x x →-=-, 2.()()()0000'lim h f x h f x f x h →+-=. 其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.例1证明()()211lim 212x x x x →-=--. 分析 当1x ≠时,10x -≠,故()()211122x x x x x -+=---,于是有 ()()23111332212222x x x x x x x x x --+--=-==-----,取112δ=,当101x δ<-<时1322x <<,故有122x ->,从而有()()21212x x x ---- 61x <-,取26εδ=即可.证明 对于0ε∀>,取1min ,26εδ⎧⎫=⎨⎬⎩⎭,于是当01x δ<-<时,有 ()()2126112x x x x ε--<-<--, 由定义知()()211lim 212x x x x →-=--成立. 注 函数()f x 在点0x 处是否有极限,与函数()f x 在点0x 处是否有定义无关.。