高等数学2(同济版)第二章复习资料
高等数学(数二)知识重点及复习计划

重点
高阶导数求法(归纳法,分解法,用莱布尼兹法则)
习题2-3:2,3,10,11,12
2.4
重点
由参数方程确定的函数的求导法,隐函数的求导法,相关变化率
习题2-4:2,4,7,8,9,10,11
2.5
函数微分的定义,微分的几何意义,微分运算法则
注:P119 微分在近似计算中的应用(不用看)
习题2-5:2,3,4
习题9—8:1—12
总复习题九:1.3.4.5.6.8.9.10.11.12.
注:9.9与9.10不用看
第十章 重积分(时间1周,每天2-3小时)
10.1
二重积分的概念与性质(二重积分的定义及6个性质),
习题10-1:1,4,5
1.了解二重积分的概念与基本性质
2.掌握二重积分的计算方法(直角坐标、极坐标).
2.掌握用洛必达法则求未定式极限的方法.
3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
4.会用导数判断函数图形的凹凸性.
5.会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
6.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.
习题2-1:6,7,9,11,14,15,16,17,18,19,20
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.
同济版高数第二册10-2

D1
0
1
D2
2 x
此题用直角系算麻烦! D4
二、在极坐标系下二重积分的计算
1 1 2 2 i ( ri ri ) i ri i 2 2 r ri ri 1 ( 2ri ri )ri i r ri 2 1 2 ri ri i ri i , 2
f1 ( x , y )
D
f2 ( x , y) 均非负
D
f ( x , y )dxdy f1 ( x , y )dxdy f 2 ( x , y )dxdy
D
因此上面讨论的累次积分法仍然有效 .
例 设函数 f ( x , y )连续,
D
且f ( x , y ) xy f ( x , y )dxdy , 其中 D是y 0, y x 2 , x 1围成的闭区域,
D是由曲线x y 2 及x 1围成的闭区域.
例11 计算 y x 2 d . 其中 D : 1 x 1, 0 y 1.
D
解 先去掉绝对值符号,如图
D
y x 2 d
D3
2
D1 D2
1
( x
0
2
y )d ( y x )d
解 e
dy 无法用初等函数表示
积分时必须考虑次序
x e
D
2 y2
dxdy dy x e
0
0
2
1
y
2 y2
dx
e
0
1
y
2
2 1 1 2 y3 y y 2 dy e dy (1 ). 0 6 e 3 6
高等数学(同济版)复习资料

第一章 函数与极限第一节 映射与函数一、集合(一).集合的相关概念1.集合:集合是数学中一个不加定义的原始概念,一般是这样描述的:描述性定义:具有某种特定性质的事物的总体称为集合,用大写字母A ,B ,C ,┄ 表示;组 成集合的事物称为元素,用小写字母a ,b ,c ,┄ 表示.2.空集:不含任何元素的集合称为空集,记作 ∅ .3.几何与元素的关系:元素a 属于集合A , 记作A a ∈;元素a 不属于集合A , 记作A a ∈或A a ∉.4.集合的分类:有限集:含有有限个元素的集合;无限集:不是有限集的集合.5.集合的表示法:(1).列举法:按某种方式列出集合中的全体元素.例:有限集合n i i n a a a a A 121}{},,,{=== .(2).描述法:x x M {=所具有的特征}. 例:}01{2=-=x x M 表示方程012=-x 的解集.6.几种常用的数集:自然数集:}{},,,2,1,0{n n N == ;正整数集:},,,2,1{ n N =+; 整数集:}/{ N x N x x Z +∈-∈=; 有理数集:,N q ,p p Q +∈∈⎨⎧=Z p 与 q 互质⎬⎫;实数集合:x R {=x 为有理数或无理数}.(二).集合之间的关系及运算1.集合之间的关系包含关系: 设有集合A 和B ,若A x ∈必有B x ∈,则称 A 是 B 的子集 , 或称 B 包含 A ,记作B A ⊂ 或A •B ⊃. 相等关系:若B A ⊂且A B ⊂,则称 A 与 B 相等,记作B A =.例如, Z N ⊂,Q Z ⊂,R Q ⊂.下列关系成立 :(1). A A ⊂;A A =;A ⊂Φ.(2). B A ⊂且C B ⊂⇒C A ⊂.2.集合之间的运算:对集合A 与 B ,有下列几种基本运算并集:A x B A ∈={ 或B x ∈};交集:A x B A ∈={ 且B x ∈};差集:A x B A ∈={\且B x ∉};余集(补集):I x A I A c ∈=={\且A x ∉},其中I 称为全集,I A ⊂; 直积:{}B y A x y x B A ∈∈=⨯,),( (笛卡尔直积).特例:2R R R =⨯为平面上的全体点集.(三).区间和邻域1.有限区间{} b x a x b a <<=),(; {} b x a x b a ≤<=],(;{} b x a x b a <≤=),[; {} b x a x b a ≤≤=],[.2.无限区间:{} a x x a ≥=∞+),[; {} b x x b ≤=-∞],(; {}R x x ∈=∞+-∞),(.3. 邻域点a 的δ 邻域: {}{}δδδδ<-=+<<-=a x x a x a x a U ),(;点a 的去心δ 邻域: {}δδ<-<=a x x a U 0),( ;点a 的左δ 邻域: ),(a a δ-;点a 的右δ 邻域: ),(δ+a a .其中, a 称为邻域中心, δ 称为邻域半径.4. 区间的直积:{}],[],,[),(],[],[d c y b a x y x d c b a ∈∈=⨯.二、实数集及其完备性1. 实数集的性质:(1). 封闭性:任意两个实数进行加、减、乘、除 (分母不为零) 运算后,其结果仍然是实数.(2). 有序性:任意两个实数a 和b ,必满足且仅满足下列三种关系之一:a < b ,a > b ,a = b .且若a < b ,b < c ,则a < c .(3). 稠密性:任意两个不相等的实数之间仍有实数.(4). 完备性:实数集与数轴上的点存在一一对应的关系,即任意一个实数都对应数轴上唯一的一个点;反之, 数轴上任意一点也对应唯一的一个实数.2. 实数集的确界存在定理(1). 定义1. 设R A ⊂,且Φ≠A ,若R L ∈∃,使得A x ∈∀,都有L x ≤(或L x ≥),则称数集A 有上界(或下界),并称L 是A 的一个上界(或下界).若数集A 既有上界又有下界,则称A 有界,否则称A 无界.(2). 定义2. 设R A ⊂,且Φ≠A ,若R ∈∃β(或R ∈α)满足下列条件:①. A x ∈∀,有β≤x (或)α≥x ;②. 0>∀ε,A x ∈∃0, 使 εβ->0x (或εα+<0x ),则称β为数集A 的上确界(或α为数集A 的下确界),记为A sup =β(或A inf =α)注:1°.上确界是集合的上界中最小的,下确界是集合的下界中最大的.2°.数集的确界和它的最值是区别的,最值属于集合,而确界不一定属于集合.(3). 确界存在定理: 有上界(或下界)的非空实数集必有上确界(或下确界).三、映射1. 映射:设 X , Y 是两个非空集合,若存在一个对应法则f ,使得X x ∈∀,有唯一确定的Y y ∈与之对应,则称f 为从 X 到 Y 的映射, .:Y X f →元素 y 称为元素 x 在映射 f 下的像, 记作).(x f y =元素 x 称为元素 y 在映射 f 下的原像.集合 X 称为映射 f 的定义域,记作f D ,即X D f =;集合 X 中的元素的像所组成的集合称为映射 f 的值域,记作f R 或)(X f ,即Y X x x f X f R f ⊂∈==}|)({)(.注:1°.映射的三要素:定义域, 对应法则, 值域.2°.元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一.2. 映射的分类:满射:若Y X f =)(,则称 f 为满射.单射:若2121,,x x X x x ≠∈∀,有)()(21x f x f ≠,则称 f 为单射.双射:若 f 既是满射又是单射,则称 f 为双射或一一映射.注:映射又称为算子,在不同数学分支中有不同的惯用名称, 例如:映射f :X (≠ ∅ ) →Y (数集)称为X 上的泛函;映射f :X (≠ ∅ ) →X (数集)称为X 上的变换;映射f :X (数集或其子集) →R 称为X 上的函数.3. 逆映射:对单射f :X →Y ,称映射g :R f → X 为f 的逆映射,记作-f ,其定义域f f R D =-, 值域为X R f =-.4.复合映射:称映射g :X → Y 1,f :Y 2 → Z (21Y Y ⊂)确定的从X 到Z 的映射为映射g 和 f 构成的复合映射,记作Z X g f →: ,即)]([)(x g f x g f = .注:g 的值域g R 必须包含在f 的定义域f D ,即f g D R ⊂.四、函数1. 函数的概念: 设数集R D ⊂,称映射R D f →:为定义在D 上的函数,记为↓↓↓↓∈=.),(D x x f y因 映 自 定 值域:{}D x x f y y D f R f ∈===),()(变 变 义 函数图形: {}D x x f y y x C ∈==),(),(.量 射 量 域对应规律的表示方法: 解析法(公式法)、图象法、列表法.注:记号f 和法则f (x )的含义不同,f 表示自变量x 和因变量y 之间的对应法则,而f (x )表示与自变量x 对应的函数值,在不至于混淆的情况下,习惯上仍用f (x )表示函数.2. 函数的几种数学表达式:(1). 显函数:)(x f y =. 如: ]1,1[,12-∈-=x x y .(2). 隐函数:0),(=y x f . 如: 0,122≥=+y y x .(3). 参数方程表示的函数:I t t y t x ∈⎩⎨⎧==),(),(ψϕ.如],0[,sin ,cos π∈⎩⎨⎧==t t y t x . (4). 分段函数:在定义域的不同子集上用不同的表达式.例1. 符号函数⎪⎩⎪⎨⎧<-=>==0,10,00,1sgn x x x x y ,定义域:),(∞+-∞=D ,值域:}1,0,1{-=f R ,对任何x ,有||sgn x x x ⋅=.例2. 绝对值函数⎩⎨⎧<-≥==0,0,||x x x x x y .例3. 取整函数n x y ==][,当1+<≤n x n ,Z n ∈.例如:075=⎥⎦⎤⎢⎣⎡,1]2[=,3][=π,4]5.3[-=-. 例4. 狄利克雷函数⎩⎨⎧∉∈=Q x Q x x f ,0,1)(. 3.函数的几种特性: 设函数D x x f y ∈=,)(,且有区间D I ⊂.(1).有界性:I x ∈∀,若0>∃L ,使得 L x f ≤)((或L x f ≥)(),则称)(x f 在I 上有上界(或下界),并称L 为)(x f 在I 上的一个上界(或下界).I x ∈∀,若0>∃M ,使得M x f ≤|)(|成立,则称)(x f 在I 上有界.(2).单调性:I x x ∈∀21,,当21x x <,总有)()(21x f x f <))()((21x f x f <,则称)(x f 在I 上是单调增加 (单调减少) 的.单调增加函数和单调减少函数统称为单调函数.(3).奇偶性:设函数)(x f 的定义域D 关于原点对称, D x ∈-∀,若)()(x f x f =-恒成立,则称)(x f 为偶函数,若)()(x f x f -=-恒成立,则称)(x f 为奇函数.注:奇函数的图形关于原点对称;偶函数的图形关于y 轴对称.(4).周期性:D x ∈∀,若0>∃l ,使得D l x ∈+,都有)()(x f l x f =±,则称)(x f 为周期函数,称 l 为周期(一般指最小正周期).注: 周期函数不一定存在最小正周期.例如:常量函数C x f =)(; 狄利克雷函数⎩⎨⎧∉∈=Q x Q x x f ,0,1)(. 4.反函数与复合函数:相对于逆映射和复合映射的概念,有反函数和复合函数的概念.(1).反函数的概念及性质定义:若函数)(:D f D f →为单射,则存在一新映射D D f f →-)(:1使)(D f y ∈∀,有 x y f =-)(1,其中y x f =)(,称此映射1-f 为f 的反函数.习惯上, 函数D x x f y ∈=,)(的反函数记成)(,)(1D f x x f y ∈=-.性质:①. y =f (x ) 单调递增(或递减),其反函数)(1x f y -=存在,且也单调递增(或递减). ②.函数y =f (x )与其反函数)(1x f y -=的图形关于直线x y =对称.(2). 复合函数 :设有函数链,),(f D u u f y ∈=与,),(D x x g u ∈=且f g D R ⊂,则称函数)()]([D x x g f y ∈=为由)(x g u =与)(u f y =确定的复合函数,记作))((][x g f )x (g f =, 其中u 称为中间变量,有时也称)(x g u =为内函数,)(u f y =为外函数.注:构成复合函数的条件f g D R ⊂不可少.5. 初等函数(1). 基本初等函数: 反三角函数、对数函数、幂函数、三角函数、指数函数.(2). 初等函数: 由常数及基本初等函数经过有限次四则运算和复合步骤所构成, 并可用一个式子表示的函数, 称为初等函数. 否则称为非初等函数.注:符号函数、取整函数以及狄利克雷函数都是非初等函数.第二节 数列的极限一、数列极限的定义1. 数列:称自变量取正整数的函数为数列,记作)(n f x n =或}{n x ,n x 称为通项(一般项).2. 数列极限(1).引例(刘徽割圆术): 对给定的圆,用其内接内接正126-⨯n 边形的面积n A 逼近其面积.容易得到内接内接正126-⨯n 边形的面积序列: ,,,,21n A A A ,当n 无限增大时, n A 无限接近S . S 称为数列}{n A 的极限.对于数列,我们关心的主要问题是:当n 无限增大时,n x 的变化趋势如何?例如:①.数列⎭⎬⎫⎩⎨⎧-+n n )1(1随着n 的无限增大而无限接近常数1. ②.数列})1{(n -随着n 的无限增大没有确定的变化趋势.③.数列}2{n 随着n 的无限增大而无限增大.但是,仅仅凭直觉观察得到极限和用“无限增大” 、“无限接近”来描述极限是远远不够的,例如:我们不能根据观察而判断出数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+n n 11的极限,因此,需要用精确、定量的数学语言来定义极限.下面以数列⎭⎬⎫⎩⎨⎧-+n n )1(1为例来介绍数列极限.我们知道点n x 与点a 之间的距离a x n -是刻画数n x 与a 接近程度的一个度量.当n 无限增大时,数列⎭⎬⎫⎩⎨⎧-+n n )1(1无限接近1,也就是说当n 无限增大时,nn x n n 11)1(11=--+=-可以无限的变小,例如 如果要求10111<=-n x n ,那么只要10>n ,即从数列第11项起,后面的所有项与1的距离都小于1/10; 如果要求310111<=-n x n ,那么只要1000>n ,即从数列第1001项起,后面的所有项与1的距离都小于1/103;上述过程实际上说明了如下事实:无论要求n x 与1多么接近,即1-n x 多么小,只要n 足够大,就可以使1-n x 变得那么小,n 足够大的程度由1-n x 小的程度来决定. 为了刻画n x 与1的接近程度,我们引入任意给定的正数ε,那么上述事实可描述成:不论给了多么小的的正数ε,总存在一个正整数N (比如上述过程中的[]ε1=N ),当N n >时,总有ε<-1n x ,数1就叫做数列}{n x 当∞→n 时的极限.将这个例子中的思想方法和表述方式用于一般数列,就得到了如下数列极限的定义:(2). 数列极限:若数列}{n x 与常数a 满足:0>∀ε,+∈∃N N ,使得N n >∀时,总有ε<-a x n ,则称该数列}{n x 以a 为极限,或称数列}{n x 收敛于a ,记作a x n n =∞→lim 或)(∞→→n a x n . 数列收敛:a x n n =∞→lim ⇔0>∀ε,+∈∃N N ,使得N n >∀时,总有ε<-a x n . 数列发散:对任意常数a ,若00>∃ε,+∈∀N N ,N n >∃0,使得00ε≥-a x n ,则数列}{n x 发散.数列收敛的几何意义:对于点a 的任意ε邻域),(εa U ,总存在一个项数N ,使得数列}{n x 中自第1+N 项开始后面的一切项都落在点a 的ε邻域),(εa U 内,在这个邻域之外至多只能有}{n x 的有限项N x x x ,,,11 .(数列的收敛性及其极限值与它前面的有限项无关,改变数列中的有限项的值,并不能改变其收敛性及其极限值.)注:在数列极限定义中,1°.正数ε必须是任意给定的,ε可以充分小,只有这样,不等式ε<-a x n 才能体现出n x 无限接近a 的要求,因此在讨论极限问题时常常要限定ε的范围,例如:为了使]/1[ε是正整数,需要限定1<ε,此时1]/1[>ε.此外,εc ,ε, ,2ε也都是任意给定的正数,它们只是形式不同,没有本质的区别,今后证明极限问题时经常要用到.2°.正整数N 是依赖于ε的给定而确定的(常记为)(εN ),它给出了一个项号,只要n 增大到这一项之后,就有ε<-a x n .3°.对应于给定的一个ε,N 并不是唯一的.4°.一般地,为了比较简便地得到一个N ,可适当放大a x n -,使之小于某一个以n 为变量的简单且趋于零的表达式,令它小于ε后求出N .例1. 证明:1)1(lim =-+∞→nn nn . 证明:对于0>∀ε,要使不等式ε<=--+=-n n n a x n n 11)1(成立,只要ε1>n ,取⎥⎦⎤⎢⎣⎡=ε1N .于是, 0>∀ε,当N n >时,有ε<=--+nn n n 11)1(,即1)1(lim =-+∞→n n n n . 例2. 证明:0)1()1(lim 2=+-∞→n nn . 证明:对于0>∀ε(假定1<ε),要使不等式ε<+<+=-+-=-11)1(10)1()1(22n n n a x n n 成立,只要11->εn ,取⎥⎦⎤⎢⎣⎡-=11εN . 于是, 0>∀ε,当N n >时,有ε<+=-+-22)1(10)1()1(n n n ,即0)1()1(lim 2=+-∞→n n n . 例3. 对1||<q ,证明:0lim 1=-∞→n n q . 证明:对于0>∀ε(假定1<ε),要使不等式ε<=-=---110n n n qq a x 成立,只需εln ln )1(<-q n ,(注意到0ln <q .) 即q n ln ln 1ε+>,取⎥⎦⎤⎢⎣⎡+=q N ln ln 1ε.于是, 0>∀ε,当N n >时,有ε<=---110n n qq ,即0lim 1=-∞→n n q . 二、收敛数列的性质1.极限的唯一性: 定理1. 若数列}{n x 收敛,则它的极限是唯一的(收敛数列的极限是唯一). 证法(一):用反证法.证明:假设a x n n =∞→lim 与b x n n =∞→lim 同时成立,且b a <.取2a b -=ε,由极限定义, 对0>∀ε,⎪⎩⎪⎨⎧<->∀∈∃<->∀∈∃++εεb x N n N N a x N n N N n n ,,,,2211,取},max{21N N N =,N n >∀,有⎪⎩⎪⎨⎧<-<-εεb x a x n n 同时成立,即2b a a x a x n n +=+<⇒<-εε,2b a b x b x n n +=->⇒<-εε同时成立,出现矛盾,定理得证.证法(二): 直接证明.证明:假设a x n n =∞→lim 与b x n n =∞→lim 同时成立,往证b a =.由极限定义,对0>∀ε,⎪⎩⎪⎨⎧<->∀∈∃<->∀∈∃++εεb x N n N N a x N n N N n n ,,,,2211,取},m a x {21N N N =,N n >∀, 有⎪⎩⎪⎨⎧<-<-εεb x a x n n 同时成立,于是, b a a x b x a x b x b a n n n n =⇒<-+-≤---=-ε2)()(,即收敛数列的极限是唯一的.例4.证明数列),2,1()1(1 =-=+n x n n 是发散的.证法一:直接证明,只需证明R a ∈∀都不是数列})1{(1+-n 的极限. 证明:10=∃ε,分两种情形:1. 当0≥a 时,+∈∀N N ,N k n n >=∃)2(00,有011|1||)1(|ε≥+=--=--+a a a n .2. 当0<a 时,+∈∀N N ,N k n n >+=∃)12(00,有01)(1|1||)1(|ε≥-+=-=--+a a a n . 综上说明数列})1{(1+-n 发散. 证法二:用反证法.证明:假设数列})1{(1+-n 收敛,由定理1知,数列})1{(1+-n 有唯一极限,不妨设a n n =-+∞→1)1(lim ,由数列极限定义,对21=ε,+∈∃N N ,当N n >时,21|)1(|1<--+a n 成立,即当N n >时,21)1(211+<-<-+a a n ,又∞→n 时,})1{(1+-n 交替取值 1 与-1,而这两个数不能同时位于长度为1的区间()21,21+-a a 内,出现矛盾,故数列})1{(1+-n 发散.2. 收敛数列的有界性:定理2. 若数列}{n x 收敛,则}{n x 一定有界.证明:设a x n n =∞→lim ,取1=ε,则+∈∃N N ,当N n >时,有1<-a x n ,从而有||1|||||)(|||a a a x a a x x n n n +<+-≤+-=,取{}||1,||,,||,||max 21a x x x M N += ,则有),2,1( =≤n M x n ,由此证明收敛数列必有界. 注:1°.数列无界必发散.(逆否命题)2°.数列有界未必收敛,例如),2,1()1(1 =-=+n x n n 有界,即1≥∀n ,1||≤n x ,但该数列却发散.3. 收敛数列的保号性:定理3. 若a x n n =∞→lim ,且0>a (或0<a ),则+∈∃N N ,当N n >时,都有0>n x (或0<n x ).证明:对 a > 0,取2/a =ε,则+∈∃N N ,当N n >时,02/2/>->⇒<-a a x a a x n n . 推论:若数列}{n x 从某项起0≥n x (或0≤n x ),且a x n n =∞→lim ,则0≥a (或0≤a ).4. 收敛数列的任一子数列收敛于同一极限:子数列:在数列}{n x 中任意抽取无限多项并保持这些项在原数列中的先后次序得到的数列}{k n x 为原数列}{n x 的一个子数列(简称子列). 注:1°. 对N k ∈∀,k n k ≥,当∞→k 时,∞→k n .2°. 当12-=k n k 时,称}{k n x 为奇子列;当k n k 2=时,称}{k n x 为偶子列. 定理4. a x n n =∞→lim ⇔对数列}{n x 的任何子列}{k n x ,都有a x k n k =∞→lim .证明:必要性:由a x n n =∞→lim ,有0>∀ε,+∈∃N N ,当N n >时,ε<-a x n .取N K =,当N K k =>时,有N n n n N K k >=>,有ε<-a x k n ,即a x k n k =∞→lim .充分性显然.注: 若数列有两个子数列收敛于不同的极限,则原数列一定发散. 例如:数列),2,1()1(1 =-=+n x n n 发散,而1lim 12=-∞→k k x ,1lim 2-=∞→k k x .此例也说明发散的数列也可能有收敛的子列.第三节 函数的极限一、自变量趋于有限值时函数的极限 1. 0x x →时函数)(x f 的极限(1).定义:设函数)(x f 在点0x 的某去心邻域内有定义, 对常数A ,若0>∀ε,0>∃δ,:x ∀δ<-<00x x ,有ε<-A x f )(,则称 A 为函数)(x f 当0x x →时的极限,记作A x f x x =→)(lim 0或A x f →)(当)(0x x →.“δε-”定义:A x f x x =→)(lim 0⇔0>∀ε,0>∃δ,当),()(0δx U f D x⋂∈时,有ε<-A x f )(.注:A x f x x =→)(lim 0研究函数)(x f 当0x x →时的变化趋势,不考虑函数)(x f 在点0x 是否有定义.例如:函数24)(2--=x x x f 当2≠x 时,2)(+=x x f ,所以2→x 时4)(→x f .再如:函数⎩⎨⎧=≠==000,1|sgn |)(x x x x f ,当0→x 时对应的函数值趋于1.(2).几何意义:对于一个以直线ε+=A y 和ε-=A y 为两边的带型区域, 总存在一个0>δ,使得函数)(x f 在区间),(00x x δ-与),(00δ+x x 内的 图形都位于这个带型区域内. 例1. 证明C C x x =→0lim ,C 为常数.证明:对0>∀ε,ε<=-=-0)(C C A x f 总成立,于是,0>∀ε,0>∀δ,:x ∀δ<-<00x x ,总有ε<=-0C C ,即C C x x =→0lim .例2. 证明1)12(lim 1=-→x x .证明:对0>∀ε,要使ε<-=--=-121)12()(x x A x f 成立,只需21ε<-x ,取2εδ=.于是0>∀ε,0>∃δ,δ<-<∀10:x x ,总有ε<-=-12)(x A x f ,即1)12(lim 1=-→x x .例3. 证明211lim21=--→x x x . 证明:对0>∀ε,要使ε<-=-+=---=-121211)(2x x x x A x f 成立,取εδ=.于是0>∀ε,0>∃δ,δ<-<∀10:x x ,总有ε<-=-1)(x A x f ,即211lim21=--→x x x . 例4.证明:当00>x 时,00limx x x x =→.证明:对0>∀ε,要使ε<-≤+-=-=-000001)(x x x x x x x x x A x f 成立,只要ε00x x x <-.由于x 的定义域是),0[∞+,因此选取的0>δ要使),0[),(00∞+⊂+-δδx x ,取{}00,minx x εδ=.于是0>∀ε,0>∃δ,δ<-<∀00:x x x ,总有ε<-0x x ,即00limx x x x =→.(详细说明:由于000001x x x x x x x x x -≤+-=-,当εδ0x =时,即ε00x x x <-,代入上式有ε<-0x x ;当0x =δ时,有ε00x x <,即ε<0x ,将00x x x <-代入上式得ε<<-00x x x .)(在0x x →的过程中,0x x →的方式是任意的,x 既可以是0x 左侧的点,也可以是0x 右侧的点,但要限定x 只在0x 某一侧趋于0x ,则有下面的单侧极限,即左极限和有极限.) 2. 单侧极限左极限:⇔==-→-A x f x f x x )(lim )(000>∀ε,0>∃δ,),(00x x x δ-∈∀,有ε<-A x f )(. 右极限: ⇔==+→+A x f x f x x )(lim )(000>∀ε,0>∃δ,),(00δ+∈∀x x x ,有ε<-A x f )( 定理:⇔=→A x f x x )(lim 0A x f x f x x x x ==-+→→)(lim )(lim 00. 例5. 讨论函数⎪⎩⎪⎨⎧>+=<-=0,10,00,1)(x x x x x x f 当0→x 时的极限是否存在. 解:因为1)1(lim )(lim 0-=-=--→→x x f x x ,1)1(lim )(lim 0=+=++→→x x f x x ,显然)0()0(+-≠f f ,所以)(lim 0x f x →不存在.3. 函数极限的性质 (1). 函数极限的唯一性定理1.若A x f x x =→)(lim 0存在,则该极限值唯一.(2). 函数极限的局部有界性定理2.若A x f x x =→)(lim 0,则0>∃M ,0>∃δ,δ<-<∀00:x x x ,有M x f ≤)(.证明:由A x f x x =→)(lim 0,可取1=ε,0>∃δ,δ<-<∀00:x x x ,有1)()(1)(+≤+-≤⇒≤-A A A x f x f A x f ,取1||+=A M ,则有M x f ≤)(. (3).函数极限的局部保号性定理3.若A x f x x =→)(lim 0,且0>A (或0<A ),则0>∃δ,δ<-<∀00:x x x ,有0)(>x f (或0)(<x f ).证明:由0)(lim 0>=→A x f x x ,可取2A=ε,0>∃δ,δ<-<∀00:x x x ,有 022)(2)(>=->⇒≤-AA A x f A A x f .同理可证明0<A 的情形.定理3’. 若A x f x x =→)(lim 0,且0≠A ,则0>∃δ, δ<-<∀00:x x x ,有2)(Ax f >. (4).函数极限的局部保序性定理4.若A x f x x =→)(lim 0,B x g x x =→)(lim 0,B A <,则0>∃δ,δ<-<∀00:x x x ,有)()(x g x f <.证明:对02>-=AB ε, 由⇒=→A x f x x )(lim 001>∃δ,当100δ<-<x x 时,有22)(2)(BA AB A x f A B A x f +=-+<⇒-≤-.由⇒=→B x g x x )(lim 002>∃δ,当200δ<-<x x 时,有22)(2)(BA AB B x g A B B x g +=-->⇒-≤-. 取},min{21δδδ=,:x ∀δ<-<00x x ,由2)(B A x f +<和2)(BA x g +>得到)()(x g x f <. 推论:若A x f x x =→)(lim 0,B x g x x =→)(lim 0,且0>∃δ,:x ∀δ<-<00x x ,有)()(x g x f ≤,则B A <.(5).函数极限的归并性(函数极限与数列极限之间的关系)定理5.(海涅定理) ⇔=→A x f x x )(lim 0对任何数列}{n x (0x x n ≠),只要0lim x x n n =∞→,就有A x f n n =∞→)(l i m .证明:必要性:设A x f x x =→)(lim 0,由极限定义知,对0>∀ε,0>∃δ,:x ∀δ<-<00x x ,有ε<-A x f )(.由于0lim x x n n =∞→,0x x n ≠,故对上述0>δ,+∈∃N N ,当N n >时,有δ<-<00x x n .综上可得:0>∀ε,+∈∃N N ,当N n >时,有ε<-A x f n )(,故A x f n n =∞→)(lim .充分性:用反证法.假设A x f x x ≠→)(lim 0,则00>∃ε,+∈∀N n ,:n x ∃nx x n 100<-<,但0)(ε≥-A x f n .由此得到一个数列}{n x ,由于nx x n 100<-<,故0x x n ≠,且0lim x x n n =∞→,但是A x f n n ≠→∞)(lim ,与已知条件矛盾,从而必有A x f x x =→)(lim 0.二、自变量趋于无穷大时函数的极限1. ∞→x 时函数)(x f 的极限(1). 定义1.设函数)(x f 当0||>>αx 时有定义, 对常数A ,若0>∀ε,0>∃X ,:x ∀X x >||, 有ε<-A x f )(,则称 A 为)(x f 当∞→x 时的极限,记作A x f x =∞→)(lim 或A x f →)(当)(∞→x .“X -ε”定义:A x f x =∞→)(lim ⇔0>∀ε,0>∃X ,:x ∀X x >||,有ε<-A x f )(.(2). 几何意义:对于一个以直线ε+=A y ,ε-=A y 为两边的带型区 域,总存在一个0>X ,使得函数)(x f 在区间),(X --∞与),(∞+X 内 的图形都位于该带型区域内,直线A y =是曲线)(x f y =的水平渐近线. 例6. 证明01lim=∞→xx . 证明:对0>∀ε,要使不等式ε<=-xx 101成立,只需ε1>x ,取ε1=X ,于是,对0>∀ε,0>∃X ,:x ∀X x >||,有ε<-01x,即01lim =∞→x x .2. 单侧极限⇔=+∞→A x f x )(lim 0>∀ε,0>∃X ,X x >∀,有ε<-A x f )(.⇔=-∞→A x f x )(lim 0>∀ε,0>∃X ,X x -<∀,有ε<-A x f )(.思考与练习:1. 若极限)(lim 0x f x x →存在,是否一定有)()(lim 00x f x f x x =→?2. 设函数⎩⎨⎧>+≤=1,121,)(2x x x x a x f ,且)(lim 1x f x →存在, 则3=a .第四节 无穷小量与无穷大量一、无穷小量1. 定义:若0x x → (或∞→x )时,函数0)(→x f ,即0)(lim 0=→x f x x (或0)(lim =∞→x f x ),则称函数)(x f 为0x x → (或∞→x )时的无穷小量. 例如 :0)1(lim 1=-→x x ,函数1)(-=x x f 当1→x 时为无穷小量;01lim=∞→x x ,函数xx f 1)(=当∞→x 时为无穷小量; 011lim=-∞-→x x ,函数xx f -=11)(当-∞→x 时为无穷小量. 注:无穷小量不是很小的数,而是绝对值小于任意给定正常数ε的量,除 0 以外任何很小的常数都不是无穷小量,因为⇔=→0lim 0C x x 0>∀ε,0>∃δ,:x ∀δ<-<00x x ,ε<-0C ,显然C 只能是0 !2. 无穷小量与函数极限的关系定理1. ⇔=→A x f x x )(lim 0α+=A x f )(,其中α 为0x x →时的无穷小量,即0lim 0=→αx x .证明:必要性:⇒=→A x f x x )(lim 0,0,0>∃>∀δε:x ∀δ<-<00x x ,,有ε<-A x f )(,即α+=A x f )(,其中0lim 0=→αx x .充分性:⇒=→0lim 0αx x ,0,0>∃>∀δε:x ∀δ<-<00x x ,有εα<,又α+=A x f )(,则有ε<-A x f )(,即A x f x x =→)(lim 0.对自变量的其它变化过程类似可证.二、无穷大量定义: 若0>∀M ,0>∃δ(或0>∃X ),对:x ∀δ<-<00x x (或:x ∀X x >), 总有M x f >)(,则称函数)(x f 当0x x →)(∞→x 时为无穷大量,为了便于叙述函数的这一性态,也说函数的极限是无穷大量,记作∞=→)(lim 0x f x x (或∞=∞→)(lim x f x ).若将M x f >)(换成M x f >)((或M x f -<)(),则将无穷大量记作+∞=∞→→)(lim )(0x f x x x (或-∞=→∞→)(lim )(0x f x x x ).注:1°.无穷大量不是很大的数, 它是描述函数的一种状态. 2°.函数为无穷大量, 必定无界 . 但反之不真! 例如: 函数),(,cos )(∞+-∞∈=x x x x f ,∞→=π2)π2(n n f ,当∞→n ,但0π2=⎪⎭⎫⎝⎛+n f π,所以∞→x 时,)(x f 不是无穷大量!3°.若∞=→)(lim 0x f x x ,则称直线0x x =为曲线)(x f y =的铅直渐近线.若C x fx =→∞)(lim ,则称直线C y =为曲线)(x f y =的水平渐近线.例2. 证明∞=-→11lim1x x . 证明:对0>∀M ,要使M x >-11,只需M x 11<-,取M 1=δ. 于是,0>∀M ,0>∃δ,:x ∀δ<-<00x x ,有M x >-11,即∞=-→11lim1x x . 注:直线1=x 是曲线11-=x y 的铅直渐近线. 例3. 求曲线1)(22-==x x x f y 的水平、铅直两种渐近线.解:由111lim 1111lim 1lim 22222=-+=-+-=-∞→∞→∞→x x x x x x x x 知直线1=y 是已知曲线的一条水平渐近线.由∞=-→1lim 221x x x 知直线1=x 是已知曲线的一条铅直渐近线. 由∞=--→1lim 221x x x 知直线1-=x 也是已知曲线的一条铅直渐近线. 三、无穷小与无穷大的关系 定理2. 在自变量的同一变化过程中, 若)(x f 为无穷大量,则)(1x f 为无穷小量; 若)(x f 为无穷小量且0)(≠x f ,则)(1x f 为无穷大量. 证明:设∞=→)(lim 0x f x x ,则0>∀ε,对于ε1=M ,0>∃δ,:x ∀δ<-<00x x ,有ε1)(=>M x f ,即ε<)(1x f ,即)(1x f 为0x x →时的无穷小量. 反之,设0)(lim 0=→x f x x 且0)(≠x f ,则0>∀M ,对于M1=ε,0>∃δ,:x ∀δ<-<00x x ,有M x f 1)(=<ε,又:x ∀δ<-<00x x ,0)(≠x f ,从而M x f >)(1,)(1x f 为0x x →时的无穷大量.类似可证∞→x 的情形.第五节 极限运算法则一、无穷小量的运算法则定理1. 有限多个无穷小量的和还是无穷小量.证明:考虑两个无穷小量的和. 设0lim 0=→αx x ,0lim 0=→βx x ,而βαγ+=.0>∀ε,⎪⎩⎪⎨⎧<<-<∀>∃<<-<∀>∃2/,0:,02/,0:,0202101εβδδεαδδx x x x x x ,取{}21,min δδδ=,于是,0>∀ε,0>∃δ,δ<-<∀00:x x x ,有εβαβαγ<+≤+=,即0lim 0=→γx x .类似可证: 有限个无穷小量之和仍为无穷小量. 但无穷多个无穷小量之和未必是无穷小量,例如: 1π1π21π1lim 222=⎪⎭⎫⎝⎛++++++→∞n n n n n n .(后面再证明)定理2 .有界函数与无穷小量的乘积是无穷小量.证明:设函数u 在0x 的某一去心邻域内有界,即0>∃M ,01>∃δ,),(10δx U x∈∀,有M u ≤||. 又设0lim 0=→αx x ,即0>∀ε,M x x x /,0:,0202εαδδ<<-<∀>∃.取{}21,min δδδ=.于是,0>∀ε,0>∃δ,δ<-<∀00:x x x ,有εεαα=⋅<=M M u u /,即0lim 0=→αu x x .推论1. 常数与无穷小量的乘积是无穷小量. 推论2. 有限个无穷小量的乘积是无穷小量. 例1. 求xxx sin lim∞→.解:由于1sin ≤x ,而01lim=∞→x x ,故0sin lim =∞→x xx . 注:直线0=y 是曲线xxy sin =的水平渐近线.二、极限的四则运算法则定理 3 . 若A x f =)(lim ,B x g =)(lim ,则有B A x g x f x g x f ±=±=±)(lim )(lim )]()(lim[. 证明:由A x f =)(lim ,B x g =)(lim ,有βα+=+=B x g A x f )(,)((其中βα,为无穷小量) 于是, )()()()()()(βαβα±+±=+±+=±B A B A x g x f ,即B A x g x f x g x f ±=±=±)(lim )(lim )]()(lim[.推论: 若A x f =)(lim ,B x g =)(lim ,且)()(x g x f ≥,则B A ≥. 证明:令)()()(x g x f x -=ϕ,则0)(≥x ϕ,从而0)(lim ≥x ϕ,由于B A x g x f x -=-=)]()(lim[)(lim ϕ,于是B A ≥.说明:定理3可推广到有限个函数相加、减的情形.定理4.若A x f =)(lim ,B x g =)(lim ,则有AB x g x f x g x f =⋅=⋅)(lim )(lim )]()(lim[.证明:由A x f =)(lim ,B x g =)(lim ,有βα+=+=B x g A x f )(,)((其中βα,为无穷小量) 于是, αβαββα+++=++=B A AB B A x g x f ))(()()(,由于0lim lim lim ===αβαβB A ,从而)(lim )(lim )()(lim x g x f AB x g x f ⋅==. 说明: 定理4可推广到有限个函数相乘的情形. 推论1. )(lim )](lim[x f C x f C = ( C 为常数). 推论2. n n x f x f ])(lim [)](lim[= ( n 为正整数).例2. 设 n 次多项式n n n x a x a a x P +++= 10)(,试证)()(lim 00x P x P n n x x =→.证明: )(lim lim )(lim 010100x P x a x a a x a x a a x P n n n n x x n x x n x x =+++=+++=→→→ .定理5. 若A x f =)(lim ,B x g =)(lim ,且0≠B ,则有BAx g x f x g x f ==)(lim )(lim )()(lim. 证明:由A x f =)(lim ,B x g =)(lim ,有βα+=+=B x g A x f )(,)((其中βα,为无穷小量) 设 )()(1)()(βαββαγA B B B B A B A B A x g x f -+=-++=-=,因此 γ 为无穷小量, 即γ+=BA x g x f )()(, 由极限与无穷小关系定理, 得)(lim )(lim )()(limx g x f B A x g x f ==. 因为数列是一种特殊的函数,下面定理给出数列的极限的运算法则: 定理6 . 若A x n n =∞→lim ,B y n n =∞→lim ,则有(1). B A y x n n n ±=±→∞)(lim ;(2). B A y x n n n ⋅=→∞lim ;(3). 当0≠n y 且0≠B 时,BA y x n n n =∞→lim. 例3. 对分式函数)()()(x Q x P x R =,其中)(x P 、)(x Q 是多项式,若0)(0≠x Q ,试证: )()(lim 00x R x R x x =→.证明:)()()()(lim )(lim )(lim 000000x R x Q x P x Q x P x R x x x x x x ===→→→. 例4. 3162)3(lim )1(lim 31lim )3)(3()1)(3(lim 934lim3333223==+-=+-=+---=-+-→→→→→x x x x x x x x x x x x x x x x .例5. 求4532lim21+--→x x x x .解:由于031241513245lim221=-⋅+⋅-=-+-→x x x x ,于是∞=+--→4532lim 21x x x x . 例6. 737243lim 357243lim 332323=-+++=-+++→∞→∞x x x x x x x x x x .(分子分母同除以3x ) 例7. 020522123lim 52123lim 332232==+---=+---∞→∞→xx x x x x x x x x x .(分子分母同除以3x ) 例8. 12352lim 223--+-→∞x x x x x .解:由例7知052123lim 232=+---→∞x x x x x ,故例7知 ∞=+---→∞52123lim 232x x x x x . 一般有如下结果:n n n m m mx b x b x b a x a x a ++++++--→∞ 110110lim ⎪⎩⎪⎨⎧<∞>==mn m n mn a ,,0,00. ( n m b a ,,000≠为非负常数)三、复合函数的极限运算法则定理7. 设函数)]([x g f y =是由函数)(x g u =与)(u f y =复合而成,)]([x g f 在点0x 的某去心邻域),(00δx内有定义,若0)(lim 0u x g x x =→,A u f u u =→)(lim 0,且0)(u x g ≠,则A u f x g f u u x x ==→→)(lim )]([lim 0.证明:由⇒=→A u f u u )(lim 00>∀ε,0>∃η,当η<-<00u u 时,有ε<-A u f )(.由⇒=→0)(lim 0u x g x x 对上述的0>η,01>∃δ,当100δ<-<x x 时,有η<-0)(u x g .取{}10,min δδδ=,则当δ<-<00x x 时,有η<-<0)(0u x g ,从而有ε<-=-A u f A x g f )()]([,即A u f x g f u u x x ==→→)(lim )]([lim 0.注:若定理中若∞=→)(lim 0x g x x ,A u f u =∞→)(lim ,则有A u f x g f u x x ==→∞→)(lim )]([lim 0;若∞=→∞)(lim x g x ,A u f u =∞→)(lim ,则有A u f x g f u x ==→∞→∞)(lim )]([lim .例8.求93lim23--→x x x .解:令932--=x x u ,则6131lim lim 33=+=→→x u x x ,所以6661lim 93lim 6123===--→→u x x u x . 例9.2)1(lim 1)1)(1(lim 11lim111=+=-+-=--→→→x x x x x x x x x .(分母有理化)另解:令x u =,有111112+=--=--u u u x x ,于是2)1(lim 11lim11=+=--→→u x x u x . 本节的最后,我们应用极限的运算法则来得到曲线的渐近线的具体表达式. 四、曲线的斜渐近线定理8. 曲线)(x f y =在右(或左,或左右)方以直线b kx y +=为渐近线的充分必要条件是x x f k x )(lim+∞→=(或x x f k x )(lim -∞→=,或xx f k x )(lim ∞→=);))((lim kx x f b x -=+∞→(或))((lim kx x f b x -=→∞,或))((lim kx x f b x -=→∞).证明:必要性:设曲线)(x f =在右方以b kx y +=为渐近线,点))(,(x f x 到直线b kx y +=的距离为)(x d ,则由渐近线的定义知,0)(lim =+∞→x d x ,即01)(lim2=+--+∞→kb kx x f x ,等价于0))((l i m =--+∞→b kx x f x ,从而有))((lim kx x f b x -=+∞→.由此得0)(lim )(lim =⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-+∞→+∞→x kx x f k x x f x x ,即x x f k x )(lim +∞→=. 充分性:由))((lim kx x f b x -=+∞→得0))((lim =--+∞→b kx x f x ,从而0)(lim =+∞→x d x .练习:试确定常数 a 使0)1(lim 33=--∞→x a x x .解:令x t 1=,则t a t t a t t t --=⎪⎪⎭⎫ ⎝⎛--=→→3303301lim 11lim 0,所以必有[]01lim 330=--→a t t ,故01=--a ,即1-=a .第六节 极限存在准则 两个重要极限一、极限存在准则定理1.(夹逼准则)若函数h g f ,,满足(1). 在0x 的某一去心邻域),(0δx U内,有)()()(x h x f x g ≤≤,(2). A x h x g x x x x ==→→)(lim )(lim 0, 则A x f x x =→)(lim 0.证明:由A x h x g x x x x ==→→)(lim )(lim 0知0>∀ε,⎪⎩⎪⎨⎧+≤≤-⇒<-<-<∀>∃+≤≤-⇒<-<-<∀>∃εεεδδεεεδδA x h A A x h x x x A x g A A x g x x x )()(,0:,0)()(,0:,0202101,取{}21,min δδδ=, 于是,0>∀ε,0>∃δ,δ<-<∀00:x x x ,有εε+≤≤≤≤-A x h x f x g A )()()(,即ε<-A x f )(,因此A x f x x =→)(lim 0.推论:若数列}{n x 、}{n y 、}{n z 满足 (1). N n ∈∃0,当0n n >时,有n n n z x y ≤≤, (2). a z y n n n n ==→∞→∞lim lim ,则a x n n =→∞lim .例1.求极限⎪⎪⎭⎫⎝⎛++++++→∞n n n n n 22212111lim . 解:由于11211122222+≤++++++≤+n n nn n n nn n ,而1111limlim2=+=+→∞→∞nnn nn n ,1111lim1lim22=+=+→∞→∞n n nn n ,于是由夹逼准则知112111lim 222=⎪⎪⎭⎫⎝⎛++++++→∞n n n n n . 例2.证明:1π1π21π1lim 222=⎪⎭⎫⎝⎛++++++∞→n n n n n n . 证明:由于ππ1π21π1π2222222+≤⎪⎭⎫⎝⎛++++++≤+n n n n n n n n n n ,而1πlim 22=+∞→n n n n ,1πlim 22=+∞→n n n ,由夹逼准则知1π1π21π1lim 222=⎪⎭⎫⎝⎛++++++∞→n n n n n n . 定理2.(单调有界准则)单调有界数列必收敛,即若数列}{n x 单调增加(或单调减少)且有上界(或有下界),则n n x →∞lim 必存在.证明:仅就}{n x 单调增加且有上界的情形证明,}{n x 单调减少且有下界的情形类似可证.因为}{n x 单调增加且有上界,由确界存在定理知,}{n x 必有上确界}sup{n x =β.由上确界定义知+∈∀N n ,β≤n x ;0>∀ε,}{n N x x ∈∃,使εβ->N x ,于是,0>∀ε,+∈∃N N ,N n >∀,有εββ->>≥N n x x ,即εβ<-≤n x 0,因而εβ<-||n x ,所以n n x →∞lim 存在,且β=∞→n n x lim .注:单调增加有上界的数列的极限就是其上确界;单调减少有下界的数列的极限就是其下确界.例3.设0>x ,x x =1,,,2 x x x +=,, x x x x n +++=证明数列}{n x 极限存在,并求出其极限.证明:由数列}{n x 的定义知,1≥∀n ,0>n x 且n n x x x +=+1.现用数学归纳法证明}{n x 单调增加有上界.首先,21x x <,设n n x x <-1,则n n n n x x x x x x >+>+=-+11,所以}{n x 单调增加. 其次,11+<=x x x ,设1+<x x n ,则11211+=++<++<+=+x x x x x x x x n n ,综上可知}{n x 单调增加有上界.根据单调有界准则,数列}{n x 收敛,设A x n n =∞→lim ,在等式n n x x x +=+21两边令∞→n ,取极限得A x A +=2,解得2411xA +±=,但由极限的保号性知0≥A ,故 2411lim xx n n ++=→∞. 例4.证明数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11收敛.证明: 利用二项式公式, 有nn n x ⎪⎭⎫⎝⎛+=11n n n n n n n n n n n n n n n n 1!)1()1(1!3)2)(1(1!2)1(1!1132⋅+--++⋅--+⋅-+⋅+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++=n n n n n n n n 112111!12111!3111!2111 , ⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-++=+11121111)!1(1121111!31111!21111n n n n n n n n x n ,比较可知),2,1(1 =<+n x x n n ,即数列}{n x 单调增加. 由于n k ≤≤2时,)1(1!1112111!1-<<⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-k k k n k n n k ,有 !1!31!2111n x n +++++< nn ⋅-++⋅+⋅++<)1(132121111 nn n n 1111121312121111--+---++-+-++= n13-= 3<,即}{n x 有上界.根据单调有界准则知数列}{n x 收敛,将其极限记为e ,即e n nn =⎪⎭⎫⎝⎛+→∞11lim ,e 为自然对数的底,为无理数,其值为 590457182818284.2e =. 定理3.(柯西收敛准则)数列}{n x 收敛的充分必要条件是0>∀ε,+∈∃N N ,使得N n m >∀,,有ε<-m n x x . 证明略.注:1°.柯西收敛准则的等价形式:数列}{n x 收敛的充分必要条件是0>∀ε,+∈∃N N ,使得N n >∀,+∈∀N p 有ε<-+n p n x x . 2°.数列发散的充要条件:数列}{n x 收敛的充分必要条件是00>∃ε,+∈∀N N ,N n m >∃,,使0ε>-m n x x . 例5.设222131211n x n ++++= ,证明数列}{n x 收敛. 证明:+∈∀N p n ,,要使222)(1)2(1)1(1p n n n x x n p n ++++++=-+ ))(1(1)2)(1(1)1(1p n p n n n n n +-+++++++<p n p n n n n n +--++++-+++-<1112111111 ε<<+-=np n n 111 成立,只需ε1>n ,取⎥⎦⎤⎢⎣⎡=ε1N . 于是,0>∀ε,+∈∃N N ,使得N n >∀,+∈∀N p 有ε<-+n p n x x ,由柯西收敛准则知,数列}{n x 收敛. 例6. 设nx n 131211++++= ,证明数列}{n x 发散. 证明:对210=ε,+∈∀N N ,取N n >,N n m >=2,有 212212111=≥+++++=-n n n n n x x n m ,由柯西收敛准则知数列}{n x 发散. 二、两个重要极限1.重要极限一:1sin lim 0=→xxx .证明:先设20π<<x ,作一单位圆,圆心角x AOB =∠,点A 处的切线与OB 的延长线相交与D ,又OA BC ⊥,则CB x =sin ,B A x=,AD x =tan ,由图易知,AOB ∆的面积<扇形AOB 的面积<AOD ∆的面积,即有x x x tan 2121sin 21<<,或x x x tan sin <<,两边各项同除以x sin ,得xx x cos 1sin 1<<,或1sin cos <<x xx ⎪⎭⎫ ⎝⎛<<20πx ,因为x cos 与x x sin 都是偶函数,所以当02<<-x π时,不等式1sin cos <<xxx 也成立,即有1sin cos <<x x x ⎪⎭⎫ ⎝⎛<<2||0πx , 从而2222sin 2cos 1sin 10222x x x x x x =⎪⎭⎫ ⎝⎛⋅<=-<-< ⎪⎭⎫ ⎝⎛<<2||0πx . 令0→x ,由夹逼准则得0sin 1lim 0=⎪⎭⎫⎝⎛-→x x x ,从而 1sin 11lim sin lim00=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=→→x x x xx x . 注:上述证明过程中,得到|||sin |x x <,2cos 102x x <-<,于是有0sin lim 0=→x x ,1cos lim 0=→x x .例7.1cos 1lim sin lim cos 1sin lim tan lim0000=⋅=⎪⎭⎫⎝⎛=→→→→x x x x x x x x x x x x . 例8.2112122sin lim 212sin 2limcos 1lim222022020=⋅=⎪⎭⎫ ⎝⎛==-→→→x xx x x xx x x . 例9.xx x arcsin lim0→t x sin =1sin 1lim sin lim 00===→→tt t t x x .2.重要极限二:e 11lim =⎪⎭⎫⎝⎛+∞→xx x .证明:1≥∀x ,有1][][+<≤x x x 或][111][1x x x <≤+,记][x n =,则当+∞→x 时,∞→n ,且 11111111+⎪⎭⎫ ⎝⎛+<⎪⎭⎫ ⎝⎛+≤⎪⎭⎫ ⎝⎛++n xnn x n ,而 e 111lim 111lim 111lim 111lim 111=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++→∞+→∞-+→∞→∞n n n n n n n n n n n , e 11lim 11lim 11lim 1=⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+→∞→∞+→∞n n n n nn n n , 故由夹逼准则知e 11lim =⎪⎭⎫⎝⎛++∞→xx x .。
同济高等数学二章课件04

方法2 等式两边同时对 求导
首页
上页
返回
下页
结束
铃
作业
P108 2 ;
首页 上页 返回 下页 结束 铃
三、相关变化率
为两可导函数 之间有联系
相关变化率问题解法: 之间也有联系 称为相关变化率
找出相关变量的关系式
对 t 求导
得相关变化率之间的关系式 求出未知的相关变化率
首页 上页 返回 下页 结束 铃
例10 一气球从离开观察员500m处离地面铅直上升 其速度为140m/min(分) 当气球高度为500m时 观察员视 线的仰角增加率是多少? 解: 设气球上升 t 分后其高度为h , 仰角为a , h 则 tan a 500 a 500 两边对 t 求导
da 1 dh sec a d t 500 d t
2
h
sec a 1 tan a
2 2
dh 已知 140 m min , h = 500m 时, tan a 1 , sec 2 a 2 , dt da 1 1 ( rad/ min ) 140 d t 2 500
x
da dx . 已知 100 m min , x 500 m , 求 dt dt
首页 上页 返回 下页 结束 铃
内容小结
1. 隐函数求导法则 直接对方程两边求导
2. 对数求导法 : 适用于幂指函数及某些用连乘, 连除表示的函数 3. 参数方程求导法 求高阶导数时,从低到高每次都用参数方程求导公式 4. 相关变化率问题
首页 上页 返回 下页 结束 铃
思考题: 当气球升至500 m 时停住 , 有一观测者以
100 m/min 的速率向气球出发点走来,当距离为500 m 时, 仰角的增加率是多少 ?
同济高等数学二章课件03

( n ) (cos x ) cos( x n ) 用类似方法 可得 2
首页 上页 返回 下页
y(n) sin(x n ) 即 (sin x)(n) sin( x n ) 2 2
结束
铃
例7 求幂函数yxm(m是任意常数)的n阶导数公式 解 ymxm1
220e2x(x220x95)
首页 上页 返回 下页 结束 铃
内容小结
高阶导数的求法 (1) 逐阶求导法 (2) 利用归纳法 (3) 间接法 —— 利用已知的高阶导数公式 n! 1 (n) n (1) 如, ax (a x) n 1 n! 1 (n) ax (a x) n 1 (4) 利用莱布尼兹公式
首页 上页 返回 下页 结束 铃
2. (填空题) (1) 设 f ( x) ( x 3x 2) cos
2
n
x2
16
,则
f ( n ) (2) n !
提示:
2 2
16 2 x n n! ( x 1) cos 16 (2) 已知 f ( x) 任意阶可导, 且 f ( x) [ f ( x)]2 , 则当
A ( x 2) 原式 B ( x 1) 原式
1 1 y x 2 x 1
y
(n) n
x2 x 1
1 1
1 1 (1) n ! n 1 n 1 ( x 1) ( x 2)
上页 返回 下页 结束 铃
首页
(4)
所以y 3y10
首页 上页 返回 下页 结束 铃
几个初等函数的 n 阶导数 例4 求函数ye x 的n阶导数 解 yex yex yex y(4)ex 一般地 可得y(n)ex 即(ex)(n)ex 例5 求函数ln(1x)的n阶导数 解 yln(1x) y(1x)1 y(1x)2 y(1)(2)(1x)3 y(4)(1)(2)(3)(1x)4 一般地 可得 y(n)(1)(2) (n1)(1x)n (1)n1 (n 1)! (1 x)n (n 1)! ( n ) n 1 [ln(1 x)] (1) n (1 x)
同济版高等数学第二册8-1

2. 方向角与方向余弦的坐标表示式 空间两向量的夹角的概念:
a 0, b 0, a b 的夹角 向量a 与向量 (a , b ) (b , a ) (0 )
记为 r ( x, y, z )
向径: r OM (点M关于原点O)
( x, y, z ) 既表示向量 OM的坐标, 又表示点 M的坐标.
1 1 空间的点 有序数组 ( x , y , z )
称为点M的坐标,x称为横坐标, y称为纵坐标, z称为竖坐标. 记为 M ( x, y, z ) 特殊点的坐标表示: 坐标轴上的点 P , Q , R, 坐标面上的点 A, B , C , O(0,0,0)
5 1 (1 3)a 1 5 b 2 5
5 2a b . 2
设 是一个数,向量a 与 的乘积a 规定为 (1) 0, a 与a 同向, | a | | a |
表示与非零向量 设ea a 同方向的单位向量,
z
R(0,0, z )
B(0, y , z )
C ( x,0, z )
M ( x, y, z )
o
Q(0, y ,0)
y
x
P ( x ,0,0)
A( x , y ,0)
z
坐标轴 : 轴 轴
O
x
坐标面:
y
轴
四、利用坐标作向量的线性运算
向量的加减法、向量与数的乘法运算的坐标表达式
a (a x , a y , az ), b (bx , by , bz ),
PP2 ( x )2 12 ( 1)2 x 2 2,
高数同济教材新课预习自学期末复习第二章2-1

sin x 1 x 0
课堂 讨论函数 f (x) x 1
0 x 1 在x 0和x 1处的导数.
练习
1 x2
1 x
2
解
lim
f (1 h) f (1) lim
h 1 h2 3 2 2 源自h0hh0h
即 f(1) , 函数y f (x)在x 1点不可导.
三、导数的几何意义
导数 f (x0)在几何上表示曲线 yf(x) 在点 M(x0 f(x0)) 处的切线的斜率 即
应注意的问题: 这个结论的逆命题不成立 即函数yf(x)在点x0处连
续 但在点x0处不一定可导
★ 连续函数不存在导数举例
1. 函数 f ( x)连续 , 若 f( x0 ) f( x0 )则称点 x0 为函数 f ( x) 的角点 ,函数在角点不可导.
所求切线方程为 y 2 4( x 1), 即 4x y 4 0.
2
法线方程为 y 2 1 ( x 1), 即 2x 8 y 15 0.
42
例8 解 设切点的横坐标为x0 则切线的斜率为
于是所求切线的方程可设为 已知点(0 4)在切线上 所以
解之得x04 于是所求切线的方程为
f (x0)tan a 其中a是切线的倾角
切线方程为 yy0f (x0)(xx0)
法线方程为
例7 求等边双曲线 y 1 在点(1 ,2)处的切线的
x
2
斜率,并写出在该点处的切线 方程和法线方程 .
解 由导数的几何意义, 得切线斜率为
k y x1 2
( 1 ) x
x1 2
1 x2
x1 2
4.
★ 点导数是因变量在点x0处的变化率,它 反映了因变量随自变量的变化而变化的快 慢程度.
大一上学期同济版高数第二章隐函数

一、隐函数的导数
第二章
二、由参数方程确定的函数的导数
1
一、隐函数的导数 若由方程
可确定 y 是 x 的函数 , 则称此
函数为隐函数 . 隐函数 由 表示的函数 , 称为显函数 . 显函数 例如, 例如 可确定显函数
exy+1 + x2 y − y −1= 0 可确定 y 是 x 的函数 ,
确定 ,
解: 方程两边对 x 求导, 得
e y′ + y + x y′ = 0
y
①
再求导, 得
ey y′2 +(ey + x) y′′ +2y′ = 0 ②
当 x = 0 时, y =1, 故由 ① 得 1 y′(0) = − e 1 再代入 ② 得 y′′(0) = 2 e 再将 代入上式。
5
例4. 求椭圆
o
27
x
抛射体轨迹的参数方程 速度的水平分量 速度的方向 在刚射出 (即 t = 0 )时, 倾角为 ( ) , v2 α = arctan v1 达到最高点的时刻 t = v2 ,高度 g 落地时刻 抛射最远距离 垂直分量
y
α o
v2 t=g t= 2v2
28
x
例11. 一气球从离开观察员500 m 处离地面铅直上升, 其速率为 140m m , 当气球高度为 500 m 时, 观察员 in 视线的仰角增加率是多少? 解: 设气球上升 t 分后其高度为h , 仰角为α , h 则 tanα = 500 α 500 两边对 t 求导
= (sin x)tan x (sec2 x ⋅ lnsin x +1)
1 3− x x 2x + ln x 3 ] − 2 [ 1− 2ln x − 3(2 − x) 3(2 + x) x (2 + x)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 导数与微分 第一节 导数概念一、引例:导数的概念起源于物理学中的速度问题以及几何学中的切线问题.1.变速直线运动的速度:设描述质点运动位置的函数为)(t f s =,则0t 到t 的平均速度为00)()(t t t f t f v --=,在0t 时刻的瞬时速度为00)()(lim 0t t t f t f v t t --=→.2.曲线的切线的斜率:曲线)(x f y =上过点),(00y x P 和点),(y x Q 的割线当0x x →的极限位置称为曲线)(x f y =在点),(00y x P 处的切线,其斜率为00)()(limx x x f x f k x x --=→.二、导数的定义1.导数:设函数)(x f y =在0x 的的某邻域内有定义 ,当自变量x 在0x 处取得增量x ∆,因变量y 有对应的增量)()(00x f x x f y -+=∆∆,若极限xx f x x f x y x x ∆∆∆∆∆∆)()(limlim0000-+=→→存在,则称函数)(x f 在点0x 处可导,并称此极限值为)(x f 在点0x 处的导数,记作)(0x f 'x x f x x f x y x x ∆∆∆∆∆∆)()(limlim0000-+==→→,或0x x y =';0x x x d y d =;0)(x x x d x f d =. 若x y x ∆∆∆0lim→不存在,则称)(x f 在点0x 不可导,但若∞=→xy x ∆∆∆0lim ,也称)(x f 在点0x 的导数为无穷大. 注: 1°.xy∆∆是因变量y 在以0x 和x x ∆+0为端点的区间上的平均变化率,而0x x y ='则是因变量y 在点0x 处的变化率,是平均变化率的极限,它反映的是因变量随自变量的变化而变化的快慢程度.在引例1中,瞬时速度为000)()(lim)('0t t t f t f t f v t t --==→;在引例2中,切线斜率为000)()(lim)('0t x x f x f x f k x x --==→;2°. 导数的常见形式:000)()(lim)('0x x x f x f x f x x --=→ (取x x x ∆+=0即可证得).hx f h x f x f h )()(lim)('0000-+=→ (取x h ∆=即可证得).2.单侧导数:(由导数的定义式h x f h x f x f h )()(lim)('0000-+=→知,极限hx f h x f h )()(lim 000-+→存在等价于左极限h x f h x f h )()(lim 000-+-→和右极限h x f h x f h )()(lim 000-++→都存在且相等,由此得到左导数和右导数的概念:)(1).左导数:hx f h x f x f h )()(lim )('0000-+=-→-;(2).右导数:hx f h x f x f h )()(lim )('0000-+=+→+;(3).单侧导数:左导数和右导数统称为单侧导数.(4).定理:)(x f 在点0x 可导)(')('00x f x f --=⇔,即)(')(')('000x f x f x f --==.3.导函数:若函数)(x f 在开区间),(b a 内每一点都可导,则称)(x f 在),(b a 内可导,),(b a x ∈∀,称)('x f 为)(x f 的导函数,记作y '、x d y d 或xd x f d )(,即 x x f x x f x f x ∆∆∆)()(lim)('0-+=→或hx f h x f x f h )()(lim )('0-+=→.若)('a f +及)('b f -都存在,则称)(x f 在闭区间],[b a 上可导. 注:1°.0)()()(000=≠'='=xd x f d x f x f x x . 2°.在不至于引起混淆的情况下,也称导函数为导数. 例1.求函数C x f =)( (C 为常数) 的导数. 解:0lim )()(lim)('00=-=-+=→→hCC h x f h x f x f h h ,即0)(='C . 例2. 求函数)()(+∈=N n x x f n 的导数.解: h x h x h x f h x f x f nn h h -+=-+=→→)(lim )()(lim)('001212110lim ---→=+++=n nn n n n n n h nx hh C h x C h x C . 注:对一般幂函数μx y =(μ为常数), 有1)(-='μμμx x .(以后证明) 例如:()x x x x x 21212121121'21'===⎪⎪⎭⎫ ⎝⎛=--;()2211'1'1)1(1x x x x x -=-=-==⎪⎭⎫ ⎝⎛----.例3. 求函数x x f sin )(=的导数. 解: 2sin 22cos 21lim sin )sin(lim )()(lim)('000hh x h h x h x h x f h x f x f h h h +⋅=-+=-+=→→→x hh h x h h h x h h h cos 22sinlim 22cos lim 22sin 22cos lim 000=+=⋅+=→→→, 即 x x cos )'(sin =,类似可证x x sin )'(cos -=. 例4. 求函数)1,0()(≠>=a a a x f x 的导数.解:a a ha a h a a h a a h x f h x f x f x h h xhx h x h x h h ln 1lim 1lim lim )()(lim)('0000⋅=-⋅=-⋅=-=-+=→→+→→, 即a a a x x ln )'(⋅=.特殊地,有x x x e e e e =⋅=ln )'(.例5. 求函数)1,0(log )(≠>=a a x x f a 的导数. 解:xhx h h x h x h x f h x f x f a h a a h h +⋅=-+=-+=→→→log 1lim log )(log lim )()(lim)('000, hxa h a h a h x h x x h h x x x h h ⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⋅=⎪⎭⎫ ⎝⎛+⋅=→→→1log lim 11log lim 11log 1lim 000 a x a e x e x x h x a hxh a ln 1ln ln 1log 11lim log 10===⎪⎭⎫⎝⎛+=→,即a x x a ln 1)'(log =. 特殊地,有xx 1)'(ln =. 例6. 求函数||)(x x f =的导数.解:由于⎪⎩⎪⎨⎧<-=>==0,0,00,||)(x x x x x x x f ,所以当),0(+∞∈x 时, 1lim )()(lim)('00=-+=-+=→→h xh x h x f h x f x f h h ,当)0,(-∞∈x 时,1)()(lim )()(lim)('00-=--+-=-+=→→h x h x h x f h x f x f h h , 当0=x 时,10)0(lim )0()0(lim )0('00-=-+-=-+=→→--hh h f h f f h h , 100lim )0()0(lim )0('00=-+=-+=→→++hh h f h f f h h ,)0(')0('+-≠f f ,故||)(x x f =在点0=x 处不可导,于是⎩⎨⎧<->==0,10,1|)'(|)('x x x x f .三、导数的几何意义及应用1.几何意义:函数)(x f 在点0x 的导数)('0x f 是曲线)(x f y = 在其上一点),(00y x 处的切线的斜率,即αtan )('0=x f .注:若函数)(x f 在点0x 可导,则曲线)(x f y =在点),(00y x 处存在切线.反之未必,即曲线)(x f y =在点),(00y x 处存在切线,但函数)(x f 在点0x 却未必可导, 例如:函数3)(x x f =在点0=x 处不可导,即∞==--→→32001lim 0)0()(lim x x f x f x x ,但曲线3x y =在点)0,0(处存在水平切线.2.曲线的切线方程:曲线)(x f y =在点),(00y x M 处的切线方程为:))((000x x x f y y -'=-.3.曲线的法线方程:曲线)(x f y =在点),(00y x M 处的法线方程为:)0)(()()(10000≠'-'-=-x f x x x f y y . 例7.求曲线x y 1=在点⎪⎭⎫⎝⎛2,21处的切线方程和法线方程. 解:由于2'11'x x y -=⎪⎭⎫⎝⎛=,则所求切线的斜率为4'21-===x y k ,于是切线方程为:⎪⎭⎫ ⎝⎛--=-2142x y ,即044=-+y x ,法线方程为:⎪⎭⎫⎝⎛-=-21412x y ,即01582=+-y x .四、函数的可导性与连续性的关系命题:若函数)(x f y =在某点x 可导,则它在该点一定连续. 证明:若函数)(x f y =在点x 可导,则有xx f x x f x y x f x x ∆∆∆∆∆∆)()(lim lim)('00-+==→→,从而有)()(')()(x x f xx f x x f ∆α∆∆+=-+,其中0)(lim 0=→x x ∆α∆,整理得)()(')()(x x x f x f x x f ∆α∆∆+⋅=-+,于是0)]()('[lim )]()([lim 0=+⋅=-+→→x x x f x f x x f x x ∆α∆∆∆∆,即)()(lim 0x f x x f x =+→∆∆,这说明)(x f y =在点x 连续.注:反之未必正确,即函数)(x f y =在某点x 连续可导,但它在该点未必可导. 例如:函数3)(x x f y ==在),(∞+-∞内连续,但在0=x 处不可导,因为+∞==-=-+→→→303001lim 0lim )0()0(lim h hh h f h f h h h ,即)0('f 不存在. 又如函数||)(2x x x f y ===在),(∞+-∞内连续,但在0=x 处不可导,因为1)0(')0('1=≠=-+-f f ,即)0('f 不存在.第二节 函数的求导法则一、函数四则运算的求导法则定理1. 函数)(x u u =及)(x v v =在点x 都可导,则它们的和、差、积、商(除分母不为零的点外)都在点x 都可导,且 (1). )()(])()([x v x u x v x u '±'='±; (2). )()()()(])()([x v x u x v x u x v x u '+'=';(3). )()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡)0)((≠x v . 证明:(1).设)()()(x v x u x f ±=,则h x f h x f x f h )()(lim)(0-+='→hx v x u h x v h x u h )]()([)]()([lim 0±-+±+=→hx u h x u h )()(lim 0-+=→h x v h x v h )()(lim 0-+±→)()(x v x u '±'=, 故结论成立. 可推广到任意有限项的情形,如:w v u w v u '-'+'='-+)(. (2). 设)()()(x v x u x f =,则h x f h x f x f h )()(lim)(0-+='→hx v x u h x v h x u h )()()()(lim 0-++=→h x v x u h x v x u h x v x u h x v h x u h )()()()()()()()(lim 0-+++-++=→ )()()()()()(lim 0x u hx v h x v h x v h x u h x u h -+++-+=→ )()()()(x v x u x v x u '+'=,故结论成立. (3). 设)()()(x v x u x f =,则 h x f h x f x f h )()(lim )(0-+='→h x v x u h x v h x u h )()()()(lim 0-++=→hx v h x v h x v x u x v h x u •h )()()()()()(lim 0++-+=→ hx v h x v h x v x u x v x u x v x u x v h x u •h )()()()()()()()()()(lim 0++-+-+=→ ⎥⎦⎤⎢⎣⎡-+--+⋅+=→)()()()()()()()(1lim0x u h x v h x v x v h x u h x u x v h x v h)()()()()(2x v x v x u x v x u '-'=,故结论成立.推论:设)(),(),(x w w x v v x u u ===均可导,则(1). w v u w v u '-'+'='-+)(;(2). '''')()'(]')[()(uvw w uv vw u w uv w uv w uv uvw ++=+=='; (3). 当C x v =)(时,u C Cu '=')(. 例1. 设735223-+-=x x x y ,求'y .解:3106)'7()'3()'5()'2()'7352('22323+-=-+-=-+-=x x x x x x x x y . 例2. 设2sincos 4)(3π-+=x x x f ,求)('x f 及⎪⎭⎫⎝⎛2'πf . 解:x x x f sin 43)('2-=,4432'2-=⎪⎭⎫ ⎝⎛ππf .例3. 设)cos (sin x x e y x +=,求'y .解:)'cos (sin )cos (sin )'('x x e x x e y x x +++=x e x x e x x e x x x cos 2)sin (cos )cos (sin =-++=. 例4. 设x y tan =,求'y .解:x x x xx x x x x x x x y 222222'sec cos 1cos sin cos cos )'(cos sin cos )'(sin cos sin )'(tan '==+=-=⎪⎭⎫ ⎝⎛==. 用类似方法可得:x x 2csc )'(cot -=. 例5. 设x y sec =,求'y .解:x x x xx x x x x y tan sec cos sin cos )'(cos 1cos )'1(cos 1)'(sec '22'==⋅-=⎪⎭⎫ ⎝⎛==. 用类似方法可得:x x x cot csc )'(csc -=. 二、反函数的求导法则定理2. 若函数)(y f x =在区间y I 内单调、可导且0)('≠y f ,则它的反函数)(1x f y -=在区间}),(|{y x I y y f x x I ∈==内也可导,且)('1)]'([1y f x f =-或dydx x d y d 1=,即反函数的导数等于直接函数的导数的倒数.证明:x I x ∈∀,给x 以增量x ∆(x I x x x ∈+≠∆∆,0),由反函数的单调性知0)()(11≠-+=--x f x x f y ∆∆,于是有yxx y ∆∆∆∆1=. 且由反函数的连续性知,当0→x ∆时必有0→y ∆,因此必有)('11lim lim)]'([001y f yx x y x f x x ===→→-∆∆∆∆∆∆.例6.求函数x y arcsin =在区间)1,1(-的导数.解:由于x y arcsin =的直接函数y x sin =在⎪⎭⎫⎝⎛-2,2ππ内单调且可导,且0cos )'(sin >=y y ,则x y a r c s i n =在)1,1(-内可导,且2211sin 11cos 1)'(sin 1)'(arcsin xy y y x -=-===. 用类似的方法可得2211cos 11sin 1)'(cos 1)'(arccos xy y y x --=--=-==.或2'11arcsin 2)'(arccos x x x --=⎪⎭⎫⎝⎛-=π.例7. 求函数x y arctan =在区间),(∞+-∞的导数.解:由于x y arctan =的直接函数y x tan =在⎪⎭⎫⎝⎛-2,2ππ内单调且可导,且y y 2sec )'(tan =,则x y arcsin =在),(∞+-∞内可导,且22211tan 11sec 1)'(tan 1)'(arctan xy y y x +=+===. 用类似的方法可得22211cot 11csc 1)'(cot 1)'cot (x y y y x arc +-=+-=-==. 或2'11arctan 2)'cot (x x x arc +-=⎪⎭⎫⎝⎛-=π. 例8. 求函数x y a log =在区间),0(∞+的导数.解:由于x y a l o g =)1,0(≠>a a 的直接函数ya x =在()∞+∞-,内单调且可导,且a a a y y ln )'(=,则x y a log =在),0(∞+内可导,且ax a a a x y y a ln 1ln 1)'(1)'(log ===. 三、复合函数的求导法则定理3.若)(x g u =在点x 可导,)(u f y =在点)(x g u =可导,则复合函数)]([x g f y =在点x 可导,且)()(x g u f x d y d '⋅'=或xd ud u d y d x d y d ⋅=.(分步完成) 证明:由已知条件可得:)(lim0u f u y u '=→∆∆∆,)('lim 0x g xux =→∆∆∆,从而有u u u f y ∆α∆∆+'=)(, (1)x x x g u ∆β∆∆+=)(', (2)其中0lim 0=→α∆u ,0lim 0=→β∆x .由(2)知,0→x ∆时,0→u ∆,从而也有0lim 0=→α∆x ;当0≠x ∆时,由(1)得,xu x u u f x y ∆∆α∆∆∆∆+'=)(,于是)(')(lim lim lim )()(lim lim 00000x g u f x u x u u f x u x u u f x y x d y d x x x x x '=+'=⎪⎪⎭⎫ ⎝⎛+'==→→→→→∆∆α∆∆∆∆α∆∆∆∆∆∆∆∆∆. 注:此法则可推广到多个中间变量的情形. (搞清复合函数结构, 由外向内逐层求导.) 例如, )(,)(,)(x v v u u f y ψϕ===,)()()(x v u f xd vd v d u d u d y d x d y d ψϕ'⋅'⋅'=⋅⋅=. 例9. 求函数3x e y =的导数. 解:令u e y =,3x u =,则32233x u e x x e xd ud u d y d x d y d =⋅=⋅=. 或直接求:()33323'3)'(x x x e x e x e xd y d ===.例10. 求函数212sinxxy +=的导数. 解:⎪⎭⎫ ⎝⎛+⋅+-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=222222'2'212cos )1()2()1(212cos 1212sin x x x x x x x x x x x x d y d . 例11. 求函数||ln x y =的导数.解:令u y ln =,⎩⎨⎧<->==0,0,||x x x x x u ,则当0>x 时,xu x d u d u d y d x d y d 111=⋅=⋅=;当0<x 时,x u x d u d u d y d x d y d 1)1(1=-⋅=⋅=,综上得xx y 1|)'|(ln '== )0(≠x . 例12. 求函数3221x y -=的导数.解:322232232)21(34)'21()21(31)'21(x x x x x x d y d --=--=-=-.例13. 求函数)cos(ln x e y =的导数.解:x x x xx xx x x x x e e e e e e e e e e e x d y d tan )cos(sin )')(sin ()cos(1))'(cos()cos(1))'cos((ln -=-=-===. 例14. 求函数xey 1sin=的导数.解:x e x x x e x e e x d y d x x x x 1cos 111cos 1sin 1sin 2'1sin '1sin '1sin -=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=.例15. 证明幂函数的导数公式1)'(-=μμμx x .证明:由于()'ln x e x μμ=,所以()1ln 'ln 1)'ln ()'(-=⋅⋅===μμμμμμμμx xx x e e x x x . 四、初等函数的求导问题 1. 常数和基本初等函数的导数(1).0)(='C ; (2).1)(-='μμμx x ; (3).x x cos )(sin ='; (4).x x sin )(cos -=' (5).x x 2sec )(tan ='; (6).x x 2csc )(cot -='; (7).x x x tan sec )(sec ='; (8).x x x cot csc )(csc -='; (9).a a a x x ln )(='; (10).x x e )(e ='; (11).a x x a ln 1)(log ='; (12).=')||(ln x x1; (13).211)(arcsin xx -='; (14).211)(arccos xx --=';(15).211)(arctan x x +='; (16).211)cot (x x arc +-='.2.函数有限次四则运算的求导法则(1).)(])([x u C x Cu '=' ( C 为常数); (2).)()(])()([x v x u x v x u '±'='±;(3).)()()()(])()([x v x u x v x u x v x u '+'='; (4).)()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡)0)((≠x v . 3.复合函数求导法则:)(,)(x g u u f y ==,)(')('x g u f xd ud u d y d x d y d ⋅=⋅=. 4.初等函数在定义区间内可导,但其导数未必是初等函数,例如:函数x x x f sin )(3=是初等函数,但其导数⎪⎪⎩⎪⎪⎨⎧=+=→0sin lim cos 3sin )('30332x x x x x xx x f x 却不再是初等函数.例16. 求函数x nx y n sin sin ⋅=的导数'y .解:)'(sin sin sin )'(sin 'x nx x nx y n n ⋅+⋅=x x n nx x nx n n n cos sin sin sin cos 1-⋅+⋅=)cos sin sin (cos sin 1x nx x nx x n n ⋅+⋅=-x n x n n )1sin(sin 1+⋅=-.思考与练习: 设)()()(x a x x f ϕ-=,其中)(x ϕ在a x =处连续,求)(a f '.错误解法:由于)()()()(x a x x x f ϕϕ'-+=',故)()(a a f ϕ='.(注意到)(x ϕ在a x =处未必可导) 正确解法:a x a f x f a f a x --='→)()(lim )(ax x a x a x --=→)()(lim ϕ)()(lim a x a x ϕϕ==→. 第三节 高阶导数一、高阶导数的概念1. 引例:变速直线运动的位置函数)(t s s =,速度t d s d v =,即s v '=,加速度t d v d a =⎪⎪⎭⎫ ⎝⎛=t d s d t d d )(''=s . 2. 二阶导数:若函数)(x f y =的导数)(x f y '='可导,则称)(x f '的导数为)(x f 的二阶导数,记作y ''或22xd y d ,即)(''=''y y 类似地 , 二阶导数的导数称为三阶导数 ,依次类推 ,1-n 阶导数的导数称为n 阶导数,分别记作y ''',)4(y ,)(,n y ,或33x d y d ,44x d y d ,n n x d y d , . 3. 高阶导数:二阶以及二阶以上的导数称为高阶导数.例1. 求n 次多项式函数n n x a x a x a a y ++++= 2210的各阶导数.解:1232132'-++++=n n x na x a x a a y ,232)1(2312''--++⋅+⋅=n n x a n n x a a y ,依次类推,可得n n a n y !)(=,而0)2()1(===++ n n y y .例2. 求正弦函数x y sin =的n 阶导数)(n y . 解:⎪⎭⎫ ⎝⎛+=='2sin cos πx x y ,⎪⎭⎫ ⎝⎛⋅+=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+=22sin 22sin 2cos ''ππππx x x y , ⎪⎭⎫ ⎝⎛⋅+=⎪⎭⎫ ⎝⎛⋅+=23sin 22cos '''ππx x y ,⎪⎭⎫ ⎝⎛⋅+=⎪⎭⎫ ⎝⎛⋅+=24sin 23cos )4(ππx x y , 一般地,⎪⎭⎫ ⎝⎛⋅+=2sin )(sin )(πn x x n ,类似可证: ⎪⎭⎫ ⎝⎛⋅+=2cos )(cos )(πn x x n . 例3. 求函数ax e y =的n 阶导数)(n y .解:ax ae y =',ax e a y 2''=,ax e a y 3'''=, 以此类推得ax n n e a y =)(.特别的,x n x e )(e )(=.例4. 求函数)1(ln x y +=的n 阶导数)(n y . 解:x y +='11,2)1(1x y +-='',32)1(21)1(x y +⋅-=''', 以此类推得n n n x n y )1()!1()1(1)(+--=-. 二、高阶导数的运算法则:设函数)(x u u =及)(x v v =都有n 阶导数 , 则1.)()()()(n n n v u v u ±=±;2.)()(n u C )(n u C =, (C 为常数).3.莱布尼茨公式:)()()()2()1()()(!)1()1(!2)1()(n k k n n n n n v u v u k k n n n v u n n v u n v u v u +++--+++''-+'+=--- )()()()2(2)1(1)(0n n n k k n k n n n n n n n v u C v u C v u C v u C v u C ++++''+'+=---)()(0k k n n k k n v u C -=∑=,规律:v u v u v u '+'=')(;v u v u v u v u v u v u ''+''+''=''+'=''2)()(;v u v u v u v u v u '''+'''+'''+'''='''33)(.例5. 对函数x e x y 22=,求)20(y .解:设x u 2e =,2x v =,则)20,,2,1(e 22)( ==k u x k k ,x v 2=',2=''v ,)20,,3(0)( ==k v k ,代入莱布尼茨公式 , 得2e 2!219202e 220e 2)(2182192220)20(22)20(⋅⋅+⋅⋅+⋅==x x x x x x e x y )9520(e 22220++=x x x . 第四节 隐函数及参数方程所确定的函数的导数以及相关变化率一、隐函数的导数1. 隐函数:设A 、B 是两个非空数集,若A x ∈∀,由二元方程0),(=y x F 对应唯一一个B y ∈,则称此对应关系f (或)(x f y =)是方程0),(=y x F 确定的隐函数.注:1° .所谓隐函数就是对应关系不明显,隐含在二元方程中的函数.2°.由二元方程0),(=y x F 确定的隐函数)(x f y =必是方程0),(=y x F 的解,即0)](,[=x f x F .3°.在方程中找出隐含的对应关系叫做隐函数的显化,但并不是每一个隐函数都可以显化.例如:03275=--+x x y y .2.隐函数求导法则:(1). 隐函数显化后求导;(2). 直接求导:对确定隐函数)(x f y =的二元方程0),(=y x F 两端应用复合函数求导法则对x 求导,即对方程0)](,[=x f x F 两端对x 求导.例1.求由方程0=-+e xy e y 所确定的隐函数)(x f y =的导数xd y d . 解:在方程两端对x 求导,得)0()(x d de xy e x d d y =-+,即0=++xd y d x y x d y de y ,整理得 )0(≠++-=y y e x ex y x d y d . 注:由于方程0=-+e xy e y 能确定隐函数)(x f y =,故有0)()(=-+e x xf e x f例2.求由方程03275=--+x x y y 所确定的隐函数)(x f y =的导数0=x x d y d . 解:在方程两端对x 求导,得 02112564=--+x x d y d x d y d y ,整理得2521146++=y x x d y d , 由于0=x 时0=y ,故210==x x d y d . 例3.求椭圆191622=+y x 在点⎪⎭⎫ ⎝⎛323,2处的切线方程. 解:所求切线的斜率为2'==x y k ,在椭圆方程两端对x 求导,有0928='⋅+y y x ,整理得y x y 169'-=,将⎪⎭⎫ ⎝⎛323,2代入得43'2-==x y .于是 切线方程为:)2(43323--=-x y ,或03843=-+y x . 例4.求由方程0sin 21=+-y y x 所确定的隐函数)(x f y =的二阶导数22xd y d .解:在方程两端对x 求导,得0cos 211=+-x d y d y x d y d ,整理得yx d y d cos 22-=,在上式两端再对x 求导得,3222)cos 2(sin 4)cos 2(sin 2y y y x d yd y x d y d --=-⋅-=. 3.幂指函数)()(x v x u y =的求导法则——对数求导法:(1). 取对数:)(ln )(ln x u x v y =)(ln )(x u x v e y =⇔(2). 对x 求导:)()()()(ln )(1x u x v x u x u x v y y '+'=', ⎪⎪⎭⎫ ⎝⎛'+'=')()()()(ln )()()(x u x v x u x u x v x u y x v ,='y )()(ln )()(x v x u x u x v '⋅+)()()(1)(x u x u x v x v '⋅- ()')(ln )(x u x v e =. (按指数函数求导公式 + 按幂函数求导公式)注:幂指函数不是一元复合函数,故不能用复合函数求导法则求其导数,可用下册书中的二元复合函数求导法则求之.例5.求函数)0(sin >=x x y x 的导数'y .解:在方程x x y sin =两端取对数得x x y ln sin ln ⋅=,两端对x 求导得x x x x y y 1sin ln cos 1⋅+⋅=',于是x x x x y y 1sin ln cos 1⋅+⋅=',即⎪⎭⎫ ⎝⎛⋅+⋅='x x x x x y x 1sin ln cos sin 另解:x x x e x y ln sin sin ==,()⎪⎭⎫ ⎝⎛+⋅=⋅==x x x x x e x x e y x x x x x sin ln cos )'ln (sin 'sin ln sin 'ln sin . 例6.求函数)4)(3()2)(1(----=x x x x y 的导数'y . 解:在方程)4)(3()2)(1(----=x x x x y 两边取对数得[]4ln 3ln 2ln 1ln 21ln -----+-=x x x x y , 两端对x 求导得⎥⎦⎤⎢⎣⎡-----+-='4131211121x x x x y y ,即 ⎥⎦⎤⎢⎣⎡-----+-⋅----='41312111)4)(3()2)(1(21x x x x x x x x y .二、由参数方程确定的函数的导数1.参数方程确定的函数:若参数方程⎩⎨⎧==)()(t y t x ψϕ可确定一个 y 与 x 之间的函数关系,则称此函数关系所表达的函数为由该参数方程所确定的函数.2.参数方程确定的函数的求导法则:(1). 消去参数找出函数关系后求导;(2). 直接求导公式:若函数)(t x ϕ=、)(t y ψ=在区间],[βα内可导,函数)(t x ϕ=具有连续的单调的反函数)(1x t -=ϕ,且0)('≠t ϕ,则反函数)(1x t -=ϕ与函数)(t y ψ=构成复合函数)]([1t y -=ϕψ,且)()(1t t t d x d t d y d x d t d t d y d x d y d ϕψ''=⋅=⋅=, 即td x d td y d x d y d =. 注:若函数)(t x ϕ=、)(t y ψ=在区间],[βα内二阶可导,且0)('≠t ϕ,则复合函数)]([1t y -=ϕψ的二阶导数可由新的参数方程⎪⎩⎪⎨⎧''==)()()(t t x d y d t x ϕψϕ求得:td x d x d y d t d d x d t d x d y d t d d x d y d x d d x d y d ⎪⎪⎭⎫ ⎝⎛=⋅⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=22 )()()()()()(2t t t t t t ϕϕϕψϕψ'''''-'''=)()()()()(3t t t t t ϕϕψϕψ''''-'''=, 例7.已知椭圆的参数方程为⎩⎨⎧==ta y t a x sin cos ,求椭圆在4π=t 相应的点处的切线方程. 解:参数4π=t 对应椭圆上相应的点0M 的坐标为224sin 0b b x ==π,椭圆在点0M 处的切线斜率为a b t a t b t a t b x d y d t t t -=-=====444sin cos )'cos ()'sin (πππ,于是 切线方程为:⎪⎪⎭⎫ ⎝⎛--=-2222a x a b b y ,整理得02=-+ab ay bx . 例9.计算由摆线的参数方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 所确定的函数)(x y y =的二阶导数. 解:2cot )2/(sin 2)2/cos()2/sin(2cos 1sin )cos 1(sin 2t t t t t t t a t a t d x d t d y d x d y d ==-=-==),2(Z n n t ∈≠π.2222)cos 1(1)cos 1(1)2/(sin 212cot t a t a t t d x d t t d d x d y d --=-⋅-=⎪⎭⎫ ⎝⎛=. 第五节 函数的微分一、微分的概念1.引例: 一块正方形金属薄片受温度变化的影响,边长由0x 变到x x ∆+0,问此薄片面积改变了多少?解:设薄片边长为x , 面积为A , 则2x A =,当x 在0x 取得增量x ∆时,面积的增量为2020)(x x x A -+=∆∆=x x ∆02+2)(x •∆ . (关于x ∆的线性函数+0→x ∆时的高阶无穷小.)故x x A ∆∆02≈,即边长改变很微小时,即||x ∆很小时,面积的增量A ∆可近似地用第一部分x x ∆02代替,而且||x ∆越小,近似程度越好.还有其它许多具体问题中出现的函数)(x f y =,需要研究函数的增量y ∆即)()(00x f x x f -+∆与自变量的增量x ∆之间的关系,这就涉及到函数的微分.2.函数的微分的定义:设函数)(x f y =在点0x 的某一邻域内有定义,若)(x f 在点0x 的增量)()(00x f x x f y -+=∆∆可表示为)(x o x A y ∆∆∆+=,其中A 为不依赖于x ∆的常数,)(x o ∆是当0→x ∆时比x ∆的高阶无穷小量,则称)(x f 在点0x 处可微,并称x A ∆为)(x f 在点0x 的微分,记作0x x y d =或x A x f d ∆=)(0.若函数)(x f 在区间I 的每一点处可微,则称)(x f 在区间I 可微.现在要问,函数)(x f 满足什么条件才能在点0x 可微?如果可微分,那么常数A 等于什么?下面的定理回答这个问题.2.函数可微的充要条件:定理:函数)(x f y =在点0x 可微的充要条件是)(x f 在点0x 可导,并且x x f y d ∆)(0'=. 证明:必要性:由)(x f y =在点0x 可微,得)()()(00x o x A x f x x f y ∆∆∆∆+=-+=,于是xx o A x x f x x f ∆∆∆∆)()()(00+=-+,令0→x ∆,得A x f =')(0,即)(x f 在点0x 可导,并且)(0x f A '=.充分性:由函数)(x f 在点0x 可导,得)(lim 00x f x y x '=→∆∆∆,从而有)()(0x x f xy ∆α∆∆+'=,故 )()()()(00x o x x f x x x x f y ∆∆∆∆α∆∆+'=+'=,即)(x o x A y ∆∆∆+=,其中)(0x f A '=,因此)(x f 在点0x 可微.注:1°.由微分的定义可知,自变量x 本身的微分是x x x x d ∆∆==)'(,即自变量x 的微分等于自变量x 的增量,于是)(x f y =在点0x 的微分又可以写成x d x f y d )(0'=.进而有xd y d •x f =')(0,即函数的导数等于函数的微分与自变量的微分的商,因此导数又称为微商. 2°. 对一元函数)(x f y =,函数可导性与可微性这两个概念是等价的,求出函数的导数之后,只要再乘以x d ,就得到了函数的微分y d .3°.微分既与点x 有关,也与x d 有关,而x 与x d 是相互独立的两个变量.3.函数微分的几何意义:函数)(x f y =在点0x 处的导数)('0x f 就是该曲线在点))(,(00x f x M 处的切线的斜率αtan ,因此QP MQ x x f y d =⋅==α∆tan )('0,这就是说,函数)(x f y =在点0x 处的微分在几何上表示曲线)(x f y =在对应点))(,(00x f x M 处切线的纵坐标的增量.当||x ∆很小时,||dy y -∆比||x ∆小得多.因此在点P 的邻近,可以用切线段来近似代替曲线段.即在局部范围内用线性函数近似代替非线性函数,在几何上就是局部用切线段近似代替曲线段,这在数学上称为非线性函数的局部线性化,这种思想方法在自然科学和工程问题的研究中是经常采用的.二、 微分运算法则(1).函数和、差、积、商的微分法则:设)(x u u =、)(x v v =均可微,则①.dv du v u d ±=±)(; ②. Cdu Cu d =)(;③. udv vdu uv d ±=)(; ④. 2v udv vdu v u d -=⎪⎭⎫ ⎝⎛)0(≠v .(2).复合函数的微分法则:若)(,)(x g u u f y ==分别可微,则复合函数)]([x g f y =的微分为u d u f x d x u f x d y y d x )()()('=''='=ϕ.并称此性质为函数一阶微分的形式不变性.注:1°. 复合函数的微分既可以利用链式法则求出复合函数的导数再乘以x d 得到,也可以利用函数一阶微分的形式不变性得到.2°. 函数一阶微分的形式不变性可以求复合函数的导数.例1. 求函数)12sin(+=x y 的微分y d .解:x d x x d x y d )12cos(2)12()12cos(+=++=.例2. 求函数)e 1(ln 2x y +=的微分y d . 解:x d x d y d x x x x 2222e 1e 2)e 1(e 11+=++=.例3. 求函数x y x cos e 31-=的微分y d 以及导数'y .解:)(cos e )(e cos )cos (e 313131x d d x x d y d x x x ⋅+⋅==---=-⋅-=--x d x x d x x x 3131e sin e cos 3•x x x )sin cos 3(e 31+--x d ,)sin cos 3(e '31x x xd y d y x +-==-. 例4. 在下列等式左端的括号中填入适当的函数,使等式成立:(1). x d x C x d =⎪⎭⎫ ⎝⎛+221 (C 为任意常数); (2). t d t C t d ωωωcos sin 1=⎪⎭⎫ ⎝⎛+. 注:1°.上述微分的反问题是不定积分要研究的内容.2°.数学中的反问题往往出现多值性,例如:)4(22=,4)2(2=±;⎪⎪⎭⎫ ⎝⎛=224πsin ,2224πsin =⎪⎭⎫ ⎝⎛+πk . 三、函数的近似计算公式: 1.近似公式:若函数)(x f 在点0x 可微,则))(()()(000x x x f x f x f -'+≈. 推导:由函数)(x f 在点0x 可微,则有)()()(0x o y d x o x x f y ∆∆∆∆+=+'=,故当||x ∆很小时,有y d y ≈∆,即x x f x f x x f y ∆∆∆)()()(000'≈-+=,整理得x x f x f x x f ∆∆)()()(000'+≈+,令x x x ∆+=0,得))(()()(000x x x f x f x f -'+≈.特别地,当00=x 时,||x 很小时,x f f x f )0()0()('+≈. 注:近似公式的使用原则:1°.•x f )(0与)(0x f '好计算; 2°.x 与0x 靠近.2.常用近似公式:(||x 很小时)(1).x x αα+≈+1)1(; (2).x x ≈sin ; (3).x e x +≈1;(4).x x ≈tan ; (5).x x ≈+)1ln(. 推导:(1).令α)1()(x x f +=,有1)0(=f ,α=)0('f ,当||x 很小时,x x αα+≈+1)1(. 例5.计算 29sin 的近似值.解:设x x f sin )(=,有x x f cos )('=,取6300π== x ,1802929π== x ,则180π-=x ∆, 于是⎪⎭⎫ ⎝⎛-⋅+≈=1806cos 6sin 18029sin 29sin ππππ••• 485.0)0175.0(2321≈-⋅+=. 例6. 计算05.1的近似值. 解:025.1)05.0(21105.0105.1=+≈+=.。