脉冲压缩介绍

合集下载

脉冲压缩技术

脉冲压缩技术

脉冲压缩技术在雷达信号处理中的应用一.脉冲压缩的产生背景及定义1.1 脉冲压缩的定义脉冲压缩即pulse compression,它是指发射宽编码脉冲并对回波进行处理以获得窄脉冲,因此脉冲压缩雷达既保持了窄脉冲的高距离分辨力,又能获得宽脉冲的强检测能力。

1.2脉冲压缩的主要手段目前的脉冲压缩的手段主要有线性调频、非线性调频与相位编码等。

1)线性调频是最简单的脉冲压缩信号,容易产生,而且其压缩脉冲形状和信噪比对多普勒频移不敏感,因而得到了广泛的应用,但是,在利用多普勒频率测量目标方位和距离的情况下很少使用;2)非线性调频非线性调频具有几个明显的优点,不需要对时间和频率加权,但是系统复杂。

为了达到所需的旁瓣电平,需要对每个幅度频谱分别进行调频设计,因而在实际中很少应用;3)相位编码相位编码波形不同于调频波形,它将宽脉冲分为许多短的子脉冲。

这些子脉冲宽度相等,其相位通过编码后被发射。

根据所选编码的类型,包括巴克码、伪随机序列编码以及多项制编码等。

1.3脉冲压缩的产生背景随着飞行技术的飞速发展,对雷达的作用距离、分辨能力、测量精度和单值性等性能指标提出越来越高的要求。

测距精度和距离分辨力对信号形式的要求是一致的,主要取决于信号的频率结构,为了提高测距精度和距离分辨力,要求信号具有大的带宽。

而测速精度和速度分辨力则取决于信号的时域结构,为了提高测速精度和速度分辨力,要求信号具有大的时宽。

除此之外,为提高雷达系统的发现能力,要求信号具有大的能量。

由此可见,为了提高雷达系统的发现能力、测量精度和分辨能力,要求雷达信号具有大的时宽、带宽、能量乘积。

但是,在系统的发射和馈电设备峰值功率受限制的情况下,大的信号能量只能靠加大信号的时宽来得到。

测距精度和距离分辨力同测速精度和速度分辨力以及作用距离之间存在着不可调和的矛盾。

于是在匹配滤波器理论指导下,人们提出了脉冲压缩的概念。

由于发射机效率的限制,雷达真正采用的脉压信号是由调频和相位编码产生的,其中以线性调频和二相编码信号的研究与应用最为广泛。

脉冲压缩

脉冲压缩

“雷达原理”作业报告西安电子科技大学2011年11月摘要简单介绍了脉冲压缩技术的原理和类型,并对线性调频脉冲压缩进行了详细的分析推导。

引言雷达是通过对回波信号进行接收再作一些检测处理来识别复杂回波中的有用信息的。

其中,波形设计有着相当重要的作用,它直接影响到雷达发射机形式的选择"信号处理方式"雷达的作用距离及抗干扰"抗截获等很多重要问题。

现代雷达中广泛采用了脉冲压缩技术。

脉冲压缩雷达常用的信号有线性调频信号和二相编码信号。

脉冲压缩雷达具有高的辐射能量和高的距离分辨力,这种雷达具有很强的抗噪声干扰和欺骗干扰的性能。

对线性调频信号有效的干扰方式是移频干扰(对二相编码信号较有效的干扰方式是距离拖引干扰。

1脉冲压缩简介雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空间位置。

雷达分辨力是雷达的主要性能参数之一。

所谓雷达分辨力是指在各种目标环境下区分两个或两个以上的邻近目标的能力。

一般说来目标距离不同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信号波形紧密联系的则是距离分辨力和速度(径向)分辨力。

两个目标在同一角度但处在不同距离上,其最小可区分的距离称为距离分辨力,如图1.1所示,雷达的距离分辨力取决于信号带宽。

对于给定的雷达系统,可达到的距离分辨力为B c r 2=δ式中,c 为光速,B=f ∆可为发射波形带宽。

图1.1脉冲压缩雷达原理示意图雷达的速度分辨力可用速度分辨常数表征,信号在时域上的持续宽度越大,在频域上的分辨能力就越好,即速度分辨力越好。

对于简单的脉冲雷达,B=f ∆=1/τ,此处,τ为发射脉冲宽度。

因此,对于简单的脉冲雷达系统,将有τδ2c r =在普通脉冲雷达中,由于雷达信号的时宽带宽积为一常数(约为1),因此不能兼顾距离分辨力和速度分辨力两项指标。

雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要性能参数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。

脉冲压缩技术

脉冲压缩技术

脉冲压缩技术在雷达信号处理中的应用一.脉冲压缩的产生背景及定义1.1 脉冲压缩的定义脉冲压缩即pulse compression,它是指发射宽编码脉冲并对回波进行处理以获得窄脉冲,因此脉冲压缩雷达既保持了窄脉冲的高距离分辨力,又能获得宽脉冲的强检测能力。

1.2脉冲压缩的主要手段目前的脉冲压缩的手段主要有线性调频、非线性调频与相位编码等。

1)线性调频是最简单的脉冲压缩信号,容易产生,而且其压缩脉冲形状和信噪比对多普勒频移不敏感,因而得到了广泛的应用,但是,在利用多普勒频率测量目标方位和距离的情况下很少使用;2)非线性调频非线性调频具有几个明显的优点,不需要对时间和频率加权,但是系统复杂。

为了达到所需的旁瓣电平,需要对每个幅度频谱分别进行调频设计,因而在实际中很少应用;3)相位编码相位编码波形不同于调频波形,它将宽脉冲分为许多短的子脉冲。

这些子脉冲宽度相等,其相位通过编码后被发射。

根据所选编码的类型,包括巴克码、伪随机序列编码以及多项制编码等。

1.3脉冲压缩的产生背景随着飞行技术的飞速发展,对雷达的作用距离、分辨能力、测量精度和单值性等性能指标提出越来越高的要求。

测距精度和距离分辨力对信号形式的要求是一致的,主要取决于信号的频率结构,为了提高测距精度和距离分辨力,要求信号具有大的带宽。

而测速精度和速度分辨力则取决于信号的时域结构,为了提高测速精度和速度分辨力,要求信号具有大的时宽。

除此之外,为提高雷达系统的发现能力,要求信号具有大的能量。

由此可见,为了提高雷达系统的发现能力、测量精度和分辨能力,要求雷达信号具有大的时宽、带宽、能量乘积。

但是,在系统的发射和馈电设备峰值功率受限制的情况下,大的信号能量只能靠加大信号的时宽来得到。

测距精度和距离分辨力同测速精度和速度分辨力以及作用距离之间存在着不可调和的矛盾。

于是在匹配滤波器理论指导下,人们提出了脉冲压缩的概念。

由于发射机效率的限制,雷达真正采用的脉压信号是由调频和相位编码产生的,其中以线性调频和二相编码信号的研究与应用最为广泛。

脉冲压缩原理

脉冲压缩原理

脉冲压缩原理脉冲压缩原理是一种利用特殊波形设计和信号处理算法来实现雷达分辨率提高的方法。

传统雷达系统的分辨率由脉冲宽度决定,而脉冲压缩技术可以在保持较宽脉冲宽度的情况下,实现较高的分辨能力。

脉冲压缩技术的核心思想是利用多普勒频移效应和信号处理算法来压缩接收到的雷达回波信号。

在雷达系统中,脉冲压缩技术通常与调频连续波(Frequency Modulated Continuous Wave,FMCW)雷达或调相连续波(Phase Modulated Continuous Wave,PMCW)雷达结合使用。

首先,FMCW雷达或PMCW雷达在发送端产生一段连续变频或变相的信号,并将其发射出去。

当这个信号与目标物体相互作用后,会返回给雷达系统。

接收端接收到回波信号后,会进行一系列的信号处理操作。

脉冲压缩技术的关键步骤是脉冲压缩滤波和相关运算。

通过对回波信号进行频谱分析和相干处理,可以提取出回波信号中的散射能量,并把它们集中在时间域上,从而提高分辨能力。

脉冲压缩滤波是脉冲压缩技术的主要部分。

它是一种特殊的滤波器,可以对接收到的回波信号进行频域上的处理。

具体来说,脉冲压缩滤波器可以将长时间的脉冲信号转换成较短的脉冲,从而提高雷达的时间分辨率。

相关运算是对滤波后的信号进行时间域上的处理。

它用于计算接收信号与已知信号之间的相关性,从而提取出目标物体的信息。

相关运算可以进一步压缩脉冲信号,提高雷达的距离分辨能力。

总的来说,脉冲压缩原理是利用特殊波形设计和信号处理算法,通过脉冲压缩滤波和相关运算来提高雷达分辨率。

这种技术可以在保持较宽脉冲宽度的情况下,实现较高的分辨能力,从而在目标探测和定位中起到重要的作用。

脉冲压缩原理

脉冲压缩原理

脉冲压缩原理
1.脉冲压缩的目的和意义
雷达距离分辨率
δ = c τ 2 \delta=\frac{c\tau}{2}δ=2cτ
c是光速,τ \tauτ是矩形脉冲的时宽,从上式中,我们不难看出决定雷达的距离分辨率的是脉冲信号的时宽,所以,如果我们想要得到高的距离分辨率,就必须要发射更窄的脉冲,但是窄脉冲意味着发射信号的能量小,就会导致雷达的探测距离变短。

对于一般的脉冲信号(时宽*带宽=常数),比如矩形脉冲信号的时宽和带宽不能同时增大,因此,距离分辨率和探测距离是一对矛盾。

脉冲压缩技术就能够很好的处理上述的这组矛盾,首先,发射宽脉冲信号保证雷达的探测距离,其次,将回波信号经过一个匹配滤波器(脉冲压缩),得到窄脉宽信号,提高了雷达的分辨率。

2.脉冲压缩的优点:提高信噪比、压缩信号的时宽
3.线性调频(Linear Frequency Modulation,LFM)信号是一种大时宽的宽频信号,LFM信号的时宽和带宽都可以自己选择,不像矩形脉冲那样时宽和带宽相互抑制。

4.由于脉冲压缩要在雷达接收机的数字处理器件完成,由于受到器件的约束,脉冲压缩通常要在零中频进行(接收信号与本振信号下变频后进行脉冲压缩)。

脉冲压缩原理

脉冲压缩原理

脉冲压缩原理脉冲压缩技术是一种将脉冲信号在时间域内进行压缩的技术,它在雷达、通信、医学成像等领域有着重要的应用。

脉冲压缩技术的原理是利用信号处理方法将宽脉冲信号转化为窄脉冲信号,从而提高系统的分辨率和抗干扰能力。

本文将对脉冲压缩技术的原理进行介绍,以帮助读者更好地理解这一重要技术。

脉冲压缩技术的原理可以用简单的数学公式来描述。

在雷达系统中,脉冲信号的宽度与系统的分辨能力有直接关系,宽脉冲信号的分辨能力较差,而窄脉冲信号的分辨能力较好。

因此,通过信号处理方法将宽脉冲信号转化为窄脉冲信号,就可以提高雷达系统的分辨能力。

脉冲压缩技术的实现方法主要有匹配滤波器、码型压缩和频率合成等。

匹配滤波器是实现脉冲压缩的一种常用方法。

匹配滤波器的原理是利用脉冲信号的自相关性,通过与输入信号进行卷积运算,得到窄脉冲信号。

匹配滤波器的设计需要根据输入信号的特性进行优化,以达到最佳的压缩效果。

码型压缩是利用编码技术实现脉冲压缩的方法,通过在发射端对脉冲信号进行编码,然后在接收端进行解码,从而得到窄脉冲信号。

频率合成是利用多个频率合成信号的相位差来实现脉冲压缩的方法,通过对不同频率的信号进行合成,得到窄脉冲信号。

脉冲压缩技术的原理虽然简单,但在实际应用中有着许多挑战。

首先,脉冲压缩技术需要高精度的时钟和频率控制,以保证信号的准确性和稳定性。

其次,脉冲压缩技术对信号处理算法和硬件设计有较高的要求,需要克服多径效应、杂波干扰等问题。

最后,脉冲压缩技术在实际应用中需要考虑成本和功耗的问题,需要在性能和资源之间进行平衡。

总之,脉冲压缩技术是一种重要的信号处理技术,它通过将脉冲信号在时间域内进行压缩,从而提高系统的分辨率和抗干扰能力。

脉冲压缩技术的实现方法有匹配滤波器、码型压缩和频率合成等,每种方法都有其特点和适用范围。

在实际应用中,脉冲压缩技术需要克服诸多挑战,但其在雷达、通信、医学成像等领域的重要性不言而喻。

希望本文的介绍能够帮助读者更好地理解脉冲压缩技术的原理和应用。

脉冲压缩的基本原理

脉冲压缩的基本原理

脉冲压缩的基本原理
脉冲压缩技术是雷达信号处理中最常用的技术之一。

雷达信号的特点是,信号带宽很宽,而且信号波形极其复杂,如果直接进行宽带信号处理,会给计算机处理带来巨大的困难。

为了降低处理的复杂度,实现宽带信号的处理,我们可以采用脉冲压缩技术。

脉冲压缩的基本原理是:
首先我们在一个宽度很窄、长度较长的脉冲上加上一个很短的脉冲。

这个短脉冲是为了掩盖原来周期很长、长度很短的脉冲。

然后将这个短脉冲再次进行积分,得到一个周期较长、长度较短的新脉冲。

两个新脉冲之间产生了一定间隔。

新脉冲和原脉冲叠加在一起以后,就得到了一个宽度较宽、长度较短的新信号。

但是,由于两个新信号之间也是存在一定间隔的,因此这两个新信号可以在时域上叠加起来,得到一个时间维度上窄、宽度较宽的信号。

这个窄、宽的信号和原来周期很长、长度较短的信号相比,就得到了一个带宽较宽、长度较短的新带宽。

这个原理听起来好像很简单,但是要实现却很困难。

因为要同时满足两个条件:
(1)窄、宽;
— 1 —
(2)长度要短。

— 2 —。

脉冲压缩技术

脉冲压缩技术

脉冲压缩技术在雷达信号处理中的应用一.脉冲压缩的产生背景及定义1.1 脉冲压缩的定义脉冲压缩即pulse compression,它是指发射宽编码脉冲并对回波进行处理以获得窄脉冲,因此脉冲压缩雷达既保持了窄脉冲的高距离分辨力,又能获得宽脉冲的强检测能力。

1.2脉冲压缩的主要手段目前的脉冲压缩的手段主要有线性调频、非线性调频与相位编码等。

1)线性调频是最简单的脉冲压缩信号,容易产生,而且其压缩脉冲形状和信噪比对多普勒频移不敏感,因而得到了广泛的应用,但是,在利用多普勒频率测量目标方位和距离的情况下很少使用;2)非线性调频非线性调频具有几个明显的优点,不需要对时间和频率加权,但是系统复杂。

为了达到所需的旁瓣电平,需要对每个幅度频谱分别进行调频设计,因而在实际中很少应用;3)相位编码相位编码波形不同于调频波形,它将宽脉冲分为许多短的子脉冲。

这些子脉冲宽度相等,其相位通过编码后被发射。

根据所选编码的类型,包括巴克码、伪随机序列编码以及多项制编码等。

1.3脉冲压缩的产生背景随着飞行技术的飞速发展,对雷达的作用距离、分辨能力、测量精度和单值性等性能指标提出越来越高的要求。

测距精度和距离分辨力对信号形式的要求是一致的,主要取决于信号的频率结构,为了提高测距精度和距离分辨力,要求信号具有大的带宽。

而测速精度和速度分辨力则取决于信号的时域结构,为了提高测速精度和速度分辨力,要求信号具有大的时宽。

除此之外,为提高雷达系统的发现能力,要求信号具有大的能量。

由此可见,为了提高雷达系统的发现能力、测量精度和分辨能力,要求雷达信号具有大的时宽、带宽、能量乘积。

但是,在系统的发射和馈电设备峰值功率受限制的情况下,大的信号能量只能靠加大信号的时宽来得到。

测距精度和距离分辨力同测速精度和速度分辨力以及作用距离之间存在着不可调和的矛盾。

于是在匹配滤波器理论指导下,人们提出了脉冲压缩的概念。

由于发射机效率的限制,雷达真正采用的脉压信号是由调频和相位编码产生的,其中以线性调频和二相编码信号的研究与应用最为广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉冲压缩
.
第一部分
脉冲压缩的作用 脉冲压缩的实现 脉冲压缩的特点
.
脉冲压缩的作用
雷达作用距离与距离分辨力存在矛盾
.
脉冲压缩的作用
距离分辨力
.
脉冲压缩的作用
即脉压比等于时宽-带宽积,脉冲压缩系统常用时宽-带宽 积的概念表征
.
脉冲压缩的特点
.
脉冲压缩的特点
存在的缺点
• 最小作用距离受脉冲宽度的限制。 • 收发系统比较复杂,在信号产生和处理过程中的任何失
压缩网络
.
脉冲压缩的实现
压缩网络
.
第二部分 线性调频(LFM)脉冲压缩
基本原理
• 性能改善
频谱特性
• LFM脉冲信号频谱特性 • LFM脉冲信号匹配滤波器频谱特性 • LFM脉冲信号通过匹配滤波器的输出波形
Matlab 仿真
.
基本原理

.
由图(d)得 到网络对信号各 斜率成分的延时 关系为
说明线性调 频宽脉冲信号经 过压缩网络后, 成为窄脉冲。
改写成窗函数与原函数乘积的形式,并用复数表示
.
LFM脉冲信号的频谱特性
做傅里叶变换 通过变量代换,整理得到复频谱
.
LFM脉冲信号的频谱特性
可以得到 信号幅度谱
相位幅度谱
相位幅度谱可分为平方相位谱和剩余相位谱两部分
.
LFM脉冲信号的频谱特性
式中 称为菲涅尔积分,具有如下特性:
此时剩余相位
.
LFM脉冲信号的频谱特性
离增大1倍)
综上分析,接收机输出的目标回波信号具有:
窄的脉冲宽度、高的峰值功率,即,符合探测距离远、 距离分辨率高的战术要求。
为进一步研究LFM脉冲与压缩脉冲之间的内在关系,我 们必须进行定量分析。
.
LFM脉冲信号的频谱特性
由(c)可知 调频斜率 角频率变化规律
.
LFM脉冲信号的频谱特性
瞬时相位 由此得到LFM脉冲压缩体制的发射信号表达式
空间有三个目标,雷达发射4个脉冲,参数如表
目标 A B C
距离 7.0km 8.0km 28.0km
径向速度 50m/s 0m/s 100m/s
功率 1 0.25 1
LFM脉冲雷达参数如表
射频
带宽
时宽
PRT
1.57GHz 2MHz 42us
240us
采样频率为10MHz
.
仿真实验
LFM脉冲信号波形
真,都将增大旁瓣高度。
• 存在距离旁瓣。 • 存在一定的距离和速度测定模糊。
总之,脉冲压缩体制的优越性超过了它的缺点,成为 近代雷达广泛应用的体制。
.
脉冲压缩的实现
发射脉冲必须有非线性的相位谱,或必须使其脉冲宽度与 有效频谱宽度的乘积远大于1; 接收机中必须有一个压缩网络,其相频特性应与发射信号 实现“相位共轭匹配”。 根据以上要求,可以构造理想的脉冲压缩系统:
.
性能改善
若压缩网络是无源的,根据能量守恒原理。 输出峰值功率增大D倍
无源网络不产生噪声,而输入噪声具有随机性,所以经过 压缩网络不会被压缩。 输出脉冲信号Biblioteka 噪比与输入信号之比增大D倍.
性能改善
由雷达方程知,
,这就使脉冲压缩雷达的
探测距离比采用相同发射脉冲功率和保持相同分辨力的普
通脉冲制雷达的探测距离增加了 (例如D=16,作用距
.
总的回波信号

目 目 目 A与B的回波存在重叠,无法区分
锁 标标 标

AB
C
.
时域脉压结果
AB C
观察一个脉冲周期 回波由宽脉冲压
缩为窄脉冲,目标A 与B完全分离。
即,脉冲压缩提 高了雷达的距离分辨 力。
.
第三部分
旁瓣抑制
窗函数加权 谱修正技术
多普勒频移的影响
.
旁瓣抑制
13.2dB
输出脉冲包络的第一旁瓣为主瓣电平-13.2dB。在多目 标环境中,旁瓣可能会埋没附近较小目标的主瓣,导致目 标丢失。为提高分辨多目标的能力,须采用旁瓣抑制措施 ,即加权技术。
带内波纹 边缘跃变
.
谱修正技术
修改后的传输函数
.
谱修正技术
下图为D=40的LFM信号谱修正前后的结果,虚线为修正 前的输出,实线是修正后的输出。可以看出,采用海明加 权,经过谱修正后脉压输 出主旁瓣比从34.07dB提高 到37.75dB,3dB宽度仍展 宽1.47倍。
.
多普勒频移
.
多普勒频移
.
群延时特性
值得注意的是,网络的群延时特性正好与信号的相反 ,因此通过匹配滤波后,相位特性得到补偿,使得输出信 号相位均匀,信号出现峰值。
由此可见匹配滤波器的相频特性与群时延特性有着确 定关系,它们是等价的。
.
通过匹配滤波器的输出波形
作反傅里叶变换并取实部,得到
.
通过匹配滤波器的输出波形
.
仿真实验
.
多普勒频移
存在多普勒频率的LFM信号为 经滤波器后输出为 积分结果为
.
多普勒频移
.
总结
.
下图画出了D=13,D=52,D=130时的幅频特性和剩余项相频特性
.
LFM脉冲信号的频谱特性
.
LFM脉冲信号匹配滤波器频谱特性
K为归一化系数,幅频特性即为
相频特性与发射信号相似,具有相同平方律,但符号相反
.
群延时特性
网络输出端,两个频率分量经过不同的相移
.
群延时特性
对于PC网络,其相频特性对应的延时特性为
不同的K值与n值,对应不同的加权函数
.
旁瓣抑制
.
旁瓣抑制
则加权网络输出信号 整理后得到
接着对几个主要性能指标进行计算
.
旁瓣抑制
得到-3dB处主瓣加宽系数为
.
旁瓣抑制
未加权PC输出
hamming加权PC输出
-13dB
-43dB
.
旁瓣抑制
大时宽带宽积信号: D值大,振幅谱接近矩形,且波 纹小,加权后的脉压波形旁瓣低;
小时宽带宽积信号: D值小,振幅谱不再具有接近矩 形的特性,通带内有较大波纹。加权后旁瓣高。
D值不同造成脉压信号主旁 瓣比不同时由于时域压缩产生的 距离旁瓣与频域上的边缘跃变以 及带内波纹密切相关。采用经典 窗加权的目的就是平滑矩形频谱 的边缘跃变,但不能抑制带内波 纹,因此与大时宽带宽积信号相 比,小时宽带宽积信号相比主旁 瓣比低。
.
旁瓣抑制
引入加权网络实质上是对信号进行一种失配处理,它 不仅抑制旁瓣,同时会使输出信号的包络主瓣降低、变宽 ,即,旁瓣抑制是以损失信噪比及降低距离分辨力为代价 的。
加权函数的选择,只能在旁瓣抑制、主瓣加宽、信噪 比损失、旁瓣衰减速度以及技术实现难度等几个方面这种 考虑。
现用下面的一般形式表示加权函数
相关文档
最新文档