立体几何-棱柱、棱锥、棱台的结构特征
学案1:1.1.2棱柱、棱锥和棱台的结构特征

1.1.2 棱柱、棱锥和棱台的结构特征学习目标1.认识棱柱、棱锥、棱台的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.理解棱柱、棱锥、棱台的定义及其形成过程,会画棱柱、棱锥、棱台的图形.3.掌握棱柱、棱锥、棱台平行于底面的截面性质,并会在棱柱、棱锥、棱台中进行简单运算.基础知识1.多面体与截面(1)多面体是由若干个平面多边形所围成的几何体.围成多面体的各个多边形叫做多面体的______;相邻两个面的公共边叫做多面体的______;棱和棱的公共点叫做多面体的______;连接不在同一个面上的两个顶点的线段叫做多面体的________.按围成多面体的面的个数分为:四面体、五面体、六面体……多面体至少有______个面.(2)把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做________.(3)一个几何体和一个平面相交所得到的平面图形(包含它的内部),叫做这个几何体的______.做一做1 长方体有__________条对角线,一个多面体至少有__________个面.2.棱柱(1)棱柱的概念.有两个互相平行的面,其余各面都是________,并且每相邻两个四边形的公共边都互相________,这些面围成的几何体称为棱柱.棱柱中,两个互相平行的面称为棱柱的________;其余各面叫做棱柱的________;两侧面的公共边称为棱柱的________;底面多边形与侧面的公共顶点叫做棱柱的________.棱柱两底面之间的距离叫做棱柱的______.(2)棱柱的表示法.用表示两底面的对应顶点的字母或者用一条对角线端点的两个字母来表示.(3)棱柱的分类.按底面多边形的________分为:三棱柱、四棱柱、五棱柱……棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做________棱柱,侧棱与底面垂直的棱柱叫做______棱柱,底面是正多边形的直棱柱叫做__________.底面是平行四边形的棱柱叫做___________.侧棱与底面垂直的平行六面体叫做__________,底面是矩形的直平行六面体是________,棱长都相等的长方体是_______.归纳总结在四棱柱中,应掌握好以下关系:用图示表示如下:做一做2-1 四棱柱有()A.4条侧棱,4个顶点B.8条侧棱,4个顶点C.4条侧棱,8个顶点D.6条侧棱,8个顶点做一做2-2 下列三种说法中,正确的个数是()①侧棱垂直于底面的棱柱是直棱柱;②底面是正多边形的棱柱是正棱柱;③棱柱的侧面都是平行四边形.A.0 B.1 C.2 D.33.棱锥(1)棱锥的概念.有一面为________,其余各面是___________,这些面围成的几何体叫做棱锥.棱锥中有公共顶点的各三角形,叫做棱锥的________;各侧面的公共顶点叫做棱锥的________;相邻两侧面的公共边叫做棱锥的________;多边形叫做棱锥的________.顶点到底面的距离,叫做棱锥的______.(2)棱锥的表示法.用表示顶点和底面各顶点的字母或用表示顶点和底面的一条对角线端点的字母来表示.(3)棱锥的分类.按底面多边形的________分为:三棱锥、四棱锥、五棱锥……(4)正棱锥的概念.如果棱锥的底面是__________,且它的顶点在过底面中心且与底面________的直线上,则这个棱锥叫做正棱锥.正棱锥各侧面都是全等的__________,这些等腰三角形底边上的高都相等,叫做棱锥的________.知识拓展(1)只有正棱锥才有斜高,其他棱锥的顶点到各底边的垂线段不都等长.(2)正棱锥中有几个重要的特征直角三角形,利用它们可以把许多立体几何问题转化为平面几何问题解决.如图所示,正棱锥中,点O为底面中心,M是CD的中点,则△SOM,△SOC 均是直角三角形,常把一些量归结到这些直角三角形中去计算.很明显,△SMC,△OMC也是直角三角形.做一做3-1 在四棱锥的四个侧面中,直角三角形最多可有()A.1个B.2个C.3个D.4个做一做3-2 正四棱锥S-ABCD的所有棱长都等于a,过不相邻的两条侧棱作截面SAC,如图所示,则截面的面积为()A .32a 2 B .a 2C .12a 2D .13a 24.棱台 (1)棱台的概念.棱锥被________于底面的平面所截,________和______间的部分叫做棱台.原棱锥的底面和截面分别称为棱台的________和________;其他各面称为棱台的________;相邻两侧面的公共边称为棱台的________;底面多边形与侧面的公共顶点叫做棱台的________;两底面间的距离叫做棱台的______. (2)棱台的表示法.用表示上下底面各顶点的字母表示棱台. (3)棱台的分类.按底面多边形的________分为:三棱台、四棱台、五棱台…… (4)正棱台的概念.由________截得的棱台叫做正棱台.正棱台各侧面都是全等的________,这些等腰梯形的高叫做棱台的________. 知识拓展在正棱台中,有三个重要的直角梯形——两底面中心连线、相应的边心距和斜高组成一个直角梯形;两底面中心连线、侧棱和两底面对角线的一半组成一个直角梯形;斜高、侧棱和上下两底面边长的一半组成一个直角梯形.正棱台的计算问题,常转化为这几个直角梯形的计算问题.做一做4 棱台不具有的性质是( ) A .两底面相似 B .侧面都是梯形 C .侧棱都平行D .侧棱延长后都交于一点 重点难点1.棱柱、棱锥、棱台的定义和结构特征比较 剖析:名师点拨(1)有两个面互相平行,其余各面是平行四边形的几何体不一定是棱柱,反例如下图.(2)有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,反例如下图.2.教材中的“思考与讨论” 如何判断一个多面体是棱台?剖析:要判断一个多面体是不是棱台,首先看两个底面是否平行,其次把侧棱延长看是否相交于一点,这两条都满足的几何体才是棱台.典型例题题型一识别简单的空间几何体例1 下列几何体是棱柱的有()A.5个B.4个C.3个D.2个反思:本题容易错认为几何体②也是棱柱,其原因是忽视了棱柱必须有两个面平行这个结构特征,避免出现此类错误的方法是将教材中的各种几何体的结构特征放在一起对比,并且和图形对应起来记忆,要做到看到文字叙述就想到图形,看到图形就想到文字叙述.题型二概念的理解和应用例2 一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的两条棱互相垂直D.底面是正方形,每个侧面都是全等的矩形反思:在本题的解答过程中易出现选B的情况,导致此种错误的原因是两个侧面垂直于底面,并不能保证侧棱一定垂直于底面,只有是两个相邻的侧面才可以.题型三有关柱、锥、台的计算问题例3 正四棱台的上、下底面面积分别为4,16,一侧面面积为12,分别求该棱台的斜高、高、侧棱长.反思:本题由正四棱台的性质可知:上,下底面都是正方形,侧面是全等的等腰梯形,即可得出上、下底边及斜高的长;再由两个直角梯形便可计算出侧棱、斜高、高.故解题时应注意优先分析几何图形的关系,减少盲目性.例4 如图所示,直平行六面体AC1的侧棱长为100 cm,底面两邻边的长分别是23 cm和11 cm,底面的两条对角线的比为2∶3,求它的两个对角面的面积(过相对侧棱的截面叫对角面).题型四立体图形的展开与平面图形的折叠问题例5 如图,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4.M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为29,设这条最短路线与CC1的交点为N.求点P的位置.反思:解决空间几何体表面上两点间的最短线路问题,一般都是将空间几何体表面展开,转化为求平面内两点间的线段长,这体现了数学中的转化思想.题型五易错辨析例6 下列说法中正确的有()①有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱;②有一个面是多边形,其余各面都是三角形的几何体一定是棱锥;③有两个面互相平行,其余各面都是梯形的几何体一定是棱台.A.0个B.1个C.2个D.3个错解:B(或C或D)错因分析:没有正确地理解棱柱、棱锥、棱台的定义. 随堂练习1.下图所示的几何体是棱台的是( )2.下列命题中正确的是( )A .棱柱的面中,至少有两个面互相平行B .棱柱中两个互相平行的平面一定是棱柱的底面C .在平行六面体中,任意两个相对的面均互相平行,但平行六面体的任意两个相对的面不一定可当作它的底面D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形3.如图所示,正三棱柱ABC -A 1B 1C 1的各棱长都是2,E ,F 分别是AB ,A 1C 1的中点,则EF 的长是( )A .2B .3C . 5D .74.棱柱的侧面是________形,棱锥的侧面是________形,棱台的侧面是________形.5.正三棱锥底面面积为943,侧棱长为4,求此三棱锥的斜高和高.参考答案基础知识1.(1)面棱顶点对角线4(2)凸多面体(3)截面做一做1 442.(1)四边形平行底面侧面侧棱顶点高(3)边数斜直正棱柱平行六面体直平行六面体长方体正方体做一做2-1 C做一做2-2 C【解析】由直棱柱的定义,知①正确;由正棱柱的定义,知底面是正多边形的直棱柱是正棱柱,故②错误;由棱柱的定义知其侧面都是平行四边形,故③正确.3.(1)多边形有一个公共顶点的三角形侧面顶点侧棱底面高(3)边数(4)正多边形垂直等腰三角形斜高做一做3-1 D做一做3-2 C【解析】由正棱锥的性质,底面ABCD是正方形,∴AC=2a.在等腰△SAC中,SA=SC=a,AC=2a,∴∠ASC=90°,即S△SAC=1 2a2.∴选C.4.(1)平行截面底面下底面上底面侧面侧棱顶点高(3)边数(4)正棱锥等腰梯形斜高做一做4C典型例题例1 D【解析】棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形面中,每相邻两个面的公共边都互相平行.当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱.很明显,几何体②④⑤⑥均不符合,仅有①③符合.例2 D【解析】对于选项A,满足了底面是正方形,但两个侧面是矩形并不能保证另两个侧面也是矩形.对于选项B,有两个侧面垂直于底面,不能保证侧棱垂直于底面.对于选项C,底面是菱形但不一定是正方形,同时侧棱也不一定和底面垂直.对于选项D,侧面全等且为矩形,保证了侧棱与底面垂直,底面是正方形,保证了底面是正多边形,因而符合正棱柱的定义和基本特征.例3 解:如图,设O′,O分别为上下底面的中心,即OO′为正四棱台的高,E,F分别为B′C′,BC的中点,∴EF⊥BC,EF为斜高.由上底面面积为4,上底面为正方形,可得B′C′=2;同理,BC=4.∵四边形BCC ′B ′的面积为12,∴12×(2+4)·EF =12, ∴EF =4.过B ′作B ′H ⊥BC 交BC 于H ,则BH =BF -B ′E =2-1=1,B ′H =EF =4.在Rt △B ′BH 中,BB ′=BH 2+B ′H 2=12+42=17.同理,在直角梯形O ′OFE 中,计算出O ′O =15.综上,该正四棱台的侧棱长为17,斜高为4,高为15.例4 解:∵棱柱AC 1是直平行六面体,∴两对角面都是矩形,其侧棱AA 1就是矩形的高. 由题意,得AB =23 cm ,AD =11 cm ,AA 1=100 cm ,BD ∶AC =2∶3,设BD =2x cm ,则AC =3x cm.在平行四边形ABCD 中,BD 2+AC 2=2(AB 2+AD 2),即(2x )2+(3x )2=2×(232+112),解得x =10.∴BD =20 cm ,AC =30 cm.∴两个对角面的面积分别为S 矩形BDD 1B 1=BD ·BB 1=2 000(cm 2),S 矩形ACC 1A 1=AC ·AA 1=3 000(cm 2).例5 解:把该三棱柱展开后如图所示.设CP =x ,则AP =3+x .根据已知可得方程22+(3+x )2=29.解得x =2.所以点P 的位置在距离点C 为2的地方.例6 A正解:对于说法①,棱柱的定义是这样的:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱.显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱,如图(1).对于说法②,有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,如图(2)所示.对于说法③,有两个面互相平行,其余各面都是梯形的几何体不一定是棱台,如图(3)所示.故说法①②③都是错误的,因此选A.随堂练习1.D【解析】选项A中的几何体四条侧棱延长后不相交于一点;选项B和选项C中的几何体的截面不平行于底面;只有选项D中的几何体符合棱台的定义与特征.2.A【解析】由棱柱的结构特征进行判断.3.C【解析】如图所示,取AC的中点G,连接EG,FG,则易得FG=2,EG=1,故EF= 5.4.平行四边 三角 梯5.解:如图,设正三棱锥为S -ABC ,O 为底面△ABC 的中心,D 为BC 边的中点,连接OC ,OD ,SO ,SD ,则斜高为SD ,高为SO ,正△ABC 的面积为943,所以BC =3,所以CD =32,OC =3,OD =32.在Rt △SOC 和Rt △SOD 中,得高SO =SC 2-OC 2=42-(3)2=13,斜高SD =SO 2+OD 2=13+34=552,即此正三棱锥的斜高为552,高为13.。
必修二数学知识点整理

必修二数学知识点整理一、立体几何初步。
(一)空间几何体。
1. 结构特征。
- 棱柱。
- 有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
- 棱柱的底面、侧面、侧棱、顶点等概念。
按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等。
- 棱锥。
- 有一个面是多边形,其余各面都是有一个公共顶点的三角形。
- 棱锥的底面、侧面、侧棱、顶点等概念。
按底面多边形的边数可分为三棱锥(四面体)、四棱锥等。
- 棱台。
- 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 棱台的上底面、下底面、侧面、侧棱、顶点等概念。
- 圆柱。
- 以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
- 圆柱的轴、底面、侧面、母线等概念。
- 圆锥。
- 以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。
- 圆锥的轴、底面、侧面、母线等概念。
- 圆台。
- 用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 圆台的上底面、下底面、侧面、母线等概念。
- 球。
- 以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。
- 球心、半径、直径等概念。
2. 三视图和直观图。
- 三视图。
- 正视图(主视图)、侧视图(左视图)、俯视图的概念。
- 画三视图的规则:长对正、高平齐、宽相等。
- 通过三视图还原空间几何体的方法:先根据视图的轮廓想象出基本的几何体形状,再根据视图中的线段长度等确定几何体的具体尺寸。
- 直观图。
- 斜二测画法的步骤:- 在已知图形中取互相垂直的x轴和y轴,两轴相交于点O。
画直观图时,把它们画成对应的x'轴和y'轴,两轴相交于点O',且∠x'O'y' = 45°(或135°)。
- 已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段。
- 已知图形中平行于x轴的线段,在直观图中长度不变;平行于y轴的线段,长度变为原来的一半。
棱锥棱台的结构特征

棱锥棱台的结构特征
棱锥和棱台是几何图形中的一种,它们有着特殊的结构特征。
棱锥是
一种三维图形,由一个多边形的底面和与底面连接的直线段(称为侧面)
组成。
而棱台则是一种棱锥的特殊情况,它的底面和顶面是相同的多边形。
下面将对棱锥和棱台的结构特征进行详细描述。
1.棱锥的结构特征:
棱锥的底面是一个多边形,它可以是任意形状的多边形,如三角形、
四边形、五边形等。
棱锥的顶点称为顶点,它是由底面直线段的所有端点
连接而成。
棱锥的侧面由顶点和底面上的各个点以直线段连接而成,每个
侧面都是一个三角形。
2.棱台的结构特征:
棱台是一种特殊的棱锥,它的底面和顶面是相同的多边形。
棱台的底
面和顶面可以是任意形状的多边形,如三角形、四边形、五边形等。
棱台
的侧面是由底面和顶面上的各个点以直线段连接而成,每个侧面都是一个
梯形或者矩形。
总结:
棱锥和棱台的结构特征可以归纳为以下几点:
1.棱锥由一个底面和连接底面和顶点的直线段组成,侧面为三角形。
2.棱台是一种特殊的棱锥,其底面和顶面相同,侧面为梯形或矩形。
3.棱锥和棱台的底面可以是任意形状的多边形,如三角形、四边形等。
4.棱锥和棱台的顶点为连接底面各个点的直线段的交点。
5.棱锥和棱台的侧面为由底面和顶面上的各个点以直线段连接而成的三角形、梯形或矩形。
棱锥和棱台在几何学中有着广泛的应用,例如在建筑设计、工程测量和计算几何等领域。
他们的结构特征使得它们成为解决空间问题的重要工具,并且在实际应用中具有较高的实用价值。
棱柱棱台棱锥知识点总结

棱柱棱台棱锥知识点总结一、棱柱的定义和性质1. 棱柱的定义:棱柱是一个多边形和一个平行于它的平面所围成的几何图形。
2. 棱柱的特征:(1)棱柱的底面是一个多边形,顶面与底面平行,并且顶面的每个点和底面的对应点之间的连线都垂直于底面。
(2)如果底面是正多边形,棱柱就称为正棱柱;如果底面是不规则多边形,棱柱就称为斜棱柱。
(3)棱柱的高等于顶面到底面的距离,底面的面积乘以高就是棱柱的体积。
二、棱台的定义和性质1. 棱台的定义:棱台是由平行多边形和连通它们的矩形棱所围成的空间图形。
2. 棱台的特征:(1)如果底面和顶面都是正多边形,且它们的对边平行,那么这个棱台称为正棱台;如果底面和顶面是正多边形,但它们不一定平行,那么这个棱台称为斜棱台。
(2)棱台的体积等于底面积与高的乘积,而斜棱台的体积还需要乘以一个高与底面中较大边的比值。
三、棱锥的定义和性质1. 棱锥的定义:棱锥是由一个多边形和以它为底的三棱锥棱所围成的几何图形。
2. 棱锥的特征:(1)如果底面是正多边形,棱锥称为正棱锥;如果底面不是正多边形,那么棱锥就称为斜棱锥。
(2)棱锥的体积等于底面积与高的乘积,并除以3。
(3)棱锥的侧棱的延长线与底面平面的交点称为顶点。
四、棱柱、棱台、棱锥的计算公式1. 棱柱的体积公式:V=Sh,其中V表示棱柱的体积,S表示底面的面积,h表示高。
2. 棱台的体积公式:V=(S1+S2+√S1S2)h/3,其中V表示棱台的体积,S1和S2表示底面和顶面的面积,h表示高。
3. 棱锥的体积公式:V=Sh/3,其中V表示棱锥的体积,S表示底面的面积,h表示高。
以上就是关于棱柱、棱台、棱锥的知识点总结,希望对你有所帮助。
如果还有其他问题,欢迎继续提问。
第1节 棱柱、棱锥、棱台的结构特征

平移 (1)
平移 (2)
棱柱的特点
1.有两个互相平行且全等的面 2.夹在两个平行平面间的每相邻的两个面的交线都互相平行且 且相等.
棱柱的相关概念
棱柱的两个互相平行的面叫做棱柱的底面。其余各面叫做棱
柱的侧面,两个侧面的公共边叫做棱柱的侧棱。
棱柱的两个底面之间的距离叫做棱柱的高。
棱柱的符号表示:棱柱 ABCDEF A' B 'C ' D' E ' F '
(2)棱锥的侧面是有公共顶点的三角形,但是各侧棱不一定相等,故①②不
正确;棱台是由平行于棱锥底面的平面截棱锥底面得到的,故各个侧棱的延长
线一定交于一点,③正确;棱台的各条侧棱必须交于一点故④错误.
[答案] (1)B (2)C
练习:下列关于四棱柱的说法:①四条侧棱互相平行且相等;②两对相对的侧面互相平行;
(3)图(3)中的几何体叫做________,它是由棱锥________被平行于底面 ABCD 的平面________截得的 AA′,BB′叫它的__________,平面 BCC′B′、平面 DAA′D′叫它的________.
[答案] (1)棱柱 侧棱 顶点 (2)棱锥 侧棱 侧面 底面 (3)棱同学们仔细观察下面的几何体,它们有哪些共同的特点?
(1)
(2)
这些多面体是棱柱
(3)
(4)
棱柱的形成
从运动的观点来观察,棱柱可以看成一个多边形(包括围 成的平面部分)上各点都沿着同一个方向移动相同的距离所形 成的几何体。
图(1) 和 (2) 中的几何体分别由平行四边形和五边形沿某一方 向平移得来的。
正棱台:由正棱锥截得的棱台
下底面
上底面 D'
(完整版)立体几何初步知识点(很详细的)

立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =++台 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π 4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
1.1.1 棱柱、棱锥、棱台的结构特征
1.1.1 棱柱、棱锥、棱台的结构特征参考答案知识点1.空间几何体(1)空间中的物体都占据着空间的一部分,若只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)多面体定义:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.1.判断下列命题.(正确的打“√”,错误的打“×”)(1)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等.()(2)五棱锥只有五条棱.()解析:(1)根据四棱锥的结构特征可知,(1)错误.(2)五棱锥有十条棱,其中五条侧棱,(2)错误.答案:(1)×(2)×2.下列几何体中是棱柱的有()A.1个B.2个C.3个D.4个解析:选C.观察图形可知,①③⑤是棱柱,其他的几何体不是棱柱.3.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台解析:选C.由棱柱的定义可知,A,B不正确,C正确,而根据棱台的定义可知,D不正确.4.由7个面围成,其中两个面是互相平行且全等的五边形,其他面都是全等的矩形的几何体是________.解析:由棱柱的定义和其分类可知该几何体是五棱柱.答案:五棱柱几何体的概念理解与应用(1)下面描述中,不是棱锥的结构特征的为()A.三棱锥有四个面是三角形B.棱锥都有两个面是互相平行的多边形C.棱锥的侧面都是三角形D.棱锥的侧棱相交于一点(2)下列说法中正确的是()A.有一个面是平行四边形,其余各面都是三角形的几何体是棱锥B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是梯形的几何体叫棱台D.有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥[解析](1)根据棱锥的结构特征,知棱锥中不存在互相平行的多边形.(2)根据棱柱的结构特征可知,A,B不符合,所以A,B错误;C不符合棱台的结构特征,所以错误;D满足棱锥的定义,正确.[答案](1)B(2)D1.下列三个命题中,正确的有()①棱柱中互相平行的两个面叫做棱柱的底面;②各个面都是三角形的几何体是三棱锥;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;④五棱台的各侧棱的延长线可能无法交于一点.A.0个B.1个C.2个D.3个解析:选A.①错误.底面为正六边形的棱柱相对的两个侧面互相平行,但不能作为底面.②错误.如图所示的几何体各面均为三角形,但不是棱锥.③错误.因为不能保证侧棱相交于同一点.④错误.棱台的侧棱延长后一定相交于同一点.几何体的结构特征如图,长方体ABCD-A′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是什么?截去的几何体是什么?你能说出它们的名称吗?[解]根据棱柱的几何特征可知:剩下的几何体为五棱柱ABFEA′-DCGHD′,截去的几何体为三棱柱EFB′-HGC′.(3)棱柱、棱锥、棱台之间的关系:棱锥是当棱柱的一个底面收缩为一个点时形成的空间图形,棱台则可以看成是用一个平行于棱锥底面的平面截棱锥所得到的图形,它们的关系如图所示:2.下面的多面体是棱台的有________个.解析:由棱台的定义和结构特征可知三个几何体都不是棱台.答案:0下图中能围成正方体的是________.(填序号)[解析]根据展开图的特点和正方体的结构特征,能围成正方体的是①②③.[答案]①②③3.如图是三个几何体的平面展开图,则原几何体应为:(1)________________;(2)________________; (3)________________.解析:由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱;②为五棱锥;③为三棱台. 答案:(1)五棱柱 (2)五棱锥 (3)三棱台如图(1)所示,在侧棱长为23的正棱锥V -ABC (底面为正三角形,过顶点与底面垂直的直线过底面的中心)中,∠AVB =∠BVC =∠CVA =40°,过A 作截面△AEF ,求截面△AEF 周长的最小值.[解] 将三棱锥沿侧棱VA 剪开,并将其侧面展开平铺在一个平面上,如图(2)所示, 线段AA 1的长为所求△AEF 周长的最小值. 取AA 1的中点D ,则VD ⊥AA 1,∠AVD =60°,可求AD =3,则AA 1=6.A 组训练1.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是( ) A .棱柱 B .棱锥 C .棱台 D .一定不是棱柱、棱锥解析:选D .两个面互相平行,其余各面都是梯形的多面体,这样的多面体有可能是棱台,不可能为棱柱、棱锥. 2.(2014·聊城高一检测)下列说法正确的是( ) A .棱锥的侧面不一定是三角形 B .棱锥的各侧棱长一定相等C .棱台的各侧棱的延长线交于一点D .用一平面去截棱锥,得到两个几何体,一个是棱锥,一个是棱台 解析:选C .由棱台的结构特征可知棱台的侧棱的延长线交于一点. 3.如图,下列能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1 解析:选C .因为三棱台的上、下底面相似,所以该几何体如果是三棱台,则△A 1B 1C 1∽△ABC ,所以A 1B 1AB =B 1C 1BC =A 1C 1AC.4.如图,判断下列四个长方体,哪一个是由所给平面展开图围成的几何体( )解析:选D.根据所给平面展开图及涂色的对应关系,可知D是由所给平面图形围成的.5. 下列叙述,其中正确的有()①两个底面平行且相似,其余的面都是梯形的多面体是棱台;②如图所示,截正方体所得的几何体是棱台;③棱锥被平面截成的两部分不可能都是棱锥.A.0个B.1个C.2个D.3个解析:选A.根据棱台、棱锥的定义和结构特征可知①②③都不正确.6.一个棱柱至少有________个面,面数最少的棱柱有________条棱,有________条侧棱,有________个顶点.解析:根据棱柱的定义可知,三棱柱为面数最少的棱柱,其中有5个面,9条棱,3条侧棱,6个顶点.答案:593 67. 如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A 到点M的最短路程是______c m.解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别是1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:138.(2014·临沂高一检测)如图,在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.①矩形②不是矩形的平行四边形③每个面都是等边三角形的四面体解析:在正方体中任意选择4个顶点,可以是矩形,例如ABC1D1.可以是每个面都是等边三角形的四面体例如A1C1DB.答案:①③9.试用两个平面将如图所示的三棱台分成三个三棱锥.解:过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC-A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′(答案不唯一).10. 如图所示,长方体的长、宽、高分别为5 cm、4 cm、3 cm.一只蚂蚁从A点到C1点沿着表面爬行的最短路程是多少?解:依题意,长方体ABCD-A1B1C1D1的表面可有如图所示的三种展开图.展开后,A,C1两点间的距离分别为:(3+4)2+52=74(cm),(5+3)2+42=45(cm),(5+4)2+32=310(cm),三者比较得74 cm为蚂蚁从A点沿表面爬行到C1点的最短路程.B组训练1.在正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱的对角线共有()A.20条B.15条C .12条D .10条解析:选D .正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,5个平面共可得到10条对角线,故选D .2.一个棱柱有12个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为________cm. 解析:因为棱柱有12个顶点,故该棱柱为六棱柱,每条侧棱长为60÷6=10(cm). 答案:103.已知三棱台ABC -A 1B 1C 1的上、下底面均为等边三角形,边长分别为3和6,平行于底面的截面将侧棱分为1∶2两部分,求截面的面积. 解:如图所示.延长A 1A ,B 1B ,C 1C 交于点S ,设截面为A 2B 2C 2.由题意知A 2A ∶A 1A 2=1∶2,SASA 1=AB A 1B 1=12,所以SA SA 2=34.因为AB =3,所以A 2B 2=4,所以S △A 2B 2C 2=12×32×16=4 3. 4.如图,图①是正方体木块,把它截去一块,可能得到的几何体有②,③,④,⑤的木块.(1)我们知道,正方体木块有8个顶点、12条棱、6个面,请你将图②,③,④,⑤的木块(2)F 之间的关系; (3)看图⑥中正方体的切法,请验证你所得的数量关系是否正确. 解:(1)通过观察各几何体(2)由特殊到一般,(3)该木块的顶点数为10,面数为7,棱数为15,有10+7-15=2,与(2)中归纳的数量关系式“V +F -E =2”相符.。
棱柱、棱锥、棱台的结构特征
A
B
侧面与底面的公共顶点. 底面
C顶 点
棱柱的结构特征
棱柱的分类 1、按侧棱与底面是否垂直可分为: 1) 侧棱不垂直于底的棱柱叫做斜棱柱。
2)侧棱垂直于底的棱柱叫做直棱柱。
3) 底面是正多边形的直棱柱叫做正棱 柱。
2、按底面的边数分为:
棱柱的底面可以是三角形、四边形、 五边形、……
把这样的棱柱分别叫做三棱柱、四棱 柱、五棱柱、……
长方体:侧面和底面都是矩形的棱柱. 正方体:侧面和底面都是正方形的棱柱.
1.1 棱柱、棱锥、棱台的结构特征
棱柱 棱锥 棱台
棱锥结构特征
有一个面是多
边形,其余各面都
是有一个公共顶点
的三角形。
侧棱
A
顶点 S
侧面
D
C
底面
B
棱锥的结构特征
1.棱锥的概念:
一般地,有一个面是 多边形,其余各面都是 有一个公共顶点的三角 形,由这些面所围成的 几何体叫做棱锥.
四棱锥
五棱锥
棱柱 棱锥 棱台
棱台结构特征
用一个平行于棱
D’
锥底面的平面去截棱
D
锥,底面与截面之间 A’
的部分是棱台.
A
C’
B’
C
B
棱台的结构特征
1.棱台的概念:
棱台的底面:
原棱锥的底面和截
面分别叫做棱台的下底
面和上底面。
侧
棱
上底面
侧 面
下底面 顶 点
棱台的结构特征
1.棱台的概念:
用一个平行于棱锥底 面的平面去截棱锥,底 面与截面之间的部分, 这样的多面体叫做棱台.
图形
相关 概念
面:围成多面体的各个
人教高中数学必修二A版《基本立体图形》立体几何初步说课复习(棱柱、棱锥、棱台的结构特征)
课件
课件 课件
课件 课件
课件 课件
课件 课件
栏目 导引
第八章 立体几何初步
在三棱锥
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
A-BCD
中,可以当作棱锥底面的三角形的个数为
()
A.1
B.2
C.3
D.4
解析:选 D.每个面都可作为底面,有 4 个.
展开成平面图形
第八章 立体几何初步
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
问题导学
预习教材 P97-P100 的内容,思考以下问题: 1.空间几何体的定义是什么? 2.空间几何体分为哪几类? 3.常见的多面体有哪些? 4.棱柱、棱锥、棱台有哪些结构特征?
课件 课件
课件
课件
③棱台的侧棱所在直线均相交于同一点.
解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因
而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台
是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而
其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶
点),故②错,③对.因而正确的有①③. 答案:①③
高中数学必修2立体几何常考题型:棱柱、棱锥、棱台的结构特征
棱柱、棱锥、棱台的结构特征【知识梳理】1.空间几何体题型一、棱柱的结构特征【例1】下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[解析](1)错误,棱柱的底面不一定是平行四边形;(2)错误,棱柱的底面可以是三角形;(3)正确,由棱柱的定义易知;(4)正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是(3)(4).[答案](3)(4)【类题通法】有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.【对点训练】1.下列四个命题中,假命题为()A.棱柱中两个互相平行的平面一定是棱柱的底面B.棱柱的各个侧面都是平行四边形C.棱柱的两底面是全等的多边形D.棱柱的面中,至少有两个面互相平行解析:选A A错,正六棱柱的两个相对的侧面互相平行,但不是棱柱的底面,B、C、D 是正确的.题型二、棱锥、棱台的结构特征【例2】下列关于棱锥、棱台的说法:(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由四个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥,其中正确说法的序号是________.[解析](1)错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台;(2)正确,棱台的侧面一定是梯形,而不是平行四边形;(3)正确,由棱锥的定义知棱锥的侧面只能是三角形;(4)正确,由四个面围成的封闭图形只能是三棱锥;(5)错误,如图所示四棱锥被平面截成的两部分都是棱锥.[答案](2)(3)(4)【类题通法】判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:2.试判断下列说法正确与否:①由六个面围成的封闭图形只能是五棱锥;②两个底面平行且相似,其余各面都是梯形的多面体是棱台.解:①不正确,由六个面围成的封闭图形有可能是四棱柱;②不正确,两个底面平行且相似,其余各面都是梯形的多面体.侧棱不一定相交于一点,所以不一定是棱台.题型三、多面体的平面展开图【例3】如图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.【类题通法】1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.【对点训练】3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.2C.快D.乐解析:选B由题意,将正方体的展开图还原成正方体,1与乐相对,2与2相对,0与快相对,所以下面是2.【练习反馈】1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:选D由棱柱定义知,①③为棱柱.2.下列图形经过折叠可以围成一个棱柱的是()解析:选D A、B、C中底面边数与侧面个数不一致,故不能围成棱柱.3.棱锥最少有________个面.答案:44.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).答案:①③④⑥⑤5.(1)三棱锥、四棱锥、十五棱锥分别有多少条棱?多少个面?(2)有没有一个多棱锥,其棱数是2 012?若有,求出有多少个面;若没有,说明理由.解:(1)三棱锥有6条棱、4个面;四棱锥有8条棱、5个面;十五棱锥有30条棱、16个面.(2)设n棱锥的棱数是2 012,则2n=2012,所以n=1 006,1 006棱锥的棱数是2 012,它有1 007个面.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课前自主预习
高效互动课堂
课时演练广场
解:(1)这是一个上、下底面是平行四边形,四个侧面也是 平行四边形的四棱柱.
(2)这是一个六棱锥,其中六边形面是底,其余的三角形面 是侧面.
(3)这是一个三棱台,其中相似的两个三角形所在平面是底 面,其余三个梯形面是侧面.
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
【题后总结】根据形成几何体的结构特征的描述,结合棱 柱、棱锥、棱台的定义进行判断,注意判断时要充分发挥空间 想象能力,必要时做几何模型,通过演示进行准确判断.
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
1.下列说法正确的是( ) A.三棱柱有三个侧面、三条侧棱和三个顶点 B.四面体有四个面、六条棱和四个顶点 C.五棱锥有六个顶点 D.棱台的侧棱长必相等 答案:B
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
(12分)如图所示为长方体ABCD- A′B′C′D′,当用平面BCFE把这个长方体分 成两部分后,各部分形成的多面体还是棱柱 吗?如果不是,请说明理由;如果是,指出 底面及侧棱.
【思路点拨】 观察图形 → 对照概念 → 作出结论
→ 回答有关问题
课前自主预习
高效互动课堂
课时演练广场
多边形 三角形
多边形 三角形面 公共边 S-ABCD 公共顶点
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
平行于棱锥 底面
截面
底面
ABCD- A′B′C′D′
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
多面体最少有几个面,几个顶点,几条棱? 提示:多面体最少有4个面、4个顶点和6条棱.
高效互动课堂
课时演练广场
2.本例中平面BCFE左侧的几何体A′EFD′-ABCD是棱台 吗?简述理由.
解 : 几 何 体 A′EFD′ - ABCD 不 是 棱 台 , 因 为 AA′ , BE , CF,DD′延长后不交于一点,也就是说它不是由一个棱锥截得 的.
人教A版数学 ·必修2
课前自主预习
第一章 空间几何体
1.1 空间几何体的结构 第1课时 棱柱、棱锥、棱台的结构特征
课前自主预习
高效互动课堂
课时演练广场
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
1.通过观察实例,理解并掌握棱柱、棱锥、棱台的定义和 结构特征.(重点)
2.理解棱柱、棱锥、棱台的结构特征及其关系.(易错点) 3.在描述和判断几何体结构特征的过程中,培养学生的观 察能力和空间想象能力.(难点)
高效互动课堂
课时演练广场
多面体的表面展开图
1.绘制多面体的表面展开图要结合多面体的几何特征,发挥 空间想象能力,或者亲手制作出多面体模型.
2.若是给出多面体的表面展开图,判断它是由哪一个多面 体展开的,则可把上述过程逆推.
特别提醒:同一个几何体的表面展开图可能是不一样的, 也就是说,一个多面体可有多个表面展开图.
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
请画出如图所示的几何体的表面展开图.
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
空 间 ―展―开→
平面
【思路点拨】 几何体 空间想象―折或 ―叠→动手制作 图形
人教A版数学 ·必修2
课前自主预习
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
一、空间几何体 1.空间几何体的定义 空间中的物体都占据着空间的一部分,若只考虑这些物体 的 形状 和 大小 ,而不考虑其他因素,那么由这些物体抽象出 来的空间图形就叫做空间几何体.
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
2.空间几何体的分类
平面多边形
定直线 封闭几何体
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
棱与棱
多边形 公共边
定直线
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
二、多面体
平行 四边形
平行
ABCDEF- A′B′C′D′ E′F′
平行 各面
公共边 公共顶点
人教A版数学 ·必修2
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
【规范解答】截面BCFE右侧部分是棱柱,因为它满足棱柱
的定义.
2分
它是三棱柱BEB′-CFC′,其中△BEB′和△CFC′是底面.4分
EF,B′C′,BC是侧棱.
6分
截面BCFE左侧部分也是棱柱.
8分
它 是 四 棱 柱 ABEA′ - DCFD′ , 其 中 四 边 形 ABEA′ 和 四 边 形
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
对多面体概念的理解和应用 对多面体概念的理解,注意以下两个方面: (1)多面体是由平面多边形围成的,不是由圆面或其他曲面 围成,也不是由空间多边形围成. (2)我们所说的多边形包括它内部的部分,故多面体是一个 “封闭”的几何体.
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
多面体的结构ห้องสมุดไป่ตู้征
1.棱柱的本质结构特征:①底面平行且全等;②侧面都是平 行四边形;③侧棱平行且相等.
2.棱锥的本质结构特征:①有一个面是多边形;②其余各 面都是有一个公共顶点的三角形.
3.棱台的本质结构特征:①底面平行且相似;②侧面都是 梯形;③侧棱延长交于一点.
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
根据下列关于空间几何体的描述,说出几何体的名 称:
(1)由6个平行四边形围成的几何体; (2)由7个面围成,其中一个面是六边形,其余6个面都是有 一个公共顶点的三角形; (3)由5个面围成的几何体,其中上、下两个面是相似三角 形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于 一点. 【思路点拨】 审题 → 想象 → 对比定义 → 解答
DCFD′是底面.
10分
A′D′,EF,BC,AD是侧棱.
12分
人教A版数学 ·必修2
课前自主预习
高效互动课堂
课时演练广场
【题后总结】棱柱的定义中有两个面互相平行,指的是两 底面互相平行,但棱柱的放置方式不同,两底面的位置也不 同.但无论怎样放置,都应满足棱柱的定义.
人教A版数学 ·必修2
课前自主预习