拓展深化5 数列新定义及子数列问题.pptx
数列数列的概念ppt课件

资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
(3)∵an+1-an=3n+2,∴an-an-1=3n-1(n≥2), ∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =n3n2+1(n≥2). 当n=1时,a1=12×(3×1+1)=2符合公式, ∴an=32n2+n2.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
第1讲 数列的概念
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
探究二:由 Sn 求 an
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
《数列的定义》课件

数列的基本性质
数列具有很多有趣的性质,包括有界性、有序性、递增性或递减性等。这些 性质对于研究数列的规律和特点非常重要。
等差数列的定义和性质
等差数列是一种特殊的数列,其中每一项与前一项之差都相等。它具有一些 独特的性质,例如公式推导、通项公式和求和公式等。
等比数列的定义和性质
等比数列是一种特殊的数列,其中每一项与前一项之比都相等。它也具有一 些独特的性质,例如公比、通项公式和求和公式等。
《数列的定义》PPT课件
通过本PPT课件,我们将深入探讨数列的各个方面,从定义到性质,从常见 题型到思维拓展,帮助您系统地理解和运用数列。
数列的定义
数列是按照一定顺序排列的一列数字或数学对象组成的序列。它是数学研究中常见的ห้องสมุดไป่ตู้本概念之一,具有广泛 的应用。
数列的符号表示
数列可以用一对花括号{}表示,括号内是数列的各项。例如:{1, 2, 3, 4, 5}表 示一个数列,其中的每一项依次是1, 2, 3, 4, 5。
斐波那契数列的定义和性质
斐波那契数列是一种特殊的数列,其中每一项都是前两项的和。它具有一些有趣的性质和应用,例如黄金分割 比例、自然界中的现象等。
数列的求和公式
当我们需要求解数列的前n项和时,可以利用数列的求和公式来简化计算。不同类型的数列有不同的求和公式, 大大提高计算效率。
数列的通项公式
通项公式是描述数列中任意一项与项数n之间的关系的公式。掌握数列的通项 公式能够快速计算任意项的数值,便于问题的分析和解决。
数列ppt课件

详细描述 利用混合数列的性质进行计算; 求混合数列的前n项和。
05
数列的发展历史与未来展望
数列的发展历史
中世纪数列
随着欧洲中世纪的数学发展,数 列研究逐渐丰富,如斐机技术的发展,数列的 应用领域不断扩大,如组合数学 、概率论和统计学等。
递推公式的求解方法
可以通过迭代法、特征根法、归纳法等方法求解递推公式。
03
数列的应用
数列在数学分析中的应用
数学分析基础
数列是数学分析中的基本概念, 是研究连续函数的基础。通过数 列,可以理解函数的极限、连续 性和可微性等基本性质。
级数理论
数列在级数理论中有着重要的应 用。通过数列的收敛性,可以研 究无穷级数的和,以及其在数学 分析中的各种应用。
在此添加您的文本16字
判断一个数列是否为等差数列。
等比数列习题与解析
总结词:等比数列是数列中的重要类 型,其习题主要考察等比数列的定义
、通项公式和性质等知识点。
详细描述
求等比数列的通项公式;
求等比数列的前n项和; 利用等比数列的性质进行计算;
判断一个数列是否为等比数列。
混合数列习题与解析
总结词:混合数列是由等差数列和等比数列混合而成的 数列,其习题主要考察混合数列的定义、通项公式和性 质等知识点。 求混合数列的通项公式;
数列的习题与解析
等差数列习题与解析
在此添加您的文本17字
总结词:等差数列是数列中的基础类型,其习题主要考察 等差数列的定义、通项公式和性质等知识点。
在此添加您的文本16字
详细描述
在此添加您的文本16字
求等差数列的通项公式;
在此添加您的文本16字
求等差数列的项数;
高一新课程《数列》解读课件

数列在金融领域中用于描述利率 、复利、股票价格等随时间变化 的规律,为投资决策提供依据。
工程领域
数列在物理学、化学和工程学中用 于描述周期性变化的现象,如振动 、波传播、化学反应速率等。
社会领域
数列在社会学中用于描述人口增长 、城市化率等随时间变化的趋势, 为政策制定提供数据支持。
数列与其他数学知识的结合
数列与函数
数列与线性代数
数列可以视为离散的函数,研究数列 的性质和变化规律有助于理解连续函 数的性质和变化规律。
数列的向量表示和线性组合在矩阵运 算和线性代数中有着广泛的应用,掌 握数列知识有助于理解线性代数的概 念和方法。
数列与微积分
数列的极限概念和微积分中的连续函 数有着紧密的联系,掌握数列知识有 助于理解微积分的基本概念和运算方 法。
数列的表示方法
数列通常用大写字母表示,如a₁,a₂,a₃...或简写为a₁₊ₙ,其中n表示项数,a表 示每一项的值。
数列的性质与特点
有界性
数列是一种有界函数,即它的 值域是有限的或可数的。
周期性
有些数列具有周期性,即存在 一个正整数T,使得对于所有正 整数n,aₙ=aₙ₊T。
单调性
数列可以单调递增或单调递减 ,也可以在某一段递增而在另 一段递减。
等比数列的定义与通项公式
等比数列的定义
等比数列是一种常见的数列,其中任意两个相邻项的比是一 个常数。
等比数列的通项公式
$a_n = a_1 times q^{n-1}$,其中$a_1$是首项,$q$是公 比,$n$是项数。
常见数列的通项公式与求解方法
01
02
03
斐波那契数列
$F_n = F_{n-1} + F_{n2}$,其中$F_1 = 1, F_2 = 1$。
数列中的子数列问题

数列中的子数列问题在数学这个神奇的世界里,数列一直是个绕不开的话题。
说到数列中的子数列问题,它其实听起来挺简单的,但真要钻进这个坑,你会发现它可比想象的要复杂得多。
你看啊,数列就像是一个个小小的数字组成的队伍,每个数字都各司其职,排得整整齐齐。
而子数列,就是从这个数字队伍里挑出来的一部分。
别看它们只是原队伍的一部分,但这部分能不能顺利组成一个新的队伍,那就考验你是否能像个小侦探一样,找到其中的规律。
说白了,子数列其实就好比你从一个大大的沙堆里捡出一些沙子。
这些沙子不一定要是从头到尾按顺序捡的,捡的方式可以很随意。
只要这些沙子是从沙堆里出来的,而且顺序是保持不变的,那你就捡到了一个合法的子数列。
想象一下,假如你有一个数列1, 2, 3, 4, 5,你可以挑出1, 3, 5这几个数字组成一个新的子数列。
再比如,你可以挑2,4这两个数字,这样子数列也成立。
你看,规则挺简单吧?但是问题就在这里,如何能高效地找出所有可能的子数列,尤其是在数列特别长的时候,问题就复杂了。
就像你去超市买东西,店里琳琅满目的商品看得你眼花缭乱。
你本来是去买一瓶牛奶,结果一转头,发现了巧克力、饼干、果汁,差点把购物车装成了整个超市。
数列也是一样,光是想从一堆数字中挑出一些不重复的数字,已经够麻烦的了。
如果还要满足特定的条件,比如递增、递减,甚至是满足某种数学公式,那就像是在超市里挑选一个特价商品,还得把优惠券用上。
困难升级,难度大大提高,谁能不头疼呢?不过你要是能明白其中的规律,就能从这堆数字里找到属于自己的“特价商品”。
我们的任务是找出所有的递增子数列。
就拿数列1, 2, 3, 4来说,递增的子数列那简直是眼花缭乱。
2, 4, 6,1, 3,甚至是1, 2, 3, 4自己都可以算作一个递增的子数列。
想想看,如果你是一名超市购物狂,在购物清单上列满了所有的折扣商品,你是不是也会觉得满载而归,开心得不得了?说实话,解这种问题最难的地方就在于时间和空间的限制。
《数列的基本知识》课件

数列的性质
1 有界性
数列可能是有界的,即存 在上界和下界。
2 递增性/递减性
数列可以按顺序递增或递 减。
3 周期性
某些数列可以具有周期性, 其中一组数重复出现。
等差数列
等差数列是一种数列,其中每个后续项与前一项之差都相等。 • 常用于等距离时间间隔或等额递增的问题。 • 通项公式:an = a1 + (n - 1)d • 求和公式:Sn = (n/2)(a1 + an)
数列在实际问题中的应用
数列广泛应用于金融、人口统计、科学研究和工程领域,帮助解决实际问题。 了解数列的性质和应用,可以提升问题解决和分析能力。
《数列的基本知识》PPT 课件
欢迎来到《数列的基本知识》课件。在本课程中,我们将探讨数列的定义、 性质以及常见类型,以及它们在实际问题中的应用。
什么是数列
数列是按一定顺序排列的一组数。它们可以是等差数列、等比数列、幂次数 列、倍数数列或递推数列。
数列的定义
数列是按照一定规律排列的数字序列。它可以是有限的或无限的,每个数字 被称为数列的项。
数列的收敛与发散
数列可能会趋于某个有限值(收敛),或者无限增加或减少(发散)。 例如,格里高利级数和调和级数就是两个发散的数列。
数列的重要定理与应用
数列的重要定理包括数列极限定理、子数列收敛定理等,这些定理在数学分析和实际应用中具有重要意义。
数列的图形表示
数列可以使用直线图、折线图或散点图来显示其项和规律。 图形表示可以更直观地展示数列的性质和变化。
金融与投资
数列可以用于计算复利、投资回报率等金融问题。
人口和经济学
数列可以帮助预测人口增长、GDP增长等。
科学研究
数列的概念ppt课件
对于D,a3=9+5=14≠12,故D错误.
)
2.在数列1,2, 7, 10, 13,…中,2 19是这个数列的(
A.第16项
B.第24项
C.第26项
D.第28项
)
【解析】选C.设题中数列为{an},则a1=1= 1,a2=2= 4,a3= 7,a4= 10,a5= 13,…,
基础诊断·自测
类型
辨析
改编
题号
1
2,3,4
1.(思考辨析)(正确的打“√”,错误的打“×”)
(1)数列5,2,0与2,0,5是同一个数列.( × )
提示:(1) 两个数列项的顺序不同,不是同一个数列;
(2)根据数列的前几项归纳出的数列的通项公式可能不止一个.( √ )
(3)任何一个数列不是递增数列,就是递减数列.( × )
微点拨 (1)并不是所有的数列都有通项公式;
(2)数列的通项公式不唯一;(3)归纳与猜想是研究数列的重要方法.
3.数列的分类
递增数列
an+1>an
∀n∈N*,________
单
递减数列
an+1<an
∀n∈N*,_______
调
常数列
∀n∈N*,an+1=an
性
摆动数列
周期性
从第2项起,有些项大于它的前一项,有些项小于它的前一
【解析】(2)符号可通过(-1)n或(-1)n+1调节,其各项的绝对值的排列规律为:后面的数的
绝对值总比前面数的绝对值大6,故通项公式为an=(-1)n(6n-5).
数列的概念-动画讲解PPT课件
知识点二 数列的通项公式
如果一个数列{an}的第n项an 与n之间的关系可以用一个公式来
表示,那么这个公式就称为数 列 的 通 项 公 式 , 即 a n = f (n ) .
因此,如果已知一个数列的通项公式,那么只要依次
用 1 ,2 ,3 ,4 , ... 代 替 公式中的n 就可以求出这个数列的各项 。
知识点三 数列的分类
数列
特点
按照数列的项数是有限还是无限来分,数列可分为有穷数列
有穷数列、无穷数 和无穷数列.切记不要按项数的多少来分,一个数列,它的
列
项数再多,只要是有限项,就是有穷数列。
单调数列
常数列
按前后项之间的大小关系来分。
若前面的项永远小于它后面的项,即a1<a2<a3<⋯<an<⋯,这
技巧
点拨
由数列的前n项和表达式求通项公式时
但最终结果要根据具体情形一分为二,或合二为一.
典例解析
例3
已知数列{an}的通项公式为an=2n2+3
(1)试写出该数列的前3项
(2)试判断75是不是该数列的项,若是,是第几
项?
解析
技巧
点拨
(1)将n=1,2,3代入通项公式,
得a1=5,a2=11,a3=21.
(2)由75=2n2+3得n=6或n=-6(舍去),所以75是该数
列的第6项.
本题第(1)问是利用数列的通项公式求数列中的项,将n的值代入通项
公式即可求解;
第(2)问是判断一个数是否为数列中的项,把这个数代入通项公式解
关于n的方程即可,解出的n必须是正整数.
谢谢
n+2
《数列的概念》课件
数学表达
如果对于任意的正整数n,都有an=(-1)^n*b(n),其中b(n)是另一个数列,则称数列{an} 具有奇偶性。
03
数列的应用
在数学中的应用
性质
递推数列的每一项都可以通过前一项或前几项计 算得出,具有很强的规律性。
THANK YOU
公式
通项公式为 $a_n = a_1 times r^{(n-1)}$,其 中 $a_1$ 是首项,$r$ 是公比。
3
性质
等比数列的任意一项都可以通过首项和公比计算 出来,且任意两项之间的比值都是固定的。
递推数列
定义
递推数列是一种通过递推关系式来定义数列的数 列。
公式
递推数列的通项公式通常不能直接求解,需要通 过递推关系式逐步计算得出。
《数列的概念》ppt课件
• 数列的定义 • 数列的性质 • 数列的应用 • 数列的运算 • 数列的拓展
01
数列的定义
数列的描述
总结词
数列是一种特殊的函数,它按照一定的次序排列。
详细描述
数列是一种有序的数字排列,每个数字都有其对应的位置,并且每个位置上的 数字都是唯一的。数列可以看作是函数的特例,其中自变量是自然数或整数, 因变量是实数或复数。
02 03
详细描述
有界性是数列的一个重要性质,它保证了数列不会发散到无穷大或无穷 小。具体来说,如果存在正数M,使得对于所有n,数列的第n项an都 满足|an|≤M,则称数列有界。
数学表达
如果存在正数M,使得对于所有n,都有|an|≤M,则称数列{an}有界。
数列的概念及简单表示法一轮复习ppt课件
2.数列的分类
“数”有关,而且还与
分类 原则 按项 数分 类
类型 满足条件 有穷数列 项数 有限 无穷数列 项数 无限
这些“数”的排列顺序 有关. (2)数列的项与项数:数 列的项与项数是两个不 同的概念,数列的项是 指数列中某一确定的 数,而项数是指数列的 项对应的位置的序号.
基础知识·自主学习 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
探究提高
已知数列的递推关系,求数列的 通项时,通常用累加、累乘、构 造法求解.
当出现 an=an-1+m 时,构造等差 数列;当出现 an=xan-1+y 时, 构造等比数列;当出现 an=an-1 +f(n)时,用累加法求解;当出现 aan-n 1=f(n)时,用累乘法求解.
题型分类·深度剖析 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
思维启迪
解析
探究提高
偶数项为 2+1,所以 an= (-1)n·2+n-1n.也可写为 an=
-1n,n为正奇数, (4)将3n,数n列为各正项偶改数写. 为93,939,9939,
9 9399,…,分母都是 3,而分子 分别是 10-1,102-1,103-1,104 -1,…,
所以 an=13(10n-1).
4.数列的通项公式
如果数列{an}的第 n 项 an 与 n 之间的函
数关系可以用一个表示式子表示成 an=f(n),
数,数列的通项公式也就 是相应的函数解析式,即 f(n)=an (n∈N*).
那么这个公式叫作这个数列的通项公式.
基础知识·自主学习 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
@《创新设计》
@《创新设计》
同理,k2>3.
若 k2=4,则由 a4=4,得 q=2,此时 akn=2·2n-1,因为 akn=23(kn+2),所以23(kn+2)= 2n,即 kn=3·2n-1-2.
所以最小的公比q=2,此时kn=3·2n-1-2.
10
@《创新设计》
【例 2-3】 已知数列{an}中,a1=1,an+1=13an+n,n为奇数, an-3n,n为偶数.
则 S6=6a1+12×6×5d=22, 解得 d=23,所以 Sn=n(n+ 3 5).
8
(2)由(1)得 an=23(n+2).
因为数列{an}是正项递增的等差数列, 所以数列{akn}的公比q>1.
若 k2=2,则由 a2=83,得 q=aa21=43, 此时 ak3=2×432=392,由392=23(n+2), 解得 n=130∉N*,所以 k2>2.
5
(2)数列{an}既是“P(2)数列”,又是“P(3)数列”,因此, 当n≥3时,an-2+an-1+an+1+an+2=4an,① 当n≥4时,an-3+an-2+an-1+an+1+an+2+an+3=6an.② 由①知,an-3+an-2=4an-1-(an+an+1),③ an+2+an+3=4an+1-(an-1+an).④ 将③④代入②,得an-1+an+1=2an,其中n≥4, 所以a3,a4,a5,…是等差数列,设其公差为d′. 在①中,取n=4,则a2+a3+a5+a6=4a4, 所以a2=a3-d′(利用a3,a4,a5,…成等差), 在①中,取n=3,则a1+a2+a4+a5=4a3, 所以a1=a3-2d′,所以数列{an}是等差数列.
3
@《创新设计》
(2)数列{an}不是“等比源数列”.用反证法证明如下: 假设数列{an}是“等比源数列”,则存在三项am,an,ak(m<n<k)按一定次序排列构 成等比数列. 因为an=2n-1+1,所以am<an<ak.
所以 a2n=am·ak,得(2n-1+1)2=(2m-1+1)(2k-1+1),即 22n-m-1+2n-m+1-2k-1-2k-m=1.
6
@《创新设计》
@《创新设计》
二、子数列问题
【例2-1】 已知在等差数列{an}中,a2=5,前10项和S10=120,若从数列{an}中依次 取出第2项、第4项、第8项、…、第2n项,按原顺序组成新数列{bn},求数列{bn}的 前n项和Tn.
解
设{an}的公差为 d ,则a110+a1d+=150, × 2 9d=120⇒ad1==23.,
2
@《创新设计》
一、新定义数列问题 【例1-1】 (2019·南通期末)若数列{an}中存在三项,按一定次序排列构成等比数列,
则称{an}为“等比源数列”. 已知数列{an}中,a1=2,an+1=2an-1. (1)求{an}的通项公式; (2)试判断{an}是否为“等比源数列”,并证明你的结论. 解 (1)由an+1=2an-1,得an+1-1=2(an-1),且a1-1=1,所以数列{an-1}是首 项为1,公比为2的等比数列. 所以an-1=2n-1. 所以数列{an}的通项公式为an=2n-1+1.
(1)是否存在实数λ,使得数列{a2n-λ}是等比数列?若存在,求出λ的值;若 不存在,请说明理由. (2)若Sn是数列{an}的前n项和,求满足Sn>0的所有正整数n. 解 (1)设bn=a2n-λ,
因为bbn+n 1=aa2n2+n-2-λλ=13a2n+1+a(2n2-n+λ 1)-λ =13(a2n-6n)a2+n-(λ2n+1)-λ=13a2an2+n-1- λ λ.
@《创新设计》
拓展ቤተ መጻሕፍቲ ባይዱ化5 数列新定义及子数列问题
1
@《创新设计》
数列是中学数学的重要内容之一,除了传统的等差数列和等比数列之外,近几年 各地高考和模拟试题中频频出现“新定义”数列问题,成为高考命题中一道亮丽 的风景线.这类题型的特点是先给出数列的“新定义”,然后要求利用短时间的 阅读理解,对新概念进行即时性的学习,并能独立地从不同角度运用它们作进一 步的运算、推理、提炼、加工,进而解决相关的新问题.主要考查学生等价转换 和分析推理的思想,即利用已学过的知识分析和解决新问题,要求学生有较高的 分析和解决问题的能力.
所以an=3+(n-1)·2=2n+1,bn=a2n=2·2n+1.
所以 Tn=2(21+22+…+2n)+n=n+2·2(11--22n)=2n+2+n-4.
7
@《创新设计》
【例2-2】 设等差数列{an}的前n项和为Sn,已知a1=2,S6=22. (1)求Sn; (2)若从{an}中抽取一个公比为q的等比数列{akn},其中k1=1,且k1<k2<…<kn<…, kn∈N*,当q取最小值时,求{kn}的通项公式. 解 (1)设等差数列{an}的公差为d,
4
@《创新设计》
【例1-2】 (2017·江苏卷)对于给定的正整数k,若数列{an}满足an-k+an-k+1+… +an-1+an+1+…+an+k-1+an+k=2kan对任意正整数n(n>k)总成立,则称数列 {an}是“P(k)数列”. (1)证明:等差数列{an}是“P(3)数列”; (2)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列. 证明 (1)因为{an}是等差数列,设其公差为d, 则an=a1+(n-1)d,从而,当n≥4时, an-k+an+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2an,k=1,2,3, 所以an-3+an-2+an-1+an+1+an+2+an+3=6an, 因此等差数列{an}是“P(3)数列”.