离散数学,二元关系的性质
二元关系 离散数学

二元关系离散数学
二元关系是离散数学中非常重要的概念之一。
二元关系是指将两个元素组合在一起形成的一种关系。
例如,整数之间的“大于”、“小于”等关系。
在二元关系中,每个元素都称为关系的一部分。
二元关系可以用箭头或括号表示。
例如,如果我们有集合A={1,2,3}和集合B={a,b,c},那么我们可以定义二元关系R={(1,a),(1,b),(2,b)},这表示1和a、1和b,2和b之间存在关系。
二元关系的性质也是离散数学中非常重要的。
二元关系可以是自反的,反对称的,传递的和等价的。
自反关系表示每个元素都与自己存在关系,反对称关系表示如果两个元素之间存在关系,那么它们不能同时与相同的元素存在关系,传递关系表示如果两个元素之间存在关系,那么这种关系会传递到它们之间的其他元素之间,等价关系表示该关系是自反的、对称的和传递的。
这些性质有助于我们理解和描述二元关系。
二元关系在离散数学中有许多应用。
例如,它们可以用于网络分析、逻辑推理、图像处理等领域。
在计算机科学中,二元关系在数据库中的查询和排序算法中也有广泛应用。
总之,二元关系是离散数学中重要的概念之一,它将两个元素联系在一起,并具有许多重要的性质和应用。
《离散数学》课件-第四章 二元关系

R2= R • R={<1,1>,<2,2>,<1,3>,<2,4>, <3,5>}
R3=R2 • R={<1,2>,<2,1>,<1,4>,<2,3>, <2,5>}
R4= R3 • R={<1,1>,<2,2>,<1,5>,<2,4>,
从关系图来看关系的n次幂
R:
1
2
3
4
5
R2:
1
2
3
4
5
R2就是从R的关系图中的任何一个结点x出发,长 为2的路径,如果路径的终点是y,则在R2 的关系 图中有一条从x到y的有向边。其他以次类推:
R3:
1
2
3
4
5
R4:
1
2
3
4
5
定理 设|A|=n,R A×A,则必有i,j∈N, 0≤i<j≤2n2,使得Ri=Rj。
=R5,R7=R6•R=R5,…,Rn=R5 (n>5) 故Rn{R0,R1,R2,R3,R4,R5}。
S0=IA,S1=S,
S2=S•S={<a,c>,<b,d>,<c,e>,<d,f>}, S3=S•S•S=S2•S={<a,d>,<b,e>,<c,f>}, S4=S3•S={<a,e>,<b,f>}, S5=S4•S={<a,f>}, S6=S5•S=Φ, S7=Φ, …, 故,Sn{S0,S1,S2,S3,S4,S5,S6}
《离散数学》中二元关系传递性的判定

《离散数学》中二元关系传递性的判定离散数学是一门研究离散结构的数学学科,而二元关系是离散数学中一个重要的概念。
在离散数学中,我们经常需要对二元关系进行判定,其中最为重要的性质之一就是传递性。
本文将围绕《离散数学》中二元关系传递性的判定展开讨论。
让我们来了解一下什么是二元关系。
在集合论中,如果给定一个集合A,那么A的二元关系R可以定义为A中元素之间的某种关系。
具体来说,对于任意的a、b∈A,如果(a, b)∈R,那么称a与b有关系R。
二元关系可以用有向图来表示,其中A中的元素对应图中的结点,而关系R中的元素对应图中的边。
为了简化描述,我们暂时不考虑关系R的性质,而只讨论关系R中元素的组成部分。
对于集合A={1,2,3,4},我们可以定义一个二元关系R={(1,2),(2,3),(3,4),(4,1)}。
这样,我们就得到了一个有向图来表示关系R,如下图所示:[图一]在这个有向图中,结点1和结点2之间有一条有向边,表示(1,2)∈R;结点2和结点3之间也有一条有向边,表示(2,3)∈R;依此类推。
很显然,通过有向图可以直观地看出集合A中元素之间的关系。
那么,关系R中的元素有哪些性质呢?在这里我们先介绍关系R的一条重要性质:传递性。
传递性是指如果对于任意的a、b、c∈A,如果(a, b)∈R且(b, c)∈R,那么(a,c)∈R。
直观地说,如果关系R中存在一条从a到b的有向边,同时存在一条从b到c的有向边,那么就应该存在一条从a到c的有向边。
下面我们将讨论如何判定关系R中的传递性。
对于关系R中的传递性,常用的方法是直接检验。
我们可以利用集合A中元素之间的关系,通过逐对比较来判断关系R是否满足传递性。
下面我们以一个具体的例子来说明。
考虑集合A={1,2,3,4},定义二元关系R={(1,2),(2,3),(3,4),(4,1)}。
为了判断关系R是否传递,我们需要逐对比较关系R中的元素。
我们找到所有满足(a, b)∈R和(b, c)∈R 的元组,然后检查是否存在(a, c)∈R。
《离散数学》中二元关系传递性的判定

《离散数学》中二元关系传递性的判定
在离散数学中,二元关系是指一个关联两个元素的集合。
传递性是二元关系的一个重要性质。
传递性是指如果某个关系中的元素a与另外两个元素b和c之间有关联,而且b 与c之间也有关联,那么就可以推断出a与c之间也有关联。
传递性的判定方法有多种,下面我们将介绍两种常用的判定方法。
一、图形法
图形法是通过绘制一个关系的有向图,并判断图中是否存在从一个元素到另一个元素的路径来判定传递性。
具体操作步骤如下:
1. 绘制有向图:将关系中的元素表示为图中的结点,关系表示为有向边。
根据关系定义,确定图中的结点以及结点之间的有向边。
2. 找到路径:从一个元素出发,通过有向边找到与它关联的所有元素,然后再通过有向边找到这些元素关联的所有元素,一直继续下去,直到找不到新的元素为止。
3. 判断传递性:如果从一个元素出发,可以找到与之存在关联的所有元素,那么就说明关系是传递的。
二、矩阵法
矩阵法是将一个关系表示为一个方阵,通过矩阵的乘法运算来判定传递性。
1. 构建矩阵:将关系中的元素表示为矩阵的行和列,关系的存在与否表示为矩阵元素的值。
如果元素a与元素b之间存在关系,那么矩阵的第a行第b列的值为1,否则为0。
2. 矩阵乘法:将矩阵与自身进行乘法运算,得到的结果是一个新的矩阵。
这两种判定传递性的方法都比较简单直观,可以根据具体情况选择适用的方法。
在实际应用中,传递性的判定常常与其他性质一起使用,以提供更准确的判断结果。
离散数学2

在上例中3个结果矩阵是 在上例中 个结果矩阵是: 个结果矩阵是
24
求传递闭包--Warshall算法 求传递闭包--Warshall算法 --Warshall
设集合基数为n 构造n+1个矩阵W 设集合基数为n,构造n+1个矩阵W0,W1,W2, n+1个矩阵 …Wn,W0为t( R )的关系矩阵,Wn即为t( R )的关系矩阵 Wn,W )的关系矩阵,Wn即为 的关系矩阵,Wn即为t( )的关系矩阵 (1)令 (1)令W0=MR (2)设Wi- 已求出,现求Wi (2)设Wi-1已求出,现求Wi 考虑Wi- 的第i 考虑Wi-1的第i列,列中为1的元素分别位于P1,P2…行, Wi 列中为1的元素分别位于P 行 同时考虑第i 该行中为1的元素位于q 同时考虑第i行,该行中为1的元素位于q1,q2…列,则: 列 i中第 中第P 列的元素改为1 把W i中第PS行qt列的元素改为1; (3)重复(2)过程,直到求出Wn (3)重复(2)过程,直到求出Wn 重复(2)过程 (4)根据Wn写出t( (4)根据Wn写出t( R ) 根据Wn写出 2.5.3) (见书上例2.5.3) 见书上例2.5.3
7
传递性:若x到y有边,y到z有 边,则x到z必有边。
8
二元关系的性质对应于关系图, 二元关系的性质对应于关系图,有: (1)自反性:每个顶点都有自回路, )自反性:每个顶点都有自回路, (2)反自反性:每个顶点都没有自回路; ) 自反性:每个顶点都没有自回路; ( 3) 对称性 : 任二个顶点间或没有边 , 或有二 ) 对称性: 任二个顶点间或没有边, 条方向相反的有向边; 条方向相反的有向边; ( 4) 反对称性 : 任二个顶点至多只有一条有向 ) 反对称性: 也即:或没有边,或只有一条有向边) 边;(也即:或没有边,或只有一条有向边) 有边, 有边, (5)传递性:若x到y有边,y到z有边, )传递性: 则x到z必有边。 必有边。
离散数学 二元关系

<x,y>R xRy 也称之为x与y有R关系。 后缀表示 中缀表示
<x,y>R xRy 也称之为x与y没有R关系。
例3. R是实数集合,R上的几个熟知的关系
≤ ≥ =
y x2+y2=4
x
从例3中可以看出关系是序偶(点)的集合 (构成线、面)。
2019/3/20 15
作业 P105 ⑵
2019/3/20 12
4-2 关系及其表示法
相关 按照某种规则,确认了二个对象或多个
对象之间有关系,称这二个对象或多个对象是相 关的。
例1: 大写英文字母与五单位代码的对应关系R1: 令α={A,B,C,D,…Z}
β={30,23,16,22,…,21}是五单位代码集合
β={11000, 10011, 01110, 10010,…, 10001} R1={<A,30>,<B,23>,<C,16>,...,<Z,21>}α×β
2019/3/20
AB (CACB)。
9
5) 设A、B、C、D为非空集合,则 ABCDAC∧BD 证明:首先,由ABCD 证明AC∧BD 任取xA,任取yB,所以 xAyB<x,y>A×B <x,y>C×D (由ABCD ) xCyD 所以, AC∧BD。 其次, 由AC,BD 证明ABCD 任取<x,y>A×B xAyB xCyD (由AC,BD) <x,y>C×D 所以, ABCD 证毕。
2019/3/20ቤተ መጻሕፍቲ ባይዱ16
关系的表示方法 枚举法: 即将关系中所有序偶一一列举出,写在大括号内。 如R ={ <1,1>,<1,2>,<1,3>, <1,4>, <2,2>, <2,3>, <2,4>, <3,3>, <3,4>, <4,4>} 。 谓词公式法: 即用谓词公式表示序偶的第一元素与第二元素间 的关系。例如 R={<x,y>|x<y} 有向图法: RA×B,用两组小圆圈(称为 结点)分别表示A和B 的元素,当<x,y>R时,从x到y引一条有向弧 (边)。这样得到的图形称为R的关系图。
《离散数学》中二元关系传递性的判定

《离散数学》中二元关系传递性的判定离散数学作为数学的一个分支,探索的是离散的结构,比如集合、图、数论等。
而在离散数学中,二元关系是一个非常重要的概念。
二元关系代表了两个元素之间存在某种特定关系的性质,比如等于、大于、包含等。
而在二元关系中,传递性是一个非常重要的性质,本文将会讨论《离散数学》中二元关系传递性的判定。
让我们来了解一下二元关系的传递性是什么意思。
一个二元关系R在集合A上是传递的,如果对于集合A中的元素a、b和c,当aRb且bRc成立时,必定有aRc也成立。
换句话说,如果R关系中的两个元素之间存在一种关系,那么这种关系应该能够传递到任意的元素上去。
然后,我们来看一下二元关系传递性的判定方法。
在《离散数学》中,判定一个二元关系是否传递有一些方法和技巧。
其中一个最基本的方法就是使用直接证明法。
具体来说,对于一个关系R在集合A上,我们需要证明对于集合A中的任意元素a、b和c,如果aRb且bRc成立,则aRc也成立。
这需要我们对于aRb和bRc的关系进行分析,并结合R关系的定义来进行推导,从而得出aRc的结论。
如果我们成功地证明了这一点,那么就可以得出结论:关系R在集合A上是传递的。
需要注意的是,判定二元关系传递性的过程可能会比较复杂,因此需要我们对于关系R的定义和集合A中元素的性质有深入的了解,同时需要运用逻辑推理和数学推导的方法。
在实际操作中,我们可能需要借助一些具体的例子来帮助我们理解和分析,以及验证我们的结论是否正确。
让我们通过一个例子来演示一下如何判定二元关系的传递性。
我们来考虑一个集合A={1,2,3,4,5}上的一个二元关系R,其中关系R定义如下:对于任意的a、b∈A,aRb当且仅当a+b是偶数。
我们需要判定关系R是否传递。
我们假设存在元素a、b和c,满足aRb且bRc成立。
根据关系R的定义,可以得出以下结论:1. 若aRb,则a+b是偶数2. 若bRc,则b+c是偶数我们需要推导出aRc是否成立。
《离散数学》中二元关系传递性的判定

《离散数学》中二元关系传递性的判定什么是二元关系?在离散数学中,二元关系是指集合之间的一种关联关系,它描述了集合中元素之间的某种联系。
在集合论中,二元关系是指集合A和B之间的一个子集R,它将A中的元素和B 中的元素一一对应起来,并表示它们之间的某种关系。
如果存在一个集合A={1, 2, 3, 4}和一个集合B={a, b, c},那么A和B之间的一个二元关系可以被表示为一个有序对的集合,比如R={(1, a), (2, b), (3, a), (4, c)}。
这个关系表示了A中的元素与B中的元素之间的对应关系。
二元关系的性质二元关系可以有许多不同的性质,其中传递性是其中一个非常重要的性质。
在离散数学中,二元关系的传递性是指如果关系R中的元素a与b有关系,b与c有关系,那么a 与c也应该有关系。
换句话说,如果对于任意的a、b和c,只要(a, b)和(b, c)都属于关系R,那么(a, c)也应该属于关系R。
这就是传递性的定义。
传递性的判定在离散数学中,我们经常需要判定一个二元关系是否具有传递性。
这个判定其实并不复杂,只需要依据传递性的定义进行逐一检查即可。
1. 我们需要知道该二元关系R中的所有有序对。
2. 然后,对于R中的每一个有序对(a, b)和(b, c),我们需要检查是否(a, c)也属于关系R。
举个例子来说明传递性的判定过程。
假设我们有一个集合A={1, 2, 3, 4}和一个关系R={(1, 1), (1, 2), (2, 3), (3, 4)}。
现在我们来判定这个关系R是否具有传递性。
我们列出关系R中的所有有序对:R={(1, 1), (1, 2), (2, 3), (3, 4)}对于(1, 1)和(1, 2),由于1与1和2之间没有直接的联系,所以不需要考虑传递性。
对于(1, 2)和(2, 3),这两个有序对满足传递性要求,因为1与2有关系,2与3有关系,所以1与3也应该有关系。
通过刚才的例子,我们可以看到一个具有传递性的关系的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/*实验二、二元关系及其性质、闭包运算
【实验目的】掌握二元关系在计算机上的表示方法,并掌握如何判定关系的性质;掌握求关系闭包的方法。
【实验内容和原理】
(1)A上的二元关系用一个n×n关系矩阵R=表示,定义一个n×n数组r[n][n]表示n×n矩阵关系。
(2)若R对角线上的元素都是1,则R具有自反性。
(3)若R是对称矩阵,则R具有对称性。
对称矩阵的判断方法是:。
*/
#include<stdio.h>
#include<stdlib.h>
int main()
{
int *a;int n;int i,j;int m=0;int k=0;int x;int z;int t;int b=0;int h;int y;int o,p;int l;
printf("请输入元素的个数:");
scanf("%d",&n);
a=(int*)malloc((n*n)*sizeof(int));
printf("输入矩阵中的数:\n");
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
printf("row%d,line%d=",i+1,j+1);
scanf("%d",&a[m]);
m++;
};
m=0;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
printf("%d",a[m]);
m++;
};
printf("\n");
};
for(i=0;i<n;i++)
{
j=i*n+i;
if(a[j]==1) k++;
};
if(k==n) printf("R具有自反性\n");
k=0;
i=0;
j=n*n-1;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
o=i*n+j;
p=j*n+i;
if(0==((o+1)/n)*n+(o+1)/n) continue;
if(a[o]!=a[p]) k++;
};
if(k==0) printf("R有对称性\n");
if(k>0) printf("R没有对称性\n");
k=0;x=0;t=0;y=l=0;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
k++;
x=k/n;
if(k-1==x*n+x) continue;
m=i*n+j;
if(a[m]==1)
{l++;
b=j;
for(z=0;z<n;z++)
{
m=b*n+z;
h=(m+1)/n;
if(m==h*n+h) continue;
if(a[m]==1)
{
m=i*n+z;
if(a[m]==0) t++;
}
else y++;
};
};
};
if(t==0&&y!=l) printf("R具有传递性\n");
free(a); return 0; }。