离散数学 二元关系(2)
二元关系 离散数学

二元关系离散数学
二元关系是离散数学中非常重要的概念之一。
二元关系是指将两个元素组合在一起形成的一种关系。
例如,整数之间的“大于”、“小于”等关系。
在二元关系中,每个元素都称为关系的一部分。
二元关系可以用箭头或括号表示。
例如,如果我们有集合A={1,2,3}和集合B={a,b,c},那么我们可以定义二元关系R={(1,a),(1,b),(2,b)},这表示1和a、1和b,2和b之间存在关系。
二元关系的性质也是离散数学中非常重要的。
二元关系可以是自反的,反对称的,传递的和等价的。
自反关系表示每个元素都与自己存在关系,反对称关系表示如果两个元素之间存在关系,那么它们不能同时与相同的元素存在关系,传递关系表示如果两个元素之间存在关系,那么这种关系会传递到它们之间的其他元素之间,等价关系表示该关系是自反的、对称的和传递的。
这些性质有助于我们理解和描述二元关系。
二元关系在离散数学中有许多应用。
例如,它们可以用于网络分析、逻辑推理、图像处理等领域。
在计算机科学中,二元关系在数据库中的查询和排序算法中也有广泛应用。
总之,二元关系是离散数学中重要的概念之一,它将两个元素联系在一起,并具有许多重要的性质和应用。
《离散数学》中二元关系传递性的判定

《离散数学》中二元关系传递性的判定
在离散数学中,二元关系是指一个关联两个元素的集合。
传递性是二元关系的一个重要性质。
传递性是指如果某个关系中的元素a与另外两个元素b和c之间有关联,而且b 与c之间也有关联,那么就可以推断出a与c之间也有关联。
传递性的判定方法有多种,下面我们将介绍两种常用的判定方法。
一、图形法
图形法是通过绘制一个关系的有向图,并判断图中是否存在从一个元素到另一个元素的路径来判定传递性。
具体操作步骤如下:
1. 绘制有向图:将关系中的元素表示为图中的结点,关系表示为有向边。
根据关系定义,确定图中的结点以及结点之间的有向边。
2. 找到路径:从一个元素出发,通过有向边找到与它关联的所有元素,然后再通过有向边找到这些元素关联的所有元素,一直继续下去,直到找不到新的元素为止。
3. 判断传递性:如果从一个元素出发,可以找到与之存在关联的所有元素,那么就说明关系是传递的。
二、矩阵法
矩阵法是将一个关系表示为一个方阵,通过矩阵的乘法运算来判定传递性。
1. 构建矩阵:将关系中的元素表示为矩阵的行和列,关系的存在与否表示为矩阵元素的值。
如果元素a与元素b之间存在关系,那么矩阵的第a行第b列的值为1,否则为0。
2. 矩阵乘法:将矩阵与自身进行乘法运算,得到的结果是一个新的矩阵。
这两种判定传递性的方法都比较简单直观,可以根据具体情况选择适用的方法。
在实际应用中,传递性的判定常常与其他性质一起使用,以提供更准确的判断结果。
离散数学2

在上例中3个结果矩阵是 在上例中 个结果矩阵是: 个结果矩阵是
24
求传递闭包--Warshall算法 求传递闭包--Warshall算法 --Warshall
设集合基数为n 构造n+1个矩阵W 设集合基数为n,构造n+1个矩阵W0,W1,W2, n+1个矩阵 …Wn,W0为t( R )的关系矩阵,Wn即为t( R )的关系矩阵 Wn,W )的关系矩阵,Wn即为 的关系矩阵,Wn即为t( )的关系矩阵 (1)令 (1)令W0=MR (2)设Wi- 已求出,现求Wi (2)设Wi-1已求出,现求Wi 考虑Wi- 的第i 考虑Wi-1的第i列,列中为1的元素分别位于P1,P2…行, Wi 列中为1的元素分别位于P 行 同时考虑第i 该行中为1的元素位于q 同时考虑第i行,该行中为1的元素位于q1,q2…列,则: 列 i中第 中第P 列的元素改为1 把W i中第PS行qt列的元素改为1; (3)重复(2)过程,直到求出Wn (3)重复(2)过程,直到求出Wn 重复(2)过程 (4)根据Wn写出t( (4)根据Wn写出t( R ) 根据Wn写出 2.5.3) (见书上例2.5.3) 见书上例2.5.3
7
传递性:若x到y有边,y到z有 边,则x到z必有边。
8
二元关系的性质对应于关系图, 二元关系的性质对应于关系图,有: (1)自反性:每个顶点都有自回路, )自反性:每个顶点都有自回路, (2)反自反性:每个顶点都没有自回路; ) 自反性:每个顶点都没有自回路; ( 3) 对称性 : 任二个顶点间或没有边 , 或有二 ) 对称性: 任二个顶点间或没有边, 条方向相反的有向边; 条方向相反的有向边; ( 4) 反对称性 : 任二个顶点至多只有一条有向 ) 反对称性: 也即:或没有边,或只有一条有向边) 边;(也即:或没有边,或只有一条有向边) 有边, 有边, (5)传递性:若x到y有边,y到z有边, )传递性: 则x到z必有边。 必有边。
离散数学第四章二元关系和函数知识点总结

离散数学第四章二元关系和函数知识点总结集合论部分第四章、二元关系和函数集合的笛卡儿积与二元关系有序对定义由两个客体x 和y,按照一定的顺序组成的二元组称为有序对,记作实例:点的直角坐标(3,4)有序对性质有序性(当x y时)与相等的充分必要条件是= x=u y=v例1 = ,求x, y.解 3y 4 = 2, x+5 = y y = 2, x = 3定义一具有序n (n3) 元组是一具有序对,其中第一具元素是一具有序n-1元组,即= , x n>当n=1时, 形式上能够看成有序 1 元组.实例 n 维向量是有序 n元组.笛卡儿积及其性质定义设A,B为集合,A与B 的笛卡儿积记作A B,即A B ={ | x A y B } 例2 A={1,2,3}, B={a,b,c}A B ={,,,,,,,,}B A ={,,,,,,, ,}A={}, P(A)A={, }性质:别适合交换律A B B A (A B, A, B)别适合结合律 (A B)C A(B C) (A, B)关于并或交运算满脚分配律A(B C)=(A B)(A C)(B C)A=(B A)(C A)A(B C)=(A B)(A C)(B C)A=(B A)(C A)若A或B中有一具为空集,则A B算是空集.A=B=若|A|=m, |B|=n, 则 |A B|=mn证明A(B C)=(A B)(A C)证任取∈A×(B∪C)x∈A∧y∈B∪Cx∈A∧(y∈B∨y∈C)(x∈A∧y∈B)∨(x∈A∧y∈C)∈A×B∨∈A×C∈(A×B)∪(A×C)因此有A×(B∪C) = (A×B)∪(A×C).例3 (1) 证明A=B C=D A C=B D(2) A C=B D是否推出A=B C=D 为啥解 (1) 任取A C x A y Cx B y D B D(2) 别一定. 反例如下:A={1},B={2}, C=D=, 则A C=B D 然而A B.二元关系的定义定义设A,B为集合, A×B的任何子集所定义的二元关系叫做从A到B的二元关系, 当A=B时则叫做A上的二元关系.例4 A={0,1}, B={1,2,3}, R1={}, R2=A×B, R3=, R4={}. 这么R1, R2, R3,R4是从A 到B的二元关系, R3和R4并且也是A上的二元关系.计数|A|=n, |A×A|=n2, A×A的子集有个. 因此A上有个别同的二元关系.例如 |A|=3, 则A上有=512个别同的二元关系.设A 为任意集合,是A 上的关系,称为空关系E, I A 分不称为全域关系与恒等关系,定义如下:AE={|x∈A∧y∈A}=A×AAI={|x∈A}A例如, A={1,2}, 则E={,,,}AI={,}A小于等于关系L A, 整除关系D A, 包含关系R定义: L={| x,y∈A∧x≤y}, A R,R为实数集合AD={| x,y∈B∧x整除y},BB Z*, Z*为非0整数集R={| x,y∈A∧x y}, A是集合族.类似的还能够定义大于等于关系, 小于关系, 大于关系, 真包含关系等等.例如A = {1, 2, 3}, B ={a, b}, 则L={,,,,,}AD={,,,,}AA=P(B)={,{a},{b},{a,b}}, 则A上的包含关系是R={,,,,, ,,,}二元关系的表示表示方式:关系的集合表达式、关系矩阵、关系图关系矩阵:若A={a1, a2, …, a m},B={b1, b2, …, b n},R是从A到B 的关系,R 的关系矩阵是布尔矩阵M R = [ r ij ] m n, 其中r ij= 1 R.关系图:若A= {x1, x2, …, x m},R是从A上的关系,R的关系图是G R=, 其中A为结点集,R为边集.假如属于关系R,在图中就有一条从x i到x j 的有向边.注意:A, B为有穷集,关系矩阵适于表示从A到B的关系或者A上的关系,关系图适于表示A上的关系A={1,2,3,4},R={,,,,},R的关系矩阵M和关系图G R如下:R关系的运算基本运算定义:定义域、值域和域dom R = { x | y (R) }ran R = { y | x (R) }fld R = dom R ran R例1 R={,,,}, 则dom R={1, 2, 4}ran R={2, 3, 4}fld R={1, 2, 3, 4}逆与合成R1 = { | R}R°S = | | y (RS) } 例2 R={, , , } S={, , , , }R1={, , , }R°S ={, , }S°R ={, , , }定义 F 在A上的限制F?A = { | xFy x A}A 在F下的像F[A] = ran(F?A)实例R={, , , }R?{1}={,}R[{1}]={2,4}R?=R[{1,2}]={2,3,4}注意:F?A F, F[A] ran F基本运算的性质定理1 设F是任意的关系, 则(1) (F1)1=F(2) dom F1=ran F, ran F1=dom F证 (1) 任取, 由逆的定义有∈(F 1) 1 ∈F 1 ∈F因此有 (F1)1=F(2) 任取x,x∈dom F 1 y(∈F1)y(∈F) x∈ran F因此有dom F1= ran F. 同理可证 ran F1 = dom F.定理2 设F, G, H是任意的关系, 则(1) (F°G)°H=F°(G°H)(2) (F°G)1= G1°F 1证 (1) 任取,(F°G)°H t(∈F°G∧∈H) t (s(∈F∧∈G)∧∈H)t s (∈F∧∈G∧∈H)s (∈F∧t (∈G∧∈H))s (∈F∧∈G°H)∈F°(G°H)因此(F°G)°H = F°(G°H)(2) 任取,∈(F°G)1∈F°Gt (∈F∧(t,x)∈G)t (∈G1∧(t,y)∈F1)∈G1°F1因此(F°G)1 = G1°F1幂运算设R为A上的关系, n为自然数, 则R 的n次幂定义为:(1) R0={ | x∈A }=I A(2) R n+1 = R n°R注意:关于A上的任何关系R1和R2都有R 10 = R20 = IA关于A上的任何关系R 都有R1 = R性质:定理3 设A为n元集, R是A上的关系, 则存在自然数s 和t, 使得R s = R t.证R为A上的关系, 由于|A|=n, A上的别同关系惟独个.当列出R 的各次幂R0, R1, R2, …, , …,必存在自然数s 和t 使得R s=R t.定理4 设R 是A 上的关系, m, n∈N, 则(1) R m°R n=R m+n(2) (R m)n=R mn证用归纳法(1) 关于任意给定的m∈N, 施归纳于n.若n=0, 则有R m°R0=R m°I=R m=R m+0A假设R m°R n=R m+n, 则有R m°R n+1=R m°(R n°R)=(R m°R n)°R=R m+n+1 ,因此对一切m, n∈N有R m°R n=R m+n.(2) 关于任意给定的m∈N, 施归纳于n.若n=0, 则有(R m)0=I A=R0=R m×0假设 (R m)n=R mn, 则有(R m)n+1=(R m)n°R m=(R mn)°R m=R mn+m=R m(n+1) 因此对一切m,n∈N有 (R m)n=R mn.关系的性质自反性反自反性定义设R为A上的关系,(1) 若x(x∈A→R), 则称R在A上是自反的.(2) 若x(x∈A→R), 则称R在A上是反自反的.实例:反关系:A上的全域关系E A, 恒等关系I A小于等于关系L A, 整除关系D A反自反关系:实数集上的小于关系幂集上的真包含关系例1 A={1,2,3}, R1, R2, R3是A上的关系, 其中R={,}1R={,,,}2R={}3R自反,2R反自反,3R既别是自反也别是反自反的1对称性反对称性定义设R为A上的关系,(1) 若x y(x,y∈A∧∈R→∈R), 则称R为A上对称的关系.(2) 若x y(x,y∈A∧∈R∧∈R→x=y), 则称R为A上的反对称关系.实例:对称关系:A上的全域关系E A, 恒等关系I A和空关系反对称关系:恒等关系I A,空关系是A上的反对称关系.例2 设A={1,2,3}, R1, R2, R3和R4基本上A上的关系,其中R={,},R2={,,}1R={,},R4={,,}3R对称、反对称.1R对称,别反对称.2R反对称,别对称.3R别对称、也别反对称.4传递性定义设R为A上的关系, 若x y z(x,y,z∈A∧∈R∧∈R→∈R), 则称R是A上的传递关系.实例:A上的全域关系E,恒等关系I A和空关系A小于等于关系, 小于关系,整除关系,包含关系,真包含关系例3 设A={1,2,3}, R1, R2, R3是A上的关系, 其中R={,}1R={,}2R={}3R和R3 是A上的传递关系1R别是A上的传递关系2关系性质的充要条件设R为A上的关系, 则(1) R在A上自反当且仅当I A R(2) R在A上反自反当且仅当R∩I A=(3) R在A上对称当且仅当R=R 1(4) R在A上反对称当且仅当R∩R1I A(5) R在A上传递当且仅当R R R证明模式证明R在A上自反任取x,第11页/共11页。
离散数学第4章-二元关系

4.6 等价关系与划分
• 三 性质 • 定理4.13 设R是A上的等价关系,则 (1)对任一a∈A,有a∈[a]; (2)对a, b∈A,如果aRb,则[a]=[b]; (3)对a, b∈A,如果(a, b)∉R,则[a]∩[b]=∅; (4)∪a∈A[a]=A。
4.6 等价关系与划分
• 定理4.14 集合A上的任一划分可以确定A上 的一个等价关系R。 • 定理4.15 设R1和R2是A上的等价关系, R1=R2⇔ A/R1=A/R2 。 • 定理4.16 设R1和R2是A上的等价关系,则 R1∩R2是A上的等价关系。
4 .3 关系的运算
• 一 逆运算 • 定义4.7(逆关系) 设R是从A到B的二元关系, 则从B到A的二元关系记为R-1,定义为R-1 ={(b,a)|(a,b)∈R},称为R的逆关系。 • 定理2.1 (1)(R-1)-1=R; (2)(R1∪R2)-1= R1-1∪ R2-1; (3)(R1∩R2)-1= R1-1 ∩R2-1; (4) (A×B)-1= B×A;
4 .5 关系的闭包
•
• (1) (2) (3) • (1) (2) (3)
二 基本性质
定理4.5 设R是A上的二元关系,则 R是自反的 ⇔ r( R )=R; R是对称的 ⇔ s( R )=R; R是传递的 ⇔ t( R )=R; 定理4.6 设R1和R2是A上的二元关系,若R1⊆R2则 r(R1)⊆ r(R2); s(R1)⊆ s(R2); t(R1)⊆ t(R2)。
第四章 关系
4.1 二元关系 4.2 关系的性质 4 .3 关系的运算 4 .5 关系的闭包 4.6 等价关系与划分
4.1 二元关系
• 一 定义4.1(二元关系)
设A和B是任意两个集合,A×B的子集R称为从A到 B的二元关系。当A=B时,称R为A上的二元关系。若 (a, b)∈R,则称a与b有关系R,记为aRb。 (a, b)∉R:a与b没有关系R R=∅:空关系 R=A×B:全关系
离散数学二元关系习题讲解

极 大 元
极 小 元
作业
2.设集合X={x1,x2,x3,x4,x5}上的偏序关系如下图所示 最 最 极 极 上 下 ,求X的最大元、最小元、极大元、极小元。求子 集 上 下 大 小 大 小 确 确 集X1={x2,x3,x4},X合 ={x ,x ,x } , X ={x ,x ,x } 的上 界 界 2 3 4 5 3 1 3 5 元 元 元 元 界 界 界、下界、上确界、下确界、最大元、最小元、极 大元和极小元。 X1 无 x4 x2, x4 x1 x x1 x4
3
偏序关系
1.设集合A={a,b,c,d,e,f,g,h},对应的哈斯图见下图令 B1={a,b},B2={c,d,e}。求出B1,B2的最大元、最小 元、极大元、极小元、上界、下界、上确界、下确 界。 h
f d
c a
4
g e
集 合 B1
最 大 元 无
最 小 元 无
b
B2
无
c
上 下 下 上界 确 确 界 界 界 c,d,e,f a,b a,b ,g,h 无 c 无 a, b, h c d,e c h c
x1
x3 x3 x1 x1
4ቤተ መጻሕፍቲ ባይዱ
X2
x2 x3
x3 x1 x1
无 x5 无
X3
x5 X
x4, x3, 无 x3 x5 x1 x x5 x1 x1
5
无 x5
x4
5
x4, x5
二元关系
二元关系基本概念(重点) 关系的运算 关系的性质(重点) 关系的闭包运算 等价关系与偏序关系(难点)
关系的性质
例5 判断下述关系所具备的性质。
(1)集合A上的恒等关系,全域关系。 (2)R1={<x,y>|x≤y, x,y∈N}注:将≤改为<? (3)R2={<x,y>|x|y,x,y∈N-{0}} (4)R3={<S1,S2>|S1S2,S1,S2∈P(S)}其中P(S)是 S的幂集。注:若改为? (5)R4={<x,y>|x+y=偶数,x,y∈N}
离散数学(第13讲)二元关系

例:A={1,2,3,4,5,6},D是整 :A={1,2,3,4,5,6}, 除关系,哈斯图为: 除关系,哈斯图为
则 若 B ={2,3,4,5} 3,4,5为 的极大元。 3,4,5为B的极大元。 2,3,5为 的极小元。 2,3,5为B的极小元。
5
2 1
12
A={1,2,3,4,5,6,8,12,15,24,30,60,120}, 例 A={1,2,3,4,5,6,8,12,15,24,30,60,120}, R)是一个偏序集 是一个偏序集。 R是整除关系。则(A, R)是一个偏序集。 是整除关系。 哈斯图为: 哈斯图为: ={2,4,6,12}, (1). B1={2,4,6,12}, 则12是B1最大元,也是极大元; 12是 最大元,也是极大元; 最小元,也是极小元。 2是B1最小元,也是极小元。 (2).B ={1,2,3,4,6,15}, (2).B2={1,2,3,4,6,15}, 最大元不存在,极大元是4 最大元不存在,极大元是4、6、15。 15。 最小元,也是极小元; 1是B2最小元,也是极小元;
5
画出下列偏序集的哈斯图。 例1 画出下列偏序集的哈斯图。 ({1,2,3,4,5,6}), 其中D 为整除关系。 (1). ({1,2,3,4,5,6}),DA), 其中DA为整除关系。 (1):显然: 解 (1):显然: DA={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>, <1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>} 先画出D 的关系图,然后按规则简化: 先画出DA 的关系图,然后按规则简化:
离散数学2二元关系

(4)笛卡儿积运算对并和交运算满足分配律,即
A×(B∪C)=(A×B)∪(A×C) (B∪C)×A=(B×A)∪(C×A) A×(B∩C)=(A×B)∩(A×C) (B∩C)×A=(B×A)∩(C×A)
(5)AC ∧ BD A×B C×D
A×(B∪C)=(A×B)∪(A×C)的证明
任取 <x,y> <x,y>∈A×(B∪C) x∈A ∧ y∈B∪C x∈A ∧ (y∈B∨y∈C) (x∈A∧y∈B) ∨ (x∈A∧y∈C) <x,y>∈A×B ∨ <x,y>∈A×C <x,y>∈(A×B)∪(A×C) 所以 A×(B∪C)=(A×B)∪(A×C)
关于AC∧BD A×BC×D的讨论
该性质的逆命题不成立,可分以下情况讨论。 (1)当A=B=时,显然有AC 和 BD 成立。 (2)当A≠且B≠时,也有AC和BD成立,证明如下:
任取x∈A,由于B≠,必存在y∈B,因此有 x∈A∧y∈B
<x,y>∈A×B <x,y>∈C×D x∈C∧y∈D x∈C 从而证明了 AC。 同理可证 BD。
关于AC∧BD A×BC×D的讨论
该性质的逆命题不成立,可分以下情况讨论。 (3)当A=而B≠时,有AC成立,但不一定有BD成立。
反例:令A=,B={1},C={3},D={4}。 (4)当A≠而B=时,有BD成立,但不一定有AC成立。
反例略。
例7.2
例7.2 设A={1,2},求P(A)×A。
解答 P(A)×A = {,{1},{2},{1,2}}×{1,2} = {<,1>,<,2>, <{1},1>,<{1},2>, <{2},1>,<{2},2>, <{1,2},1>,<{1,2},2>}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
计算机科学与技术学院
Discrete Mathematics
② 合成运算成立结合律
定理 设 R,S,T分别是A到B,B到C,C到D的关 系, 则有(R S) T = R (S T)。 证明:略
西南科技大学
18
计算机科学与技术学院
Discrete Mathematics (4)关系的幂 定义 设R是A上的二元关系,n∈N,则关系R的n次 幂Rn定义为: (1). R0 =A是A上的恒等关系,即R0={<x,x>|xA}; (2). R1=R (3). Rn+1=Rn R
西南科技大学
5
计算机科学与技术学院
Discrete Mathematics
定义的有关说明:
1. R与S能进行合成的必要条件是R的后域B一定是 S的前域B,否则就不能合成。 2. <x,z>有合成关系的定义为:至少有一个做中间 桥梁的元素y属于B,使x,y有关系R,y,z有关系S。 例1 设A={1,2,3,4,5},B={3,4,5},C={1,2,3}
R是A到B的关系,且R={<x,y>|x+y=6},
S是B到C的关系,且S={<y,z>y-z=2} 。
求RS
西南科技大学
6
计算机科学与技术学院
Discrete Mathematics 只需从两个关系的二重组中搜索: ∵<1,5>∈R,<5,3>∈S,∴<1,3>∈RS
∵<2,4>R,<4,2>S,∴<2,2>RS
S R= {<d,b> ,<c,b>}
Байду номын сангаас
R R= {<a,b>,<b,b>}
S S= {<d,e>}
从这个例子可以看出:
R SS R,即合成运算不成立交换律。
西南科技大学
9
计算机科学与技术学院
Discrete Mathematics 例3 设Z是整数集合,R,S是Z到Z的两个关系:
⑶. 对任意n∈N, Rn ∈{R0,R1,…,Rj-1}; 证明: (1) Ri+k=Ri Rk=Rj Rk=Rj+k
西南科技大学
14
计算机科学与技术学院
Discrete Mathematics (3)合成关系的性质 ① 合成运算对∪,∩的分配律
定理 设R是从集合A到B的关系,S和T均为B到C 的关系。U是C到D的关系,则有
(1). R(S∪T)=R S∪R T; (2). R(S∩T) R S∩R T; (3). (S∪T) U=S U∪T U; (4). (S∩T) U S U∩T U;
Discrete Mathematics
第四章 二元关系
4.4 关系的运算
西南科技大学
1
计算机科学与技术学院
Discrete Mathematics
1
关系的交、并、补、差运算
设R,S都是集合A到B的两个关系,则: R∪S={<x,y>|(xRy)∨(xSy)} R∩S={<x,y>|(xRy)∧(xSy)} R-S={<x,y>|(xRy)∧(xSy)} R={<x,y>|(xRy)} 根 据 定 义 , 由 于 A ×B 是 相 对 于 R 的 全 集 , 所 以
西南科技大学
15
计算机科学与技术学院
Discrete Mathematics 证明:(1)<x,z>∈R (S∪T) ⇔y(y∈B ∧<x,y>∈R∧<y,z>∈S∪T)
⇔y(y∈B ∧<x,y>∈R∧ (<y,z>∈S∨<y,z>∈T))
⇔ y(y∈B ∧ <x,y>∈R∧<y,z>∈S)∨ y(y∈B ∧ <x,y>∈R∧<y,z>∈T) ⇔ <x,z>∈R S∨<x,z>∈R T ⇔ <x,z>∈R S∪R T 从而有: R S∪R T= R (S∪T)
R={<x,3x>|x∈Z};
S={<x,5x>|x∈Z}。 则: RS={<x,15x>|x∈Z} SR={<x,15x>|x∈Z}
RR={<x,9x>|x∈Z} SS={<x,25x>|x∈Z}
(RR)R= {<x,27x>|x∈Z} (RS)R= {<x,45x>|x∈Z}
西南科技大学
而 MS R = MS × M R = 验证:R S={<a,d>,<b,d>,<c,b>} S R={<a,d>,<c,b>,<d,b>}
西南科技大学
0 0 0 0
0 0 1 1
0 0 0 0
1 0 0 0
12
计算机科学与技术学院
Discrete Mathematics 例2 设 R={<1,2>,<3,4>,<2,2>} S={<4,2>,<2,3>,<3,1>}, 分别是定义为从A到B和从B到C的二元关系, 其中A=B=C={1,2,3,4}。 RS={<1,3>,<3,2>,<2,3>};
西南科技大学
4
计算机科学与技术学院
Discrete Mathematics (1)合成关系的定义
定义 设A,B,C是三个集合,R是A到B的关系,S是B
到C的关系,则R与S的合成关系是一个A到C的关
系,记作RS。定义为:
RS=
{<x,z>xA∧zC∧y(yB∧<x,y>R∧<y,z>S)}
∵<3,3>R,<3,1>S,∴<3,1>RS
从而:RS={<1,3>,<2,2>,<3,1>}
用数学方法推导即为:
∵x+y=6,y-z=2,消去y得x+z=4
西南科技大学
7
计算机科学与技术学院
Discrete Mathematics
关系图为: 1 2 3 4 A → B 3 4 5 → C 1 2 3
西南科技大学
3
计算机科学与技术学院
Discrete Mathematics
2
关系的合成运算
引例:甲、乙、丙三人,设甲和乙是兄妹关系,乙
和丙是母子关系,则甲和丙是舅甥关系。
可利用“关系”的概念来表示以上联系:
如R表示兄妹关系,S表示母子关系,则舅甥关
系T是由关系R与S合成的。
再如: R 表示父子关系, R 与 R 合成则是祖孙关系。
0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0
MS=
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0
1 0 0 0
0 1 0 0
则,MR S= MR ×MS =
1
2
3
4
5
R4:
西南科技大学
22
计算机科学与技术学院
Discrete Mathematics 定理 设|A|=n,R A×A,则必有i,j∈N,
0≤i<j≤2n ,使得Ri=Rj。
证明:因为|A×A|=n2,则ρ(A×A)= 2
n2 n2
2
即A上有 2 个不同的二元关系。
而R0、R1、R2、„、R
3).用关系矩阵求RS。
MR S = MR × MS
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 × 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0
西南科技大学
16
计算机科学与技术学院
Discrete Mathematics (4)设A={a},B={b1,b2},C={c},关系S,T,U定 义为,S、T是A到B的关系,U是B到C的关系, S={<a,b1>}, T={<a,b2>}, U={<b1,c>,<b2,c>}。 则由于:S∩T=Φ,所以: (S∩T)U=ΦU=Φ, 但:SU={<a,c>},TU={<a,c>}, 所以:(SU)∩(TU)={<a,c>}, (S∩T)U(SU)∩(TU), 即:(SU)∩(TU)≠(S∩T)U。
西南科技大学
21
计算机科学与技术学院
Discrete Mathematics 从关系图来看关系的n次幂 R:
1 2 3 4 5
1
2
3
4
5
R2:
R2就是从R的关系图中的任何一个结点x出发,长 为2的路径,如果路径的终点是y,则在R2 的关系 图中有一条从x到y的有向边。其他以次类推: R3:
1 2 3 4 5
西南科技大学
19
计算机科学与技术学院
Discrete Mathematics 定理 设R是集合A上的关系,m,n∈N,则有 (1) Rm Rn=Rm+n
(2)(Rm)n=Rmn
此定理证明可以用数学归纳法来证明。
证明:(1)对于任意给定的m∈N。
若n=0,则有 Rm R0= Rm IA= Rm= Rm+0 假设Rm Rk=Rm+k,则有