离散数学 二元关系与运算共62页
合集下载
离散数学,二元关系与运算共62页文档

离散数学ቤተ መጻሕፍቲ ባይዱ二元关系与运算
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
《离散数学》课件-第四章 二元关系

则关系R的各次幂为: R0 =A ={<1,1> , <2,2> , <3,3> , <4,4> , <5,5>} R1=R
R2= R • R={<1,1>,<2,2>,<1,3>,<2,4>, <3,5>}
R3=R2 • R={<1,2>,<2,1>,<1,4>,<2,3>, <2,5>}
R4= R3 • R={<1,1>,<2,2>,<1,5>,<2,4>,
从关系图来看关系的n次幂
R:
1
2
3
4
5
R2:
1
2
3
4
5
R2就是从R的关系图中的任何一个结点x出发,长 为2的路径,如果路径的终点是y,则在R2 的关系 图中有一条从x到y的有向边。其他以次类推:
R3:
1
2
3
4
5
R4:
1
2
3
4
5
定理 设|A|=n,R A×A,则必有i,j∈N, 0≤i<j≤2n2,使得Ri=Rj。
=R5,R7=R6•R=R5,…,Rn=R5 (n>5) 故Rn{R0,R1,R2,R3,R4,R5}。
S0=IA,S1=S,
S2=S•S={<a,c>,<b,d>,<c,e>,<d,f>}, S3=S•S•S=S2•S={<a,d>,<b,e>,<c,f>}, S4=S3•S={<a,e>,<b,f>}, S5=S4•S={<a,f>}, S6=S5•S=Φ, S7=Φ, …, 故,Sn{S0,S1,S2,S3,S4,S5,S6}
R2= R • R={<1,1>,<2,2>,<1,3>,<2,4>, <3,5>}
R3=R2 • R={<1,2>,<2,1>,<1,4>,<2,3>, <2,5>}
R4= R3 • R={<1,1>,<2,2>,<1,5>,<2,4>,
从关系图来看关系的n次幂
R:
1
2
3
4
5
R2:
1
2
3
4
5
R2就是从R的关系图中的任何一个结点x出发,长 为2的路径,如果路径的终点是y,则在R2 的关系 图中有一条从x到y的有向边。其他以次类推:
R3:
1
2
3
4
5
R4:
1
2
3
4
5
定理 设|A|=n,R A×A,则必有i,j∈N, 0≤i<j≤2n2,使得Ri=Rj。
=R5,R7=R6•R=R5,…,Rn=R5 (n>5) 故Rn{R0,R1,R2,R3,R4,R5}。
S0=IA,S1=S,
S2=S•S={<a,c>,<b,d>,<c,e>,<d,f>}, S3=S•S•S=S2•S={<a,d>,<b,e>,<c,f>}, S4=S3•S={<a,e>,<b,f>}, S5=S4•S={<a,f>}, S6=S5•S=Φ, S7=Φ, …, 故,Sn{S0,S1,S2,S3,S4,S5,S6}
离散数学 第七章 二元关系

举例
A表示某大学所有学生的集合,B表示大学开设的 表示某大学所有学生的集合, 表示大学开设的 表示某大学所有学生的集合 所有课程的集合, 所有课程的集合, 则A×B可以用来表示该校学生选课的所有可能情 × 可以用来表示该校学生选课的所有可能情 况。 是直角坐标系中x轴上的点集 令A是直角坐标系中 轴上的点集,B是直角坐标 是直角坐标系中 轴上的点集, 是直角坐标 系中y轴上的点集 轴上的点集, 系中 轴上的点集, 于是A× 就和平面点集一一对应 就和平面点集一一对应。 于是 ×B就和平面点集一一对应。
17
其它常用的关系
小于或等于关系: 小于或等于关系:LA={<x,y>|x,y∈A∧x≤y},其中 A⊆R。 ∈ ∧ , ⊆ 。 整除关系: 整除y}, 整除关系:DB={<x,y>|x,y∈B∧x整除 ,其中 B⊆Z* ∈ ∧ 整除 ⊆ Z*是非零整数集 包含关系: ⊆ 包含关系:R⊆={<x,y>|x,y∈A∧x⊆y},其中 是集合族 ∈ ∧ ⊆ ,其中A是集合族
6
笛卡尔积举例
举例
设A={a,b}, B={0,1,2},则 , A×B={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>} × B×A={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>} ×
举例
设 A={ x | 0<x<2 } ,B={ y |0<y<1 },则 则 A × B={ <x,y>| 0<x<2且0<y<1 } 且 1 y
A表示某大学所有学生的集合,B表示大学开设的 表示某大学所有学生的集合, 表示大学开设的 表示某大学所有学生的集合 所有课程的集合, 所有课程的集合, 则A×B可以用来表示该校学生选课的所有可能情 × 可以用来表示该校学生选课的所有可能情 况。 是直角坐标系中x轴上的点集 令A是直角坐标系中 轴上的点集,B是直角坐标 是直角坐标系中 轴上的点集, 是直角坐标 系中y轴上的点集 轴上的点集, 系中 轴上的点集, 于是A× 就和平面点集一一对应 就和平面点集一一对应。 于是 ×B就和平面点集一一对应。
17
其它常用的关系
小于或等于关系: 小于或等于关系:LA={<x,y>|x,y∈A∧x≤y},其中 A⊆R。 ∈ ∧ , ⊆ 。 整除关系: 整除y}, 整除关系:DB={<x,y>|x,y∈B∧x整除 ,其中 B⊆Z* ∈ ∧ 整除 ⊆ Z*是非零整数集 包含关系: ⊆ 包含关系:R⊆={<x,y>|x,y∈A∧x⊆y},其中 是集合族 ∈ ∧ ⊆ ,其中A是集合族
6
笛卡尔积举例
举例
设A={a,b}, B={0,1,2},则 , A×B={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>} × B×A={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>} ×
举例
设 A={ x | 0<x<2 } ,B={ y |0<y<1 },则 则 A × B={ <x,y>| 0<x<2且0<y<1 } 且 1 y
离散数学第七章二元关系

19
证明
(2) 任取<x,y>, <x,y>∈(FG)1 <y,x>∈FG t (<y,t>∈F∧<t,x>∈G) t (<x,t>∈G1∧<t,y>∈F1) <x,y>∈G1 F1 所以 (F G)1 = G1 F1
20
关系运算的性质
定理7.3 设R为A上的关系, 则 RIA= IAR=R <x,y> <x,y>∈RIA t (<x,t>∈R∧<t,y>∈IA) t (<x,t>∈R∧t=y∧y∈A) <x,y>∈R
例如 A = P(B) = {,{a},{b},{a,b}}, 则 A上的包含关系是 R = {<,>,<,{a}>,<,{b}>,<,{a,b}>,<{a},{a}>, <{a},{a,b}>,<{b},{b}>,<{b},{a,b}>,<{a,b},{a,b}>} 类似的还可以定义: 大于等于关系, 小于关系, 大于关系, 真包含关系等.
注意: 关系矩阵适合表示从A到B的关系或A上的关系(A,B为有 穷集) 关系图适合表示有穷集A上的关系
11
实例
例4 A={1,2,3,4}, R={<1,1>,<1,2>,<2,3>,<2,4>,<4,2>}, R的关系矩阵MR和关系图GR如下:
1 1 0 0 0 0 1 1 MR 0 0 0 0 0 1 0 0
10
关系的表示
离散数学(第11讲)二元关系

运算“ ”称为合成运算。
XDC
12
C
S
|
S
W
注意,在合成关系中,R的后域B一定是S的 前域B,否则R和S是不可合成的。合成的结果R S 的前域就是R的前域A,后域就是S的后域C。如果 对任意的x∈A和z∈C,不存在y∈B,使得xRy和 ySz同时成立,则R S为空,否则为非空。并且, R=R =。
S
W
U
S T
=R-1∩S-1=R-1-S-1
XDC
9
C
S
|
设R是A上的二元关系,那么R是对称的当且仅 当R=R-1 证明:充分性
a,b∈A,如<a,b>∈R,则<b,a>∈R-1, 由于R-1=R,故<b,a>∈R,∴R是对称的。 必要性 <a,b>∈R-1,则<b,a>∈R, 又因为R是对称的,故<a,b>∈R,∴R-1R, <a,b>∈R,因R是对称的,
S
W
U
S T
∴<b,a>∈R,∴<a,b>∈R-1,∴RR-1,
从而有 R=R-1。
XDC
10
C
S
|
结论
R是A上反对称关系的充要条件是RR-1A。
S
W
U
S T
设R和S是A上的反对称关系,则R-1、 RS、也是A的反对称关系。 R、S均是 反对称的,未必能得出RS也是反对称 的。
XDC
40--11
C
S
|
三、关系的合成运算
设R是一个从集合A到集合B的二元关
S
W
系,S是从集合B到集合C的二元关系(也可
离散数学第4章-二元关系

4.6 等价关系与划分
• 三 性质 • 定理4.13 设R是A上的等价关系,则 (1)对任一a∈A,有a∈[a]; (2)对a, b∈A,如果aRb,则[a]=[b]; (3)对a, b∈A,如果(a, b)∉R,则[a]∩[b]=∅; (4)∪a∈A[a]=A。
4.6 等价关系与划分
• 定理4.14 集合A上的任一划分可以确定A上 的一个等价关系R。 • 定理4.15 设R1和R2是A上的等价关系, R1=R2⇔ A/R1=A/R2 。 • 定理4.16 设R1和R2是A上的等价关系,则 R1∩R2是A上的等价关系。
4 .3 关系的运算
• 一 逆运算 • 定义4.7(逆关系) 设R是从A到B的二元关系, 则从B到A的二元关系记为R-1,定义为R-1 ={(b,a)|(a,b)∈R},称为R的逆关系。 • 定理2.1 (1)(R-1)-1=R; (2)(R1∪R2)-1= R1-1∪ R2-1; (3)(R1∩R2)-1= R1-1 ∩R2-1; (4) (A×B)-1= B×A;
4 .5 关系的闭包
•
• (1) (2) (3) • (1) (2) (3)
二 基本性质
定理4.5 设R是A上的二元关系,则 R是自反的 ⇔ r( R )=R; R是对称的 ⇔ s( R )=R; R是传递的 ⇔ t( R )=R; 定理4.6 设R1和R2是A上的二元关系,若R1⊆R2则 r(R1)⊆ r(R2); s(R1)⊆ s(R2); t(R1)⊆ t(R2)。
第四章 关系
4.1 二元关系 4.2 关系的性质 4 .3 关系的运算 4 .5 关系的闭包 4.6 等价关系与划分
4.1 二元关系
• 一 定义4.1(二元关系)
设A和B是任意两个集合,A×B的子集R称为从A到 B的二元关系。当A=B时,称R为A上的二元关系。若 (a, b)∈R,则称a与b有关系R,记为aRb。 (a, b)∉R:a与b没有关系R R=∅:空关系 R=A×B:全关系
离散数学 二元关系与函数

三、二元关系的定义
如果一个集合满足以下条件之一: 定义 如果一个集合满足以下条件之一: (1)集合非空 且它的元素都是有序对 )集合非空, (2)集合是空集 ) 则称该集合为一个二元关系 简称为关系 记作R. 二元关系, 关系, 则称该集合为一个二元关系 简称为关系,记作 如<x,y>∈R, 可记作 xRy;如果 ∈ ;如果<x,y>∉R, 则记作 y ∉ 则记作x 实例: 实例:R={<1,2>,<a,b>}, S={<1,2>,a,b}. R是二元关系 当a, b不是有序对时,S不是二元关系 是二元关系, 不是有序对时, 不是二元关系 是二元关系 不是有序对时 根据上面的记法, 根据上面的记法,可以写 1R2, aRb, a c 等.
12
1、从A到B的二元关系与 上的二元关系 、 的二元关系与A上 到 的二元关系与
是两个集合, 是笛卡尔乘积 × 的子集,则称R 定义 A和B是两个集合,R是笛卡尔乘积 A×B 的子集,则称 和 是两个集合 为从A到 的一个二元关系 的一个二元关系。 为从 到B的一个二元关系。 例如: 例如:A={a1,a2,a3,a4,a5} , B={b1,b2,b3} 的二元关系。 若 R={(a1,b1),(a2,b1),(a4,b3)},那么R就是一个从A到B的二元关系。 ,那么R就是一个从A 也可写作a 并称a 相关。 对于R中的元素( 相关 对于 中的元素(a1,b1) R ,也可写作 1Rb1 ,并称 1 , b1 以R相关。 中的元素 ∈ 对于不属于R的有序对,如(a5,b2) R,也可写作 5 对于不属于 的有序对, 的有序对 ∉ 也可写作a 并称a 不以R相关 相关。 并称a5 ,b2 不以 相关。 A上二元关系的一般定义: 上二元关系的一般定义: 上二元关系的一般定义 是集合, 定义 A是集合,R1是笛卡尔乘积 A×A 的子集,则称R1为A上的二元关系 × 的子集,则称R 上的二元关系 上的一个二元关系。 例如: ,那么R 上的一个二元关系 例如:A={a,b,c,d,e},R1 ={(a,b), (c,a), (b,b)},那么 1是A上的一个二元关系。 , 由此可知, 的二元关系R就是笛卡尔乘积 × 的一个子集, 由此可知,从A到B的二元关系 就是笛卡尔乘积 A×B 的一个子集, 到 的二元关系 上的二元关系R 而A上的二元关系 1就是笛卡尔乘积 ×A 的一个子集 上的二元关系 就是笛卡尔乘积A× 的一个子集.
离散数学 二元关系 PPT课件

7.2.1 二元关系的基本定义
▪ 常见的几种特殊的二元关系
▪≤ ≥ < > = ▪| ▪ 集合之间的关系 : = ≠
2020/7/15
20
计算机科学学院 刘芳
7.2.2 二元关系的表示
1.集合表示法
2.关系矩阵(matrix of relation)
▪ 设A={a1,a2,…,am} ,B={b1,b2,…,bn},R是A到B的一个二
所以, (A∩B)×C=(A×C)∩(B×C)成立。
2020/7/15
11
计算机科学学院 刘芳
7.1.3 有序 n 元组和 n 阶笛卡尔积
定义:
▪ n个元素x1,x2,…,xn组成的有序序列,记做:
<x1,x2,…,xn>
▪ 称为n重组(n元序偶、n元组)。
约定:
▪ <x1,x2,…, xn-1, xn>= <<x1,x2,… ,xn-1 >,xn>
1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0
2020/7/15
28
计算机科学学院 刘芳
7.2.2 二元关系的表示
关系的表示方法
▪ 关系R的集合表达式 ▪ 关系矩阵MR ▪ 关系图GR
三者均可以唯一相互确定。
2020/7/15
29
计算机科学学院 刘芳
7.3 关系的运算
7.3.1 关系的定义域、值域 和 域
例:
▪ (1) R={<x,y> | x,yN, x+y<3}
={<0,0>, <0,1>, <0,2>, <1,0>, <1,1>, <2,0>}
▪ (2) C={<x,y> | x,yR, x2+y2=1}
▪ 常见的几种特殊的二元关系
▪≤ ≥ < > = ▪| ▪ 集合之间的关系 : = ≠
2020/7/15
20
计算机科学学院 刘芳
7.2.2 二元关系的表示
1.集合表示法
2.关系矩阵(matrix of relation)
▪ 设A={a1,a2,…,am} ,B={b1,b2,…,bn},R是A到B的一个二
所以, (A∩B)×C=(A×C)∩(B×C)成立。
2020/7/15
11
计算机科学学院 刘芳
7.1.3 有序 n 元组和 n 阶笛卡尔积
定义:
▪ n个元素x1,x2,…,xn组成的有序序列,记做:
<x1,x2,…,xn>
▪ 称为n重组(n元序偶、n元组)。
约定:
▪ <x1,x2,…, xn-1, xn>= <<x1,x2,… ,xn-1 >,xn>
1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0
2020/7/15
28
计算机科学学院 刘芳
7.2.2 二元关系的表示
关系的表示方法
▪ 关系R的集合表达式 ▪ 关系矩阵MR ▪ 关系图GR
三者均可以唯一相互确定。
2020/7/15
29
计算机科学学院 刘芳
7.3 关系的运算
7.3.1 关系的定义域、值域 和 域
例:
▪ (1) R={<x,y> | x,yN, x+y<3}
={<0,0>, <0,1>, <0,2>, <1,0>, <1,1>, <2,0>}
▪ (2) C={<x,y> | x,yR, x2+y2=1}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学 二元关系与运算
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一网
15、机会是不守纪律的。——雨果
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一网
15、机会是不守纪律的。——雨果
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特