人教版七年级数学上册第一章 《有理数》尖子生训练题
人教版七年级上册数学 第一章 《有理数》尖子生练习题(含答案)

人教版七年级上册数学第一章《有理数》尖子生练习题1 1.对数轴上的点P进行如下:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P1,称为完成一次操作,第二次把P1同样操作后得到P2,如此依次操作下去.(1)如图,在数轴上若点A表示的数是﹣3,对点A进行上述一次操作后得到点A′,则点A′表示的数是;对点B进行上述一次操作后得到点B′,点B′表示的数是2,则点B表示的数是;(2)已知数轴上的点E经过上述一次操作后得到的对应点E′,若点E′与点E的距离为3,求点E表示的数;(3)已知数轴上的点E经过上述一次操作后得到的对应点E′与点E重合,求点E表示的数.2.在数轴上,点A表示的数为﹣4,点B表示的数为b(b>0),甲、乙两只蚂蚁同时分别从点A、B出发沿着数轴相向而行,蚂蚁甲的速度是每秒2个长度单位,蚂蚁乙的速度是每秒3个单位长度.若两只蚂蚁均爬到与原点的距离相等且分别位于原点的两侧,请用含有b的式子表示爬行时间t,并结合数轴直接写出b所表示的数的范围(画出相应的示意图).3.数轴上,A点表示的数为10,B点表示的数为﹣6,A点运动的速度为4单位/秒,B点运动的速度为2单位/秒.(1)B点先向右运动2秒,A点在开始向左运动,当他们在C点相遇时,求C点表示的数.(2)A,B两点都向左运动,B点先运动2秒时,A点在开始运动,当A到原点的距离和B到原点距离相等时,求A运动的时间.4.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A,B之间的距离记作|AB|.(1)设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,求x的值;(2)若点P在A的左侧,M,N分别是PA,PB的中点,当点P在A的左侧移动时,式子|PN|﹣|PM|的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.5.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a﹣b﹣c=﹣3,求﹣a+3b﹣(b﹣2c)的值.6.一只蚂蚁从原点O出发,它先向左爬行2个单位长度到达A点,再向左爬行3个单位长度到达B点,再向右爬行8个单位长度到达C点.(1)写出A、B、C三点表示的数,并将它们的位置标注在数轴上;(2)根据C点在数轴上的位置,请回答该蚂蚁实际上是从原点出发向什么方向爬行了几个单位长度?7.如图,一条生产线的流水线上依次有5个机器人,它们站立的位置在数轴上依次用点A1,A 2,A3,A4,A5表示.(1)若原点是零件的供应点,5个机器人分别到达供应点取货的总路程是多少?(2)若将零件的供应点改在A1,A3,A5中的其中一处,并使得5个机器人分别到达供应点取货的总路程最短,你认为应该在哪个点上?通过计算说明理由.8.已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,则x=;(2)若AP+BP=8,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.9.数轴上,当点A在原点的左边,点B在原点的右边,点A,B之间的距离为28个单位长度,点A与原点的距离为8个单位长度,若点A,B对应的有理数分别是a,b.(1)求a,b;(2)若质点M从点A沿数轴以每秒1个单位长度向左运动,质点N从点B沿数轴以每秒3个单位长度向左运动,若质点N在点C处追上质点M,求点C对应的有理数c;(3)若质点P从点A沿数轴以每秒2单位长度向右运动,质点Q从点B沿数轴以每秒1个单位长度向右运动,t秒钟后质点P与质点Q之间的距离为18时,求t的值.10.如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B 落在点A的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?参考答案1.解:(1)﹣3×+1=﹣1+1=0,设点B表示的数是x,则x+1=2,解得x=3;故答案为:0,3;(2)设点E表示的数是x,由题意得,|x+1﹣x|=3,所以,x﹣1=3或1﹣x=3,解得x=6或x=﹣3,即点E表示的数为6或﹣3;(3)设点E表示的数是x,由题意得,x+1=x,解得x=,即点E表示的数为.2.解:如图所示:∵甲、乙两只蚂蚁沿着数轴相向而行,∴蚂蚁甲在原点的左侧,蚂蚁乙在原点的右侧,依据题意可得:4﹣2t=b﹣3t,变形得:t=b﹣4,由题意可得:0≤t<2,故b所表示的数的范围为:4≤b<6.3.解:(1)设A点开始运动x秒后相遇,4x+2x=10+6﹣2×2,解得x=2;可知C点坐标为10﹣2×4=2;(2)设A动时间为y秒时,当A在原点左边,A到原点的距离和B到原点距离相等时,10﹣4y=10+2y,解得y=0 当A在原点左边,A到原点的距离和B到原点距离相等时,4y﹣10=10+2y,解得y=10.4.解:(1)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P不存在.当P在A、B之间时,|PA|=|x﹣(﹣4)|=x+4,|PB|=|x﹣1|=1﹣x,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x)=2.∴x=﹣,即x的值为﹣;(2)|PN|﹣|PM|的值不变,值为.∵|PN|﹣|PM|=|PB|﹣|PA|=(|PB|﹣|PA|)=|AB|=,∴|PN|﹣|PM|=.5.解:(1)∵bc<0,∴b,c异号,∴原点在第③部分;(2)若AC=5,BC=3,则AB=5﹣3=2,∴a=b﹣2=﹣1﹣2=﹣3;(3)设点B到表示1的点的距离为m(m>0),则b=1﹣m,c=1+m,∴b+c=2,∵a﹣b﹣c=﹣3,即a﹣(b+c)=﹣3,∴a=﹣1,∴﹣a+3b﹣(b﹣2c)=﹣a+3b﹣b+2c=﹣a+2b+2c=﹣a+2(b+c)=﹣(﹣1)+2×2=1+4=5.6.解:(1)点A、B、C分别表示有理数﹣2、﹣5、+3.它们的位置在数轴上表示如下:(2)蚂蚁实际上是从原点出发向右爬行了3个单位长度.7.解:(1)由题意得:5个机器人分别到达供应点取货的总路程是:4+3+1+1+3=12 ∴5个机器人分别到达供应点取货的总路程是12.(2)若要使得5个机器人分别到达供应点取货的总路程最短,应该在点A上,理由如下:3 5个机器人分别到达供应点取货的总路程为:,0+1+3+5+7=16;①若将零件的供应点改在A1②若将零件的供应点改在A,3+2+0+2+4=11;3,7+6+4+2+0=19.③若将零件的供应点改在A5上.∴若要使得5个机器人分别到达供应点取货的总路程最短,应该在点A38.解:(1)由数轴可得:若AP=BP,则x=1;故答案为:1;(2)∵AP+BP=8∴若点P在点A左侧,则﹣1﹣x+3﹣x=8∴x=﹣3若点P在点A右侧,则x+1+x﹣3=8∴x=5∴x的值为﹣3或5.(3)BP=5+3t﹣(3+2t)=t+2AP=t+6+3t=4t+6∴4BP﹣AP=4(t+2)﹣(4t+6)=2∴4BP﹣AP的值不会随着t的变化而变化.9.解:(1)画出数轴如图:根据题意得:点A所对应的数是﹣8;点B对应的数是20;(2)设经过x秒质点N在点C处追上质点M,由题意得:3x﹣x=28∴x=14﹣8﹣14=﹣22∴C对应的有理数c为﹣22;(3)t秒后点P位于:﹣8+2t;点Q位于:20+t由题意得:|(﹣8+2t)﹣(20+t)|=18∴|t﹣28|=18∴t﹣28=18或t﹣28=﹣18∴t=46或t=1010.解:(1)线段AB=﹣2﹣(﹣11)=9.(2)∵M是线段AB的中点,∴点M在数轴上对应的数为(﹣2﹣11)÷2=﹣6.5.(3)设AB′=x,因为AB′=B′C,则B′C=5x.所以由题意BC=B′C=5x,所以AC=B′C﹣AB′=4x,所以AB=AC+BC=AC+B′C=9x,即9x=9,所以x=1,所以由题意AC=4,又因为点A表示的数为﹣2,﹣2﹣4=﹣6,所以点C 在数轴上对应的数为﹣6.故答案为:9;﹣6.5.人教版七年级上册数学 第一章 《有理数》尖子生练习题21.如图,点O 为数轴的原点,A ,B 在数轴上按顺序从左到右依次排列,点B 表示的数为7,AB =12.(1)直接写出数轴上点A 表示的数.(2)动点P 、Q 分别从A 、B 同时出发,点P 以每秒3个单位长度的速度沿数轴向右匀速运动,点Q 以每秒个单位长度的速度沿数轴向右匀速运动.①经过多少秒,点P 是线段OQ 的中点?②在P 、Q 两点相遇之前,点M 为PO 的中点,点N 在线段OQ 上,且QN =OQ .问:经过多少秒,在P 、M 、N 三个点中其中一个点为以另外两个点为端点的线段的三等分点?(把一条线段分成1:2的两条线段的点叫做这条线段的三等分点)2.电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳一个单位到K 1,第二步由K 1向右跳2个单位到K 2,第三步由K 2向左跳3个单位到K 3,第四步由K 3向右跳4个单位到K 4…,按以上规律跳了100步时,电子跳蚤落在数轴上的点K 100所表示的数恰是80,求电子跳蚤的初始位置K 0点所表示的数.3.如图,数轴上点A、B分别对应数a、b,其中a<0,b>0.(1)当a=﹣3,b=7时,线段AB的中点对应的数是.(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=3,b>3,且AM=2BM时,求代数式a+2b+2010的值;②a=﹣3.且AM=3BM时学生小朋通过演算发现代数式3b﹣4m是一个定值,老师点评;小朋同学的演算发现还不完整!请你通过演算解释为什么“小朋的演算发现”是不完整的?4.一辆货车从仓库出发去送货,向东走了2千米到达超市A,继续向东走了2.5千米到达超市B,然后向西走了8.5千米到达超市C,继续向西走了5千米到达超市D,此时发现车上还有距离仓库仅1千米的超市E的货还未送,于是开往超市E,最后回到仓库.(1)超市C在仓库的东面还是西面?距离仓库多远?(2)超市B距超市D多远?(3)如果货车每千米耗油0.08升,那么货车在这次送货中共耗油多少升?5.点A,B为数轴上的两点,点A对应的数为a,点B对应的数为3,a3=﹣8.(1)求A,B两点之间的距离(2)若点C为数轴上的一个动点,其对应的数记为x,试猜想当x满足什么条件时,点C到A点的距离与点C到B点的距离之和最小.请写出你的猜想,并说明理由;(3)若P,Q为数轴上的两个动点(Q点在P点右侧),P,Q两点之间的距离为m,当点P到A点的距离与点Q到B点的距离之和有最小值4时,m的值为.6.2019年2月,市城区公交车施行全程免费乘坐政策,标志着我市公共交通建设迈进了一个新的时代.如图为某一条东西方向直线上的公交线路,东起职教园区站,西至富士康站,途中共设12个上下车站点,如图所示:某天,小王从电业局站出发,始终在该线路的公交站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣2,+6,﹣11,+8,+1,﹣3,﹣2,﹣4,+7;(1)请通过计算说明A站是哪一站?(2)若相邻两站之间的平均距离为1.2千米,求这次小王志愿服务期间乘坐公交车行进的总路程是多少千米?7.在数轴上,我们把表示数2的点定为核点,记作点C,对于两个不同的点A和B,若点A,B到点C的距离相等,则称点A与点B互为核等距点.如图,点A表示数﹣1,点B表示数5,它们与核点C的距离都是3个单位长度,我们称点A与点B互为核等距点.(1)已知点M表示数3,如果点M与点N互为核等距点,那么点N表示的数是;(2)已知点M表示数m,点M与点N互为核等距点,①如果点N表示数m+8,求m的值;②对点M进行如下操作:先把点M表示的数乘以2,再把所得数表示的点沿着数轴向左移动5个单位长度得到点N,求m的值.8.数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C 2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.9.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM﹣BM=OM,求的值.10.已知A 、B 在数轴上对应的数分别用+2、﹣6表示,P 是数轴上的一个动点.(1)数轴上A 、B 两点的距离为 .(2)当P 点满足PB =2PA 时,求P 点表示的数.(3)将一枚棋子放在数轴上k 0点,第一步从k 点向右跳2个单位到k 1,第二步从k 1点向左跳4个单位到k 2,第三步从k 2点向右跳6个单位到k 3,第四步从k 3点向左跳8个单位到k 4.①如此跳6步,棋子落在数轴的k 6点,若k 6表示的数是12,则k o 的值是多少?②若如此跳了1002步,棋子落在数轴上的点k 1002,如果k 1002所表示的数是1998,那么k 0所表示的数是 (请直接写答案).参考答案1.解:(1)设点A 表示的数为a ,点B 表示的数为7,AB =12.∴7﹣a =12,解得,a =﹣5,即数轴上点A 表示的数为﹣5;(2)①设经过t 秒,点P 是线段OQ 的中点,则点P 表示的数为:﹣5+3t ,点Q 表示的数为:7+t ,有7+t =2(3t ﹣5),解得,t =, 答:经过秒,点P 是线段OQ 的中点;②1)点P 未追上N ,;当2PN =PM 1时,2×[+﹣(﹣5+3t )]=﹣5+3t ﹣(﹣),解得; 当2PM 2=M 2N 时,2×[﹣﹣(﹣5+3t )]=+t ﹣(﹣),解得t =;当2M 2N =PM 3时,2×[+﹣(﹣5+3t )]=﹣+﹣(﹣5+3t ),解得t =(舍去);当2PN =M 4N 时,2×[+﹣(﹣5+3t )]=﹣+﹣()解得t =(舍去); 2)点P 未追上N ,,当2PN =M 5N 时,2×[﹣5+3t ﹣()]=﹣(﹣),解得t =;当2M 6N =PM 6时,2×[﹣﹣()]=﹣5+3t ﹣(﹣),解得t =; 当2PM 7=M 7N 时,2×[﹣5+3t ﹣(﹣)=﹣﹣(),解得t =(舍去); 当2PN =M 8P 时,2×[﹣5+3t ﹣()=﹣﹣(﹣5+3t ),解得t =(舍去). 综上所述,经过或或或秒,在P 、M 、N 三个点中其中一个点为以另外两个点为端点的线段的三等分点.2.解:设电子跳蚤的初始位置K 0点所表示的数为a ,规定向左为负,向右为正.根据题意,得:a ﹣1+2﹣3+4﹣…+100=80,a +(2﹣1)+…+(100﹣99)=80,a +50=80,解得:a =30.故电子跳蚤的初始位置K 0点所表示的数为30.3.解:(1)=2,故答案为:2;(2)①由m =3,b >3,且AM =2BM ,可得3﹣a =2(b ﹣3),整理得a +2b =9.所以,a +2b +2010=9+2010=2019,②当a =﹣3,且AM =3BM 时,需要分两种情形.Ⅰ:当m <b 时,m ﹣(﹣3)=3(b ﹣m ),整理得3b ﹣4m =3.Ⅱ:当m >b 时,m ﹣(﹣3)=3(m ﹣b ),整理得2m﹣3b=3综上,小朋的演算发现并不完整.4.解:如图所示:(1)由图可知超市C在仓库西面,设点C对应的数为x,∵到达A、B两超市对应的数分别为2,4.5,∴4.5﹣x=8.5,解得:x=4,∴CO=|x|=|4|=4,∴距离仓库4km;(2)设点D在数轴上对应的数为y,则有,﹣4﹣y=5,解得:y=﹣9,∴BD=|y﹣4.5|=|﹣9﹣4.5|=13.5,∴超市B距超市13.5km;(3)点E的位置有两种情况:①若点E在仓库的东边,货车从点D到点E的距离为10,则货车所走的路程为:|+2|+|+2.5|+|﹣8.5|+|﹣5|+|+10|+|﹣1|=29km,又∵货车每千米耗油0.08升,∴货车在这次送货中共耗油:29×0.08=2.32(L),②若点E在仓库的西边,货车从点D到点E的距离为8,则货车所走的路程为:|+2|+|+2.5|+|﹣8.5|+|﹣5|+|8|+|+1|=27km,又∵货车每千米耗油0.08升,∴货车在这次送货中共耗油:27×0.08=2.16(L),综合所述:货车在这次送货中共耗油2.16升或2.32升.5.解:(1)∵a3=﹣8.∴a=﹣2,∴AB=|3﹣(﹣2)|=5;(2)点C到A的距离为|x+2|,点C到B的距离为|x﹣3|,∴点C到A点的距离与点C到B点的距离之和为|x+2|+|x﹣3|,当距离之和|x+2|+|x﹣3|的值最小,﹣2<x<3,此时的最小值为3﹣(﹣2)=5,∴当﹣2<x<3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5;(3)设点P所表示的数为x,∵PQ=m,Q点在P点右侧,∴点Q所表示的数为x+m,∴PA=|x+2|,QB=|x+m﹣3|∴点P到A点的距离与点Q到B点的距离之和为:PA+QB=|x+2|+|x+m﹣3|当x在﹣2与3﹣m之间时,|x+2|+|x+m﹣3|最小,最小值为|﹣2﹣(3﹣m)|=4,①﹣2﹣(3﹣m)=4,解得,m=9,②(3﹣m)﹣(﹣2)=4时,解得,m=1,故答案为:1或9.6.解:(1)由题意得:+5﹣2+6﹣11+8+1﹣3﹣2﹣4+7=+5+6+8+1+7﹣2﹣11﹣3﹣2﹣4=27﹣22=5,在电业局东第5站是市政府,答:A站是市政府站;(2)由题意得:(|+5|+|﹣2|+|+6|+|﹣11|+|+8|+|+1|+|﹣3|+|﹣2|+|﹣4|+|+7|)×1.2=(5+2+6+11+8+1+3+2+4+7)×1.2=49×1.2=58.8(千米)答:小王志愿服务期间乘坐公交车行进的路程是58.8千米.7.解:(1)∵点M表示数3,∴MC=1,∵点M与点N互为核等距点,∴N表示的数是1,故答案为1;(2)①因为点M表示数m,点N表示数m+8,∴MN=8.∴核点C到点M与点N的距离都是4个单位长度.∵点M在点N左侧,∴m=﹣2.②根据题意得2m﹣5=4﹣m,解得m=3.8.解:(1)∵点A表示数﹣2,点B表示数1,C1表示的数为﹣1,∴AC1=1,BC1=2,∴C1是点A、B的“关联点”;∵点A表示数﹣2,点B表示数1,C2表示的数为2,∴AC2=4,BC1=1,∴C2不是点A、B的“关联点”;∵点A表示数﹣2,点B表示数1,C3表示的数为4,∴AC3=6,BC3=3,∴C3是点A、B的“关联点”;∵点A表示数﹣2,点B表示数1,C4表示的数为6,∴AC4=8,BC4=5,∴C4不是点A、B的“关联点”;故答案为:C1,C3;(2)①若点P在点B的左侧,且点P是点A,B的“关联点”,设点P表示的数为x (Ⅰ)当点P在A的左侧时,则有:2PA=PB,即,2(﹣10﹣x)=15﹣x,解得,x=﹣35;(Ⅱ)当点P在A、B之间时,有2PA=PB或PA=2PB,即有,2(x+10)=15﹣x或x+10=2(15﹣x),解得,x=﹣或x=;因此点P表示的数为﹣35或﹣或;②若点P在点B的右侧,(Ⅰ)若点P是点A、B的“关联点”,则有,2PB=PA,即2(x﹣15)=x+10,解得,x =40;(Ⅱ)若点B是点A、P的“关联点”,则有,2AB=PB或AB=2PB,即2(15+10)=x﹣15或15+10=2(x﹣15),得,x=65或x=;(Ⅲ)若点A是点B、P的“关联点”,则有,2AB=PA,即2(15+10)=x+10,解得,x =40;因此点P表示的数为40或65或;9.解:(1)设点A在数轴上表示的数为a,点B在数轴上表示的数为b,则,b﹣a=16,∵点C是OA的中点,点D是BN的中点,∴点C在数轴上表示的数为,点D在数轴上表示的数为,∴CD=﹣===9,答:CD的长为9;(2)设运动的时间为t秒,点M表示的数为m则OC=t,BD=4t,即点C在数轴上表示的数为﹣t,点D在数轴上表示的数为b﹣4t,∴AC=﹣t﹣a,OD=b﹣4t,由OD=4AC得,b﹣4t=4(﹣t﹣a),即:b=﹣4a,①若点M在点B的右侧时,如图1所示:由AM﹣BM=OM得,m﹣a﹣(m﹣b)=m,即:m=b﹣a;∴===1;②若点M在线段BO上时,如图2所示:由AM﹣BM=OM得,m﹣a﹣(b﹣m)=m,即:m=a+b;∴====;③若点M在线段OA上时,如图3所示:由AM﹣BM=OM得,m﹣a﹣(b﹣m)=﹣m,即:m===﹣a;∵此时m<0,a<0,∴此种情况不符合题意舍去;④若点M在点A的左侧时,如图4所示:由AM﹣BM=OM得,a﹣m﹣(b﹣m)=﹣m,即:m=b﹣a;而m<0,b﹣a>0,因此,不符合题意舍去,综上所述,的值为1或.10.解:(1)|+2﹣(﹣6)|=8,故答案为:8.(2)设点表示的数为x,①当点P在点A的左侧时,有2(2﹣x)=x﹣(﹣6)解得,x=﹣,②当点P在点A的右侧时,有x+6=2(x﹣2),解得,x=10答:点P所表示的数为﹣或10.所表示的数为a,由题意得,(3)①设ka+2﹣4+6﹣8+10﹣12=12,解得,a=18,所表示的数为18.答:k②由题意的,a+2﹣4+6﹣8+10﹣12+…+2002﹣2004=1998,解得,a=3000,故答案为:3000.。
人教版七年级数学上册 第一章 有理数 专题练习试题(含答案)

人教版七年级数学第一章 有理数 专题练习试题小专题(一) 有理数的加减运算有理数加减运算的简便方法归纳方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.方法2 同号结合法——把正数和负数分别结合相加【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)+(-10-2)=20-12=8.方法3 同分母结合法【例3】 (1)-23-35+78-13-25+18; 解:原式=(-23-13)+(-35-25)+(78+18) =-1-1+1=1.(2)-479-(-315)-(+229)+(-615). 解:原式=[-479-(+229)]+[-(-315)+(-615)] =-7-3=-10.方法4 凑整法——分数相加,把相加得整数的数结合相加【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18|+78. 解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3 =1+1-3=-1.方法5 分解法——将一个数拆分成两个数的和或差【例5】 计算:-156+(-523)+2434+312. 解:原式=(-1-56)+(-5-23)+(24+34)+(3+12) =-1-56-5-23+24+34+3+12=(-1)+(-56)+(-5)+(-23)+24+34+3+12=[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12] =21+(-14) =2034.方法6 裂项相消法【例6】 观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110;(2)计算12+16+112+120+…+19 900的值为99100. 易错点 分解带分数时弄错符号【例7】 计算:634+313-514-312+123. 解:原式=(6+3-5-3+1)+(34+13-14-12+23) =2+1=3.强化训练计算(能用简便方法计算的尽量用简便方法):(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(3)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7+(-7)=0.(4)|-12|-(-2.5)-(-1)-|0-212|; 解:原式=12+2.5+1-212=112.(5)34-72+(-16)-(-23)-1; 解:原式=34-72-16+23-1 =-134.(6)0.25+112+(-23)-14+(-512); 解:原式=14+112+(-23)-14+(-512) =14-14+[112+(-512)+(-23)](7)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(8)-212+(+56)+(-0.5)+(+116); 解:原式=[-212+(-0.5)]+[(+56)+(+116)] =-3+2=-1.(9)-478-(-512)+(-412)-318; 解:原式=-478+512-412-318=(-478-318)+(512-412) =-8+1(10)-12-16-112-120-130-142-156-172; 解:原式=-(12+16+112+120+130+142+156+172) =-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1=0.小专题(二) 有理数的乘除运算有理数混合运算的简便方法归纳方法1 运用乘法的交换律和结合律【例1】 计算:531×(-29)×(-3115)×(-92).解:原式=-531×29×3115×92=-(531×3115)×(29×92) =-13×1 =-13.方法2 正用分配律【例2】 计算:(14-16+124)×(-48). 解:原式=14×(-48)-16×(-48)+124×(-48) =-12+8-2=-6.方法3 逆用分配律【例3】 计算:4×(-277)-3×(-277)-6×277. 解:原式=-277×(4-3+6) =-27.方法4 除法变乘法,再利用分配律【例4】 计算:(16-27+23)÷(-542). 解:原式=(16-27+23)×(-425) =-75+125-285=-235.强化训练计算:(1)54×(-95)+38×(-95)-8×95;解:原式=(-95)×(54+38+8)= -9 500.(2)(-13)×(-134)×113×⎝⎛⎭⎫-167; 解:原式=-13×134×113×167=-⎝⎛⎭⎫13×113×⎝⎛⎭⎫134×167 =-1×2=-2.(3)⎝⎛⎭⎫29-14+118×(-36);解:原式=29×(-36)-14×(-36)+118×(-36)=-8+9+(-2)=1+(-2)=-1.(4)⎝⎛⎭⎫13+16-25÷⎝⎛⎭⎫-130;解:原式=13×(-30)+16×(-30)-25×(-30) =-10+(-5)-(-12)=-10-5+12=-3.(5)⎝⎛⎭⎫79-56+318×18+3.95×6-1.45×6.解:原式=79×18-56×18+318×18+(3.95-1.45)×6 =14-15+3+2.5×6=2+15=17.小专题(三) 有理数的混合运算计算:(1)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=2×9÷(-1)=-18.(2)-0.75×(-32)÷(-94); 解:原式=-34×(-32)×(-49) =-12.(3)-14+16÷(-2)3×(-3-1);解:原式=-1+16÷(-8)×(-4)=-1+8=7.(4)(12-58-14)×(-24); 解:原式=12×(-24)-58×(-24)-14×(-24) =-12+15+6=9.(5)24÷(32-43)-62122×22; 解:原式=24÷(96-86)-(6+2122)×22 =24÷16-132-21 =24×6-132-21=144-132-21=-9.(6)(-5)÷(-97)×45×(-94)÷7; 解:原式=-5×79×45×94×17=-5×45×(79×94)×17=-4×(74×17) =-4×14=-1.(7)0.7×1949+234×(-14)+0.7×59+14×(-14); 解:原式=0.7×(1949+59)-14×(234+14) =0.7×20-14×3=-28.(8)391314×(-14); 解:原式=(40-114)×(-14) =40×(-14)-114×(-14) =-560+1=-559.(9)1318÷(-7); 解:原式=1318×(-17) =(14-78)×(-17) =-2+18=-178. (10)(-5)-(-5)÷10×110×(-5); 解:原式=(-5)-(-5)×110×110×(-5) =-5-14=-514.(11)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(12)(-58)×(-4)2-0.25×(-5)×(-4)3; 解:原式=(-58)×16-0.25×(-5)×(-64) =-10-80=-90.(13)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(14)(-42)÷(83)2+112×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(15)(-2)3-16×(38-1)+2÷(12-14-16); 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.(16)(-48)×(-16-116+34)-1.85×6+3.85×6. 解:原式=(-48)×(-16)+(-48)×(-116)+(-48)×34+6×(-1.85+3.85) =8+3-36+12=-13.小专题(四) 数列规律探索观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行的第10个数,计算这三个数的和.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,….(2)第②行每个数是第①行每个数加2得到的;第③行每个数是第①行每个数除以2得到的.(3)(-2)10+(-2)10+2+(-2)10÷2=(1+1+12)×(-2)10+2 =52×210+2 =2 562.1.观察下面三行数:-3,9,-27,81,…;①1,-3,9,-27,…;②-2,10,-26,82,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)分别写出第①②③行的第100个数,并求出它们的和.解:(1)第①行数是-3,(-3)2,(-3)3,(-3)4,….(2)第②行每个数是第①行每个数除以-3得到的;第③行每个数是第①行每个数加1得到的.(3)第①②③行的第100个数分别是(-3)100,(-3)100÷(-3),(-3)100+1.(-3)100+(-3)100÷(-3)+(-3)100+1=[1+(-13)+1]×(-3)100+1 =53×3100+1 =5×399+1.2.观察下面三行数:2,-4,8,-16,32,-64,…;①4,-2,10,-14,34,-62,…;②1,-2,4,-8,16,-32,….③(1)第①行第8个数为-256,第②行第8个数为 -254,第③行第8个数-128;(2)设第一行第n 个数为x ,则第二行第n 个数为x +2,第三行第n 个数为x 2;取每行的第n 个数,这三个数的和等于1 282,求这三个数.解:根据题意,得x +x +2+x 2=1 282,解得x =512.所以x +2=514,x 2=256. 答:这三个数是512,514,256.3.观察有规律的整数-1,2,-3,4,-5,6,…按照如图所示的方式排成的数阵.-12 -3 4-5 6 -7 8 -910 -11 12 -13 14 -15 16…(1)按照该数阵呈现的规律排下去,那么第10行共有19个数,其中最左侧的一个是82,最右侧的一个是100;(2)按照该数阵呈现的规律排下去,那么第10行从左数第9个数是90.4.记P 1=-2,P 2=(-2)×(-2),P 3=(-2)×(-2)×(-2),…,P n =(-2)×(-2)×…×(-2).n 个(1)计算P 4+P 6的值;(2)计算2P 2 019+P 2 020的值;(3)猜想2P n 与P n +1的关系.解:(1)P 4+P 6=(-2)4+(-2)6=80.(2)2P 2 019+P 2 020=2×(-2)2 019+(-2)2 020=-22 020+22 020=0.(3)2P n +P n +1=0.小专题(五) 本章易错专练1.下列说法:①-213是负分数;②3.6不是正数;③非负有理数不包括零;④正整数、负整数统称为整数;⑤零是最小的有理数,其中正确的有(A )A .1个B .2个C .3个D .4个2.化简:(1)-(-2)=2;_ (2)-|-2|=-2;(3)|-(-2)|=2;_ (4)(-1)2=1;(5)-12=-1;_ (6)-(-1)2=-1.3.计算:(1)-143=-164; (2)-324=-94; (3)-(-23)2=-49; (4)-(-2)4=-16; (5)-(-2)3=8;_ (6)[-(-2)]3=8.4.|-12|的相反数是-12. 5.用四舍五入法将12.897 2精确到0.01的近似数是12.90.6.在数轴上,距离表示数1的点3个单位长度的点表示的数是-2或4.7.计算: (1)-38÷35×53;解:原式=-38×53×53=-2524.(2)-12-(-12)3÷4; 解:原式=-1-(-18)÷4 =-1+18×14=-1+132=-3132.(3)24÷(13-18-16). 解:原式=24÷124=24×24=576.8.已知|x|=1,|y|=2,且|x -y|=y -x ,求x +y 的值. 解:因为|x -y|=y -x ,所以x -y<0,即x<y.因为|x|=1,|y|=2,所以y=2,x=1或-1.当x=1时,x+y=1+2=3;当x=-1时,x+y=-1+2=1.9.已知|a|=1,|b|=2,|c|=3,且a>b>c,求ab+bc的值.解:因为a>b>c,|a|=1,|b|=2,|c|=3,所以b=-2,c=-3,a=1或-1.当a=1时,ab+bc=1×(-2)+(-2)×(-3)=4;当a=-1时,ab+bc=-1×(-2)+(-2)×(-3)=8.。
人教版七年级数学上册第1章 《有理数》尖子生训练题

《有理数》尖子生训练题一.选择题1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.2.雾霾天气对北京地区的人民造成严重影响,为改善大气质量,北京市政府决定投入7600亿元治理雾霾,请你对7600亿元用科学记数法表示()A.7.6×1010元B.76×1010元C.7.6×1011元D.7.6×l012元3.如果在数轴上的A、B两点所表示的有理数分别是x、y,且|x|=2,|y|=3,则A、B两点间的距离是()A.5 B.1 C.5或1 D.以上都不对4.下列说法中正确的是()A.﹣a n和(﹣a)n一定是互为相反数B.当n为奇数时,﹣a n和(﹣a)n相等C.当n为偶数时,﹣a n和(﹣a)n相等D.﹣a n和(﹣a)n一定不相等5.下列各对数中,互为相等的一对数是()A.﹣23与﹣32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.(﹣3×2)2与﹣3×226.有理数a,b在数轴上的位置如图,则下列各式的符号为正的是()A.a+b B.a﹣b C.ab D.﹣a47.下列各组数中,不相等的一组是()A.﹣(+7),﹣|﹣7| B.﹣(+7),﹣|+7|C.+(﹣7),﹣(+7)D.+(+7),﹣|﹣7|8.下列说法正确的是()A.0是最小的数B.“+15 m”表示向东走15 mC.﹣a不一定是负数D.一个数前面加上“﹣”,就变成了负数9.一次数学达标检测的成绩以80分为标准成绩,“奋斗”小组4名学生的成绩与标准成绩的差如下:﹣7分、﹣6分、+9分、+2分,他们的平均成绩为()A.78分B.82分C.80.5分D.79.5分10.若a+b=0,则a和b的关系为()A.相等B.互为倒数C.互为相反数D.都为011.已知a、b为有理数,且ab>0,则的值是()A.3 B.﹣1 C.﹣3 D.3或﹣112.若0<m<1,m、m2、的大小关系是()A.m<m2<B.m2<m<C.<m<m2D.<m2<m二.填空题13.近似数4.30万精确到位.14.绝对值不大于2.5的整数有,它们的和是.15.0.2的倒数是.16.定义一种新运算:a※b=a+b﹣ab,如2※(﹣2)=2+(﹣2)﹣2×(﹣2)=4,那么(﹣1)※2=.17.计算:(﹣1)+2+(﹣3)+4+…+(﹣2011)+2012+(﹣2013)+2014=.18.利用数轴解答:有一座三层楼房不幸起火,一位消防队员搭梯子爬往三楼去救人,当他爬到梯子正中一级时,二楼窗口喷出火来,他就往下退了3级,等到火过去了,他又爬了7级,这时屋顶有砖掉下,他又往后退了2级,幸好没事,他又爬了8级,这时他距离梯子最高层还有一级,问这个梯子共有级.三.解答题19.计算.(1)﹣42×(﹣2)+[(﹣2)3﹣(﹣4)];(2)﹣12018﹣(﹣2)3﹣2×(﹣3).20.把下列各数填在相应的括号里:﹣8,0.275,,0,﹣1.04,﹣(﹣3),﹣,|﹣2|正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.21.下表是小明记录的今年雨季一周河水的水位变化情况(上周末的水位达到警戒水位).星期一二三四五六日+0.20 +0.81 ﹣0.35 +0.03 +0.28 ﹣0.36 ﹣0.01 水位变化/米注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少米?(2)与上周相比,本周末河流水位是上升了还是下降了?22.已知:|a|=5,|b|=3,(1)求a+b的值.(2)若|a+b|=a+b,求a﹣b的值.23.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7.这样的整数是.(3)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值,如果没有说明理由.参考答案一.选择题1.解:﹣3的倒数是﹣.故选:C.2.解:7600亿元用科学记数法表示为7.6×1011,故选:C.3.解:∵|x|=2,∴x=±2,∵|y|=3,∴y=±3,∴当x与y是同号时,A、B两点间的距离是1;当x与y是异号时,A、B两点间的距离是5;∴A、B两点间的距离是5或1;故选:C.4.解:当n为奇数时,﹣a n和(﹣a)n相等,当n为偶数时,﹣a n和(﹣a)n一定互为相反数.故选:B.5.解:A、﹣23=﹣8,﹣32=﹣9,故A选项不符合题意;B、(﹣2)3=﹣8,﹣23=﹣8,故B选项符合题意;C、(﹣3)2=9,﹣32=﹣9,故C选项不符合题意;D、(﹣3×2)2=36,﹣3×22=﹣12,故D选项不符合题意.故选:B.6.解:由图可知,a>0,b<0,且|a|<|b|,A、a+b<0,故本选项错误;B、a﹣b>0,故本选项正确;C、ab<0,故本选项错误;D、﹣a4<0,故本选项错误.故选:B.7.解:+(+7)=7,﹣=﹣7,故D正确,故选:D.8.解:A、没有最小的数,故选项错误;B、“+15 m”不一定表示向东走15m,故选项错误;C、﹣a不一定是负数是正确的;D、一个负数前面加上“﹣”,就变成了正数,故选项错误.故选:C.9.解:“奋斗”小组4名学生的平均成绩是80+(﹣7﹣6+9+2)÷4=80+(﹣0.5)=79.5.故选:D.10.解:∵a+b=0,∴a和b的关系为互为相反数,故选:C.11.解:∵ab>0,∴a>0,b>0时,++=++=1+1+1=3,a<0,b<0时,++=++=﹣1﹣1+1=﹣1,综上所述,++的值是3或﹣1.故选:D.12.解:当m=时,m2=,=2,所以m2<m<.故选:B.二.填空题(共6小题)13.解:近似数4.30万精确到百位.故答案为:百.14.解:绝对值不大于2.5的整数有﹣2,﹣1,0,1,2,之和为0.故答案为:﹣2,﹣1,0,1,2;015.解:0.2的倒数是5.故答案为:5.16.解:根据题意得:(﹣1)※2=﹣1+2﹣(﹣2)=﹣1+2+2=3.故答案为:317.解:(﹣1)+2+(﹣3)+4+…+(﹣2011)+2012+(﹣2013)+2014=[(﹣1)+2]+[(﹣3)+4]+…+[(﹣2011)+2012]+[(﹣2013)+2014]=1+1+…+1(共1007个1)=1007,故答案为:1007.18.解:设中间一级为第x级,则全梯共有2x﹣1级,根据题意得:x﹣3+7﹣2+8+1=2x﹣1.∴x=12.∴2x﹣1=23.故答案为:23.三.解答题(共5小题)19.解:(1)原式=﹣16×(﹣2)+(﹣8+4)=32﹣4=28;(2)原式=﹣1﹣(﹣8)﹣(﹣6)=﹣1+8+6=﹣1+14=13.20.解:在﹣8,0.275,,0,﹣1.04,﹣(﹣3),﹣,|﹣2|中,正数有:0.275,,﹣(﹣3),|﹣2|;负整数有:﹣8;分数有:0.275,,﹣1.04,﹣;负数有:﹣8,﹣1.04,﹣.故答案为:0.275,,﹣(﹣3),|﹣2|;﹣8;0.275,,﹣1.04,﹣;﹣8,﹣1.04,﹣.21.解:(1)设警戒水位为0,则:星期一:+0.20米,星期二:+1.01米,星期三:+0.66米,星期四:+0.69米,星期五:+0.97米,星期六:+0.61米,星期日:+0.60米.(6分)所以本周星期二河流水位最高,位于警戒水位之上1.01米,星期一河流的水位最低,位于警戒水位之上0.20米.(8分)(2)跟上周相比,本周的水位上升了.(9分)、22.解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3.当a=5,b=3时,a﹣b=2,当a=5,b=﹣3时,a﹣b=8.23.解:(1)|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)当x>2时,|x+5|+|x﹣2|=x+5+x﹣2=7,解得,x=2与x>2矛盾,故此种情况不存在,当﹣5≤x≤2时,|x+5|+|x﹣2|=x+5+2﹣x=7,故﹣5≤x≤2时,使得|x+5|+|x﹣2|=7,故使得|x+5|+|x﹣2|=7的整数是﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2,当x<﹣5时,|x+5|+|x﹣2|=﹣x﹣5+2﹣x=﹣2x+3=7,得x=﹣5与x<﹣5矛盾,故此种情况不存在,故答案为:﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;(3)|x﹣3|+|x﹣6|有最小值,最小值是3,理由:当x>6时,|x﹣3|+|x﹣6|=x﹣3+x﹣6=2x﹣9>3,当3≤x≤6时,|x﹣3|+|x﹣6|=x﹣3+6﹣x=3,当x<3时,|x﹣3|+|x﹣6|=3﹣x+6﹣x=9﹣2x>3,故|x﹣3|+|x﹣6|有最小值,最小值是3.。
人教版七年级数学上册第1章 《有理数》尖子生训练题(含答案)

《有理数》尖子生训练题一.选择题1.﹣的倒数是()A.﹣B.4 C.﹣4 D.2.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.若|a|=a,则a一定是非负数C.一个数的相反数,不是正数,就是负数D.零除以任何数都等于零3.我国西部地区面积为640万平方千米,用科学记数法表示为()A.640×104B.64×106C.6.4×106D.6.4×1074.按照下面的操作步骤,若输入x=﹣4,则输出的值为()A.3 B.﹣3 C.﹣5 D.55.两个有理数a,b在数轴上的位置如图所示,则下列关系式成立的是()A.﹣a<﹣b<a<b B.a<b<﹣a<﹣b C.b<﹣a<a<﹣b D.﹣b<a<﹣a<b 6.一条公路,工程队第一天硬化路面,第二天硬化剩余的,下列说法正确的是()A.第一天硬化的多B.第二天硬化的多C.两天硬化一样多D.无法确定7.下列说法正确的是()A.一个数的相反数一定是负数B.若|a|=|b|,则a=bC.若|m|=2,则m=±2D.﹣a一定是负数8.一个数a在数轴上的对应点在原点的左边,且|a|=4,则a的值为()A.4或﹣4 B.4 C.﹣4 D.以上都不对9.若“!”是一种数学运算符号,并1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则的值为()A.0.2!B.2450 C.D.49!10.如果|x+y﹣3|=2x+2y,那么(x+y)3的值为()A.1 B.﹣27 C.1或﹣27 D.1或27二.填空题11.在数轴上与表示﹣3的点的距离等于5的点所表示的数是.12.如果零上2℃记作+2℃,那么零下3℃记作.13.若“方框”表示运算x﹣y+z+w,则“方框”=.14.已知有理数a在数轴上的位置如图,则a+|a﹣1|=.15.若|m﹣n|=n﹣m,且|m|=4,|n|=3,则m+n=.三.解答题16.(1)(﹣8)+10+2+(﹣1)(2)(﹣+﹣)÷(﹣)(3)﹣4÷﹣(﹣)×(﹣30)(4)﹣22+|5﹣8|+24÷(﹣3)×.17.英国股民吉姆上星期买进某公司月股票1000股,每股30元,表为本周内每日该股的涨跌情况(星期六、日股市休市)(单位:元):星期一二三四五每股涨跌+3 +4.5 ﹣2 ﹣2.5 ﹣5(1)星期二收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?(3)已知吉姆买进股票时付了0.15%的手续费,卖出时还需付成交额0.15%的手续费和0.1%的交易税,如果吉姆在星期五收盘前将全部股票卖出,他的收益情况如何?18.化简并在数轴上分别画出表示下列各数的点,并把各数用“<”号连接起来.(﹣1)2016,+(﹣3.5),﹣(﹣1.5),﹣|﹣2.5|,﹣22解:化简:(﹣1)2016=;+(﹣3.5)=;﹣(﹣1.5)=;﹣|﹣2.5|=;﹣22=.在数轴上表示,并用“<”号连接为:.19.将下列各数填在相应的集合里.﹣,9,0,+4.3,|﹣0.5|,﹣(+7),18%,(﹣3)4,﹣(﹣2)5,﹣62正有理数集合:{…};正分数集合:{…};负整数集合:{…};自然数集合:{…}.20.小车司机蔡师傅某天下午的营运全是在东西走向的富泸公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,﹣3,+7,﹣3,+11,﹣4,﹣3,+11,+6,﹣7,+9(1)蔡师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)蔡师傅这天下午共行车多少千米?(3)若每千米耗油0.1L,则这天下午蔡师傅用了多少升油?21.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=.参考答案一.选择题1.解:﹣的倒数是﹣4.故选:C.2.解:A、带正号的数是正数,带负号的数是负数,如﹣(﹣2)=2,故A错误;B、若|a|=a,则a一定是非负数,故B正确;C、一个数的相反数,不是正数,就是负数,0的相反数还是0,既不是正数也不是负数,故C错误;D、零除以任何不为0的数都等于零,故D错误;故选:B.3.解:6400000=6.4×106.故选:C.4.解:把x=﹣4代入得:(﹣4+3)3﹣4=﹣1﹣4=﹣5,故选:C.5.解:∵﹣1<a<0,1<b<2,∴0<﹣a<1,﹣2<﹣b<﹣1,∴﹣b<a<﹣a<b.故选:D.6.解:(1﹣)×=×=∵=,∴两天硬化一样多.故选:C.7.解:A、一个正数的相反数是一个负数,而0的相反数是0,一个负数的相反数是一个正数,故本选项错误;B、若|a|=b,则a=±b,故本选项错误;C、若|m|=2,则m=±2,故本选项正确;D、当a≤0时,﹣a为非负数,故本选项错误.故选:C.8.解:∵a在数轴上的对应点在原点左边,∴a<0,∵|a|=4,∴a=﹣4.故选:C.9.解:原式==50×49=2450,故选:B.10.解:∵|x+y﹣3|=2x+2y=2(x+y)≥0,∴x+y≥0,当x+y﹣3=2(x+y)时,x+y=﹣3(舍去),当x+y﹣3=﹣2(x+y)时,x+y=1,(符合题意),∴(x+y)3的值为1.故选:A.二.填空题(共5小题)11.解:在数轴上与表示﹣3的点的距离等于5的点所表示的数是:﹣3﹣5=﹣8或﹣3+5=2.故答案为:﹣8或2.12.解:∵零上2℃记作+2℃,∴零下3℃记作﹣3℃.故答案为:﹣3℃.13.解:根据题意得:“方框”=﹣2﹣3+3﹣6=﹣8,故答案为:﹣8.14.解:由数轴上a点的位置可知,a<0,∴a﹣1<0,∴原式=a+1﹣a=1.故答案为:1.15.解:∵|m|=4,|n|=3,∴m=±4,n=±3,而|m﹣n|=n﹣m,∴n>m,∴n=3,m=﹣4或n=﹣3,m=﹣4,∴m+n=3+(﹣4)=﹣1;或m+n=﹣3+(﹣4)=﹣7.故答案为﹣1或﹣7.三.解答题(共6小题)16.解:(1)(﹣8)+10+2+(﹣1)=3;(2)(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣24)=2﹣8+12=6;(3)﹣4÷﹣(﹣)×(﹣30)=﹣6﹣20=﹣26;(4)﹣22+|5﹣8|+24÷(﹣3)×=﹣4+3﹣=﹣.17.解:(1)星期二的价格是30+3+4.5=37.5 元,∴星期二收盘时,每股37.5 元;(2)周一30+3=33元,周二33+4.5=37.5元,周三37.5﹣2=35.5元,周四35.5﹣2.5=33元,周五33﹣5=28元,∴周内每股最高价的37.5元,最低价是28元;(3)收益=28×1000﹣28×1000×(0.15%+0.1%)﹣30×1000×(1+0.15%)=﹣2115元.∴他的收益是﹣2115元.18.解:(﹣1)2016=1;+(﹣3.5)=﹣3.5;﹣(﹣1.5)=1.5;﹣|﹣2.5|=﹣2.5;﹣22=﹣4.﹣22<+(﹣3.5)<﹣|﹣2.5|<(﹣1)2016<﹣(﹣1.5).故答案为:1;﹣3.5;1.5;﹣2.5;﹣4;﹣22<+(﹣3.5)<﹣|﹣2.5|<(﹣1)2016<﹣(﹣1.5).19.解:正有理数集合:{9,+4.3,|﹣0.5|,18%,(﹣3)4,﹣(﹣2)5…} 正分数集合:{+4.3,|﹣0.5|,18%…}负整数集合:{﹣(+7),﹣62…}自然数集合:{9,0,(﹣3)4,﹣(﹣2)5…}故答案为:{9,+4.3,|﹣0.5|,18%,(﹣3)4,﹣(﹣2)5…};{+4.3,|﹣0.5|,18%…};{﹣(+7),﹣62…};{9,0,(﹣3)4,﹣(﹣2)5…}.20.解:(1)14﹣3+7﹣3+11﹣4﹣3+11+6﹣7+9=38(千米)答:蔡师傅这天最后到达目的地时,距离下午出车时的出发地38千米;(2)14+3+7+3+11+4+3+11+6+7+9=78(千米)答:蔡师傅这天下午共行车78千米;(3)78×0.1=7.8(L)答:这天下午蔡师傅用了7.8升油.21.解:(1)数轴上表示4和1的两点之间的距离是:4﹣1=3;表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:3,5;(2)|x+1|=3,x+1=3或x+1=﹣3,x=2或x=﹣4.故答案为:2或﹣4;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或1,b=﹣1或b=﹣3,当a=5,b=﹣3时,则A、B两点间的最大距离是8,当a=1,b=﹣1时,则A、B两点间的最小距离是2,则A、B两点间的最大距离是8,最小距离是2;故答案为:8,2;(4)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=(a+4)+(2﹣a)=6.故答案为:6.。
人教版七年级数学上册第1章 《有理数》尖子生训练题

《有理数》尖子生训练题一.选择题1.﹣的相反数是()A.﹣B.﹣C.D.2.计算(﹣3)×2的结果是()A.﹣6 B.﹣1 C.1 D.63.用四舍五入法将数3.14159精确到千分位的结果是()A.3.1 B.3.14 C.3.142 D.3.1414.气温由﹣5℃上升了4℃时的气温是()A.﹣1℃B.1℃C.﹣9℃D.9℃5.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5 6.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4 B.﹣4或10 C.﹣10 D.4或﹣107.在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是()A.﹣5 B.﹣0.9 C.0 D.﹣0.018.﹣12020=()A.1 B.﹣1 C.2020 D.﹣20209.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.10.2019年暑期爆款国产动漫《哪吒之魔童降世》票房已斩获4930000000,开启了国漫市场崛起新篇章,4930000000用科学记数法可表示为()A.49.3×108B.4.93×109C.4.93×108D.493×10711.若|x|=2,|y|=3.且xy异号,则|x+y|的值为()A.5 B.5或1 C.1 D.1或﹣112.a、b是有理数,它们在数轴上的对应点的位置如图所示,下列说法正确的有()个.①|a+b|=|a|﹣|b|;②﹣b<a<﹣a<b;③a+b>0;④|﹣b|<|﹣a|.A.1 B.2 C.3 D.4二.填空题13.大于﹣2而小于3的整数分别是.绝对值大于2而小于5的整数分别是.14.数轴上离原点的距离等于2.5个单位长度的数有个.15.若|a﹣2|=0,则a=;若|a﹣3|=1,则a=;若|a|+a=2a,则a0.16.2020年5月,在全国两会的政府工作报告中指出,去年我国经济运行总体平稳,城镇新增就业13520000人,将数13520000用科学记数法表示为.17.已知|x|≤3,|y|≤2,且|x﹣y|=5,则x+y=.三.解答题18.计算(1)(﹣5)+(+7)﹣(﹣3)﹣(+20)(2)25÷×(﹣)+(﹣2)×(﹣1)201919.发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352;例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;(3)98×(﹣11)=.探究:一个两位数,十位上的数字是m,个位上的数字是n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出计算结果中十位上的数字.20.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和2的两点之间的距离是,表示﹣3和1两点之间的距离是,一般地数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a 和﹣2的两点之间的距离是0,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值.21.如表是《道路安全法实施条例》的规定:违法行为道路类型扣分规则超速50%以上所有道路记12分20%以上50%以下高速公路、城市快速路记6分20%以下高速公路、城市快速路记3分王叔叔在南京到天津的高速公路上以100千米/时的速度行驶,前方弯道处出现限速80千米的标示.(1)如果王叔叔保持这个速度继续行驶,他将受到扣几分的处罚?(2)如果这时王叔叔受到扣12分的处罚,那么王叔叔的行驶速度至少达到了多少?(写出判断方法)22.把下列各数填在相应的大括号内:﹣5,|﹣|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),,200%,15%.(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.23.阅读下列文字,并解答问题:每个假分数可以写成一个自然数与一个真分数的和(例如=3+),真分数的倒数又可以写成一个自然数与一个真分数的和(=1+),反复进行同样的过程,直到真分数的倒数是一个自然数为止(=4+,=2),我们把用这种方法得到的自然数,按照先后顺序写成一个数组{3,1,4,2},那么,这个数组叫做由这个假分数生成的自然数组.如:对于假分数,则=3+,=1+,=4+,=2,所生成的自然数组为{3,1,4,2},请回答:(1)求所生成的自然数组;(2)某个假分数所生成的自然数组为{2,4,1,3},求这个假分数为多少?请说明理由.24.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,终点表示的数是﹣2.参照图中所给的信息,完成填空:已知A,B都是数轴上的点.(1)若点A表示数﹣3,将点A向右移动5个单位长度至点A1,则点A1表示的数是;(2)若点A表示数2,将点A先向左移动7个单位长度,再向右移动个单位长度至点A 2,则点A2表示的数是.(3)若将点B 先向左移动3个单位长度,再向右移动6个单位长度,终点表示的数恰好是0.则点B 所表示的数是 ;(4)点A 1,A 2,B 表示的数按从小到大的顺序排列依次是 .参考答案一.选择题1.解:﹣的相反数是:.故选:D.2.解:原式=﹣3×2=﹣6.故选:A.3.解:3.14159精确到千分位的结果是3.142.故选:C.4.解:根据题意得:﹣5+4=﹣1,则气温由﹣5℃上升了4℃时的气温是﹣1℃.故选:A.5.解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.6.解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.7.解:∵|﹣5|>|﹣0.9|>|﹣0.01|,∴﹣5<﹣0.9<﹣0.01,∴在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是﹣0.01.故选:D.8.解:﹣12020=﹣1.故选:B.9.解:∵|1.2|=1.2,|﹣2.3|=2.3,|+0.9|=0.9,|﹣0.8|=0.8,又∵0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件.故选:D.10.解:4930000000=4.93×109.故选:B.11.解:∵|x|=2,|y|=3.且xy异号,∴x=2,y=﹣3;x=﹣2,y=3,∴x+y=﹣1或1,则|x+y|=1.故选:C.12.解:根据有理数a、b在数轴上的对应点的位置可知,a<0,b>0,且|a|<|b|,∴a+b>0,因此③正确;∵|a|=|﹣a|,|b|=|﹣b|,而|a|<|b|,∴|﹣a|<|﹣b|,因此④不正确;∵a<0,b>0,且|a|<|b|,∴a+b=|b|﹣|a|>0,因此①不正确,根据绝对值和相反数的意义可得,﹣b<a<﹣a<b;因此②正确,故选:B.二.填空题(共5小题)13.解:大于﹣2而小于3的整数分别是﹣1,0,1,2;绝对值大于2而小于5的整数有:±3,±4.﹣1,0,1,2;±3,±4.14.解:设该数为x,则|x|=2.5,解得x=±2.5,故答案为:215.解:若|a﹣2|=0,则a=2;若|a﹣3|=1,则a﹣3=±1,所以a=4或2;若|a|+a=2a,则|a|=a,所以a≥0.故答案为:3,4或2,≥.16.解:将13520000用科学记数法表示为1.352×107,故答案为:1.352×107.17.解:∵|x|≤3,|y|≤2,且|x﹣y|=5,∴或,∴x+y=3﹣2或﹣3+2,∴x+y=±1.故答案为:±1.三.解答题(共7小题)18.解:(1)(﹣5)+(+7)﹣(﹣3)﹣(+20)=﹣5+7+3﹣20=﹣25+10=﹣15;(2)25÷×(﹣)+(﹣2)×(﹣1)2019=25××(﹣)+(﹣2)×(﹣1)=﹣12+2=﹣10.19.解:尝试:(1)43×11=473;(2)69×11=759;(3)98×(﹣11)=﹣1078;探究:(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是m,m+n,n,验证:这个两位数为10m+n,根据题意得:(10m+n)×11=(10m+n)(10+1)=100m+10(m+n)+n,则若m+n<10,百位、十位、个位上的数字分别是m,m+n,n;(2)若m+n≥10,十位上数字为m+n﹣10.故答案为:尝试:(1)473;(2)759;(3)﹣1078.20.解:(1)数轴上表示4和2的两点之间的距离是4﹣2=2;表示﹣3和1两点之间的距离是1﹣(﹣3)=4;依题意有|a﹣(﹣2)|=0,解得a=﹣2.故答案为:2,4,﹣2;(2)∵数a的点位于﹣4与2之间,∴|a+4|+|a﹣2|=a+4﹣a+2=6.21.解:(1)(100﹣80)÷80=20÷80=25%20%<25%<50%答:他将受到扣6分的处罚.(2)80×(1+50%)=80×1.5=120(千米/时),答:王叔叔的速度至少达到了120千米/时.22.解:|﹣|,﹣(﹣6)=6,(1)正数集合:{|﹣|,+1.99,﹣(﹣6),,200%,15%…};(2)负数集合:{﹣5,﹣12,﹣3.14 …};(3)整数集合:{﹣5,﹣12,0,﹣(﹣6),200%…};(4)分数集合:{|﹣|,﹣3.14,+1.99,,15%…}.故答案为:|﹣|,+1.99,﹣(﹣6),,200%,15%;﹣5,﹣12,﹣3.14;﹣5,﹣12,0,﹣(﹣6),200%;|﹣|,﹣3.14,+1.99,,15%.23.解:(1)=9+,=1+,=1+,=2,故所生成的自然数组为(9,1,1,2);(2)这个假分数为,理由如下:3=,1+=,4+=,2+=.24.解:(1)若点A 表示数﹣3,将点A 向右移动5个单位长度至点A 1,则点A 1表示的数是﹣3+5=2;(2)若点A 表示数2,将点A 先向左移动7个单位长度,再向右移动个单位长度至点A 2,则点A 2表示的数是2﹣7+=﹣.(3)若将点B 先向左移动3个单位长度,再向右移动6个单位长度,终点表示的数恰好是0.则点B 所表示的数是0﹣6+3=﹣3;(4)点A 1,A 2,B 表示的数按从小到大的顺序排列依次是﹣3<﹣<2. 故答案为:2;﹣;﹣3;﹣3<﹣<2.。
七年级上册数学第一章《有理数》测试题(含答案)人教版 (1)(含知识点)

2020-2021 七年级上册1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334×710人B 、33.4×510人C 、3.34×210人D 、3.34×610人 4、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(- D 、-︱-8︱与+(-8)5、计算(-1)÷(-5)×51的结果是( )A 、-1B 、1C 、251D 、-256、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1×20)mmB 、(0.1×40)mmC 、(0.1×220)mmD 、(0.1×202)mm 二、填空题(5分×4=20)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出15、下面给出了五个有理数.-1.5 6 320 -4(1)将上面各数分别填入相应的集合圈内.正数 负数 (2) 请计算其中的整数的和与分数积的差。
2021年七年级数学上册尖子生同步培优题库(有理数-学生版)
2020-2021学年七年级数学上册尖子生同步培优题典【人教版】专题1.1有理数姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•商河县期末)现实生话中,如果收人100元记作+100元,那么﹣800表示( ) A .支出800元B .收入800元C .支出200元D .收入200元2.(2018秋•广西期中)如果向北走5米记作“+5米”,那么向南走8米记作( ) A .+8米B .﹣8米C .+13米D .﹣3米3.(2019秋•南宁期末)一种巧克力的质量标识为“100±0.5克”,则下列质量合格的是( ) A .95克B .99.8克C .100.6克D .101克4.(2019秋•南京月考)在下列各组中,表示互为相反意义的量的是( ) A .下降的反义词是上升B .羽毛球比赛胜3场与负3场C .增产5吨粮食与减产﹣5吨粮食D .向北走15km 和向西走15km5.(2019秋•石景山区期末)在五个数:①﹣5 ②227③1.3 ④0 ⑤−23中属于分数的是( )A .②⑤B .②③C .②③⑤D .①⑤6.(2019秋•云冈区期末)下列各数:﹣5,1.1010010001…,3.14,227,20%,π3,有理数的个数有( )A .3个B .4个C .5个D .6个7.(2019秋•铁锋区期末)下列说法错误的是( ) A .负整数和负分数统称负有理数 B .正整数,0,负整数统称为整数C .正有理数与负有理数组成全体有理数D .3.14是小数,也是分数8.(2019秋•历下区期中)下列各数中,是负整数的是( ) A .−25B .0C .3D .﹣69.(2019秋•南开区期末)下列语句正确的是( ) A .“+15米”表示向东走15米 B .0℃表示没有温度 C .﹣a 可以表示正数D .0既是正数也是负数10.(2019秋•渝中区校级月考)在下列六个数中:0,π2,−227,0.101001,﹣10%,5213,分数的个数是( ) A .2个 B .3个 C .4个 D .5个二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•皇姑区校级月考)在有理数1.7,﹣17,0,﹣527,﹣0.001,92,2003,3.14,π,﹣1中负分数有 ;自然数有 ;整数有 .12.(2013秋•赛罕区校级月考)有理数中,是整数而不是正数的数是 ,是负数而不是分数的是 . 13.(2019秋•长汀县校级月考)﹣1,0,0.2,17,3,π中正数一共有 个.14.(2019秋•南山区期末)通常在生产图纸上,对每个产品的合格范围有明确的规定.例如,图纸上注明一个零件的直径是φ30±0.020.03,φ30±0.020.03表示这个零件直径的标准尺寸是30mm ,实际产品的直径最大可以是30.03mm ,最小可以是 .15.(2020•云南模拟)若零上8℃记作+8℃,则零下5℃记作 ℃.16.(2020春•甘南县期中)只要是向相反的方向运动,就一定用负数表示. (判断对错)17.(2019秋•宜宾期末)如果上升5m 记作+5m ,那么下降7m ,记作 m ,不升也不降记作 m . 18.(2019秋•西宁期末)最大的负整数是 .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.(2019秋•孝义市期中)把下列各数填入表示它所在的数集的集合里: 3,﹣0.2,0,0.12,−23,﹣500,112,﹣3.1415926,﹣15,0.320.(2019秋•江阴市校级月考)把下列各数填入相应的集合中: ﹣3.14,2π,−13,0.618,227,0,﹣1,6%,+3,3.010010001…(每相邻两个1之间依次多一个0)正数集合{ ……}; 分数集合{ ……}; 有理数集合{ ……}; 非负整数集合{ ……}.21.(2019秋•临洮县期中)把下列各数填在相应的括号内: ﹣19,2.3,﹣12,﹣0.92,35,0,−14,0.563,π正数集合{ …}; 负数集合{ …}; 负分数集合{ …}; 非正整数集合{ …}.22.(2019秋•崇川区校级月考)把下列各数填在相应的大括号内 15,−12,0.81,﹣3,14,﹣3.1,﹣4,171,0,3.14正整数集合{ …} 负整数集合{ …} 整数集合{ …} 分数集合{ …}.23.(2019秋•博白县期中)(1)将下列各数填入相应的圈内:212,5,0,1.5,+2,﹣3.(2)说出这两个圈的重叠部分表示的是什么数的集合: .24.(2019秋•惠安县校级月考)把下列各数填入相应的大括号内: ﹣13.5,2,0,0.128,﹣2.236,3.14,+27,﹣15%,﹣1,227,2613负数集合{ …} 整数集合{ …} 分数集合{ …}。
人教版七年级数学上册第1章《有理数》全章配套习题1.2.2【精选】.docx
1.2.2 数轴能力提升1.在数轴上,原点及原点右边的点表示的数是()A.正数B.整数C.非负数D.非正数2.数轴上的点A与原点距离6个单位长度,则点A表示的数为()A.6或-6B.6C.-6D.3或-33.在数轴上,表示-17的点与表示-10的点之间的距离是()A.27个单位长度B.-27个单位长度C.7个单位长度D.-7个单位长度★4.如图所示,数轴上的点P,O,Q,R,S表示某城市一条大街上的5个公交车站点,现在有一辆公交车距P 站点3 km,距Q站点0.7 km,则这辆公交车的位置在()A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间5.在数轴上,表示数-6,2.1,-,0,-4,3,-3的点中,在原点左边的点有个,表示的点与原点的距离最远.6.点M表示的有理数是-1,点M在数轴上向右移动3个单位长度后到达点N,则点N表示的有理数是.7.数轴上与原点距离小于4的整数点有个.8.在数轴上,与-2所对应的点距离3个单位长度的点所表示的数是.9.有几滴墨水滴在数轴上,根据图中标出的数值,写出墨迹盖住的整数.110.喜羊羊的家、懒羊羊的家、学校与美羊羊的家依次位于一条东西走向的大街上,喜羊羊家位于学校西边30 m处,美羊羊家位于学校东边100 m处,喜羊羊从学校沿这条大街向东走了40 m,接着向西走了100 m到达懒羊羊家,试用数轴表示出喜羊羊家、学校、美羊羊家、懒羊羊家的位置.★11.如图所示,在数轴上有A,B,C三点,请根据数轴回答下列问题:(1)将点B向左移动3个单位长度后,这时三个点所表示的数中哪一个最小?是多少?(2)将点A向右移动4个单位长度后,这时三个点所表示的数中哪一个最大?是多少?(3)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?创新应用★12.如图所示,一只蚂蚁从原点出发,先向右爬行2个单位长度到达点A,再向右爬行3个单位长度到达点B,然后再向左爬行9个单位长度到达点C.(1)写出A,B,C表示的数;(2)实际上,蚂蚁最终是从原点出发向什么方向爬行了几个单位长度?2★13.利用数轴解答,有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品.当他爬到梯子正中1级时,二楼窗口喷出火来,他就往下退了3级,等到火势过去了,他又向上爬了7级,这时屋顶有两块砖掉下来,他又后退了2级,幸好没打着他,他又向上爬了8级,这时他距离梯子最高层还有一级,问这个梯子共有几级?参考答案能力提升1.C在数轴上,原点及原点右边的点表示的数是0和正数.2.A3.C4.D5.4-66.27.7符合条件的点有-3,3,-2,2,-1,1,0,共7个.8.-5或1画出数轴,找出-2表示的点,与该点距离3个单位长度的点有两个,分别表示-5,1.9.分析:从图中可见墨迹盖住两段,一段是在-8~-3之间,另一段在4~9之间.解:-8~-3之间的整数有-4,-5,-6,-7;4~9之间的整数有5,6,7,8.10.解:11.解:(1)点B最小,是-5.(2)点C最大,是3.(3)点B表示的数比点C表示的数大1.创新应用12.解:(1)A表示2,B表示5,C表示-4.(2)实际上,蚂蚁最终是从原点出发向左爬行了4个单位长度.13.解:设梯子正中1级为原点,向上爬的级数为正,后退的级数为负,答案为23级.3。
人教版七年级上册数学 第一章 《有理数》尖子生练习题1(含答案)
人教版七年级上册数学第一章《有理数》尖子生练习题1 1.对数轴上的点P进行如下:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P1,称为完成一次操作,第二次把P1同样操作后得到P2,如此依次操作下去.(1)如图,在数轴上若点A表示的数是﹣3,对点A进行上述一次操作后得到点A′,则点A′表示的数是;对点B进行上述一次操作后得到点B′,点B′表示的数是2,则点B表示的数是;(2)已知数轴上的点E经过上述一次操作后得到的对应点E′,若点E′与点E的距离为3,求点E表示的数;(3)已知数轴上的点E经过上述一次操作后得到的对应点E′与点E重合,求点E表示的数.2.在数轴上,点A表示的数为﹣4,点B表示的数为b(b>0),甲、乙两只蚂蚁同时分别从点A、B出发沿着数轴相向而行,蚂蚁甲的速度是每秒2个长度单位,蚂蚁乙的速度是每秒3个单位长度.若两只蚂蚁均爬到与原点的距离相等且分别位于原点的两侧,请用含有b的式子表示爬行时间t,并结合数轴直接写出b所表示的数的范围(画出相应的示意图).3.数轴上,A点表示的数为10,B点表示的数为﹣6,A点运动的速度为4单位/秒,B点运动的速度为2单位/秒.(1)B点先向右运动2秒,A点在开始向左运动,当他们在C点相遇时,求C点表示的数.(2)A,B两点都向左运动,B点先运动2秒时,A点在开始运动,当A到原点的距离和B到原点距离相等时,求A运动的时间.4.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A,B之间的距离记作|AB|.(1)设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,求x的值;(2)若点P在A的左侧,M,N分别是PA,PB的中点,当点P在A的左侧移动时,式子|PN|﹣|PM|的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.5.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a﹣b﹣c=﹣3,求﹣a+3b﹣(b﹣2c)的值.6.一只蚂蚁从原点O出发,它先向左爬行2个单位长度到达A点,再向左爬行3个单位长度到达B点,再向右爬行8个单位长度到达C点.(1)写出A、B、C三点表示的数,并将它们的位置标注在数轴上;(2)根据C点在数轴上的位置,请回答该蚂蚁实际上是从原点出发向什么方向爬行了几个单位长度?7.如图,一条生产线的流水线上依次有5个机器人,它们站立的位置在数轴上依次用点A1,A 2,A3,A4,A5表示.(1)若原点是零件的供应点,5个机器人分别到达供应点取货的总路程是多少?(2)若将零件的供应点改在A1,A3,A5中的其中一处,并使得5个机器人分别到达供应点取货的总路程最短,你认为应该在哪个点上?通过计算说明理由.8.已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,则x=;(2)若AP+BP=8,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.。
第一章有理数(提分小卷)【单元测试】年七年级数学上册尖子生选拔卷(人教版)(解析版)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第一章 有理数提分小卷(考试时间:50分钟 试卷满分:100分)一、选择题:本题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2021·湖北襄阳市·九年级二模)212æö--ç÷èø的倒数是( )A .-4B .14-C .14D .4【答案】A【分析】根据有理数的乘方和倒数定义计算即可.【详解】解:211=24æö---ç÷èø,14-的倒数为-4;故选:A .【点睛】本题考查了有理数的乘方和倒数的定义,解题关键是明确倒数的定义,熟练运用相关法则进行计算.2.(2020·山西定襄初一期中)数轴的原型来源于生活实际,数轴体现了( )的数学思想,是我们学习和研究有理数的重要工具.A .整体B .方程C .转化D .数形结合【答案】D【分析】因为数轴是解决数的运算的一种重要工具,所以它充分体现了数形结合的思想.【解析】数轴是数学的重要内容之一,它体现的数学思想是数形结合的思想.故选:D【点睛】本题考查几种数学思想,解题的关键是理解数形结合的定义:根据数与形之间的一一对应关系,数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,从而起到优化解题途径的目的.3.(2021·河北唐山市·九年级学业考试)我国第十四个五年规划和2035年远景目标纲要中阐释了“坚持农业农村优先发展,全面推进乡村振兴”的具体目标:坚持最严格的耕地保护制度,实施高标准农田建设工程,建成10.75亿亩集中连片高标准农田,下列关于10.75亿的说法正确的是( )A .10.75亿是精确到亿位B .10.75亿是精确到十亿位C .10.75亿用科学记数法表示为10n a ´,则 1.075a =,9n =D .10.75亿用科学记数法表示为10n a ´,则10.75a =,8n =【答案】C【分析】根据科学记数法与精确度的定义即可判断求解.【详解】10.75亿精确到百万位,用科学记数法表示为91.0710´, 故选C .【点睛】此题主要考查科学记数法的表示,解题的关键是熟知科学记数法与精确度的定义.4.(2021·河北九年级三模)若k 为正整数,则()23k 表示的是( )A .2个3k 相加B .3个2k 相加C .2个3k 相乘D .5个k 相乘【答案】C【分析】根据乘方运算的意义a n 表示n 个a 相乘直接选择,即可得出结论.【详解】解:∵(k 3)2=k 3•k 3,∴(k 3)2表示的是2个(k 3)相乘.故选:C .【点睛】本题考查了乘方的意义,牢记a n 表示n 个a 相乘是解题的关键.5.(2021·四川成都市·棠湖中学外语实验学校)给出下列等式:①()()()1236-´-´-=;②()()3694-¸-=-;③()2931342æö´-¸-=ç÷èø;④()4-¸()12162´-=.其中正确的个数是()A .4B .3C .2D .1【答案】C【分析】①()()()123-´-´-按有理数的乘法法则计算即可;②()()369-¸-按有理数的除法法则计算即可;③()29134æö´-¸-ç÷èø先算乘法再算除法即可;④()1422-¸´-先算除法再算乘法即可.【详解】①()()()1236-´-´-=-,故错误;②()()3694-¸-=,故错误;③()2931342æö´-¸-=ç÷èø,故正确;④()142162-¸´-=,故正确.∴正确的个数为2.故选择:C .【点睛】本题考查有理数乘除混合运算,掌握有理数乘除法的运算顺序,它们是同级运算,从左向右进行计算是解题关键.6.(2021·广西南宁市·七年级期中)若|2|2a a -=-,则a 的范围( )A .2a £B .2a >C .2a <D .2a ³【答案】A【分析】利用绝对值的意义得到20a -£,然后解不等式即可.【详解】解:∵22a a -=-,∴20a -£,∴2a £.故选:A .【点睛】本题考查了绝对值的化简,熟练掌握绝对值分类化简的标准是解题的关键.7.(2021·湖北省初一期中)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A .1,2B .1,3C .4,2D .4,3【答案】A分析:通过猜想得出数据,再代入看看是否符合即可.【解析】一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.8.(2021·四川省内江市第六中学七年级开学考试)定义一种关于整数n 的“F ”运算:(1)当n 是奇数时,结果为35n +;(2)当n 是偶数时,结果是2k n (其中k 是使2k n 是奇数的正整数),并且运算重复进行.例如:取58n =,第一次经F 运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74¼;若9n =,则第2017次运算结果是( )A .1B .2C .7D .8【答案】D【分析】由题意所给的定义新运算可得当9n =时,第一次经F 运算是32,第二次经F 运算是1,第三次经F 运算是8,第四次经F 运算是1¼,由此规律可进行求解.【详解】解:由题意9n =时,第一次经F 运算是32,第二次经F 运算是1,第三次经F 运算是8,第四次经F 运算是1¼;以后出现1、8循环,奇数次是8,偶数次是1,\第2017次运算结果8,故选:D .【点睛】本题主要考查有理数混合运算的应用,关键是从题中所给新运算得出数字的一般规律,然后可进行求解.9.(2021·湖南张家界市·七年级期末)概念学习:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等,类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”, (-3)÷(-3)÷(-3)÷(-3)记作(-3)4,读作“-3的4次商”.一般地,我们把n 个a (a ≠0)相除记作a n ,读作“a 的n 次商”.根据所学概念,则(-4)5的值是( )A .164-B .164C .116-D .116【答案】A【分析】利用题中的新定义计算即可求出值.【详解】解:根据题意得:(-4)5=(-4)÷(-4)÷(-4)÷(-4)÷(-4)=1÷(-4)÷(-4)÷(-4),= 1×(-14)×(-14)×(- 14)=164-,故选:A .【点睛】此题考查了有理数的乘除法,熟练掌握运算法则是解本题的关键.10.(2021·西安同仁中学初三模拟)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ´+´+´+´.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125´+´+´+´=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .【答案】B【分析】根据班级序号的计算方法一一进行计算即可.【解析】A. 第一行数字从左到右依次为1,0,1,0,序号为32101202120210´+´+´+´=,表示该生为10班学生.B. 第一行数字从左到右依次为0,1, 1,0,序号为3210021212026´+´+´+´=,表示该生为6班学生.C. 第一行数字从左到右依次为1,0,0,1,序号为3210120202129´+´+´+´=,表示该生为9班学生.D. 第一行数字从左到右依次为0,1,1,1,序号为3210021212127´+´+´+´=,表示该生为7班学生.故选B.【点睛】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.二、填空题:本题共5个小题,每题4分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章《有理数》尖子生训练题
一.选择题
1.我市有一天的最高气温为5℃,最低气温为﹣4℃,则这天的最高气温比最低气温高()A.9℃B.4℃C.﹣4℃D.﹣9℃
2.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()
A.47.24×109B.4.724×109C.4.724×105D.472.4×105
3.计算﹣4×(﹣2)的结果等于()
A.12 B.﹣12 C.8 D.﹣8
4.﹣6的绝对值是()
A.﹣6 B.6 C.﹣D.
5.如图,点O为数轴的原点,若点A表示的数是﹣1,则点B表示的数是()
A.﹣5 B.﹣3 C.3 D.4
6.已知:x是正整数,且是假分数,是真分数,则x等于()A.14 B.15 C.14或15 D.15或16
7.下列各数:﹣5,1.1010010001…,3.14,,20%,,有理数的个数有()A.3个B.4个C.5个D.6个
8.下列说法:①﹣a是负数;②﹣2的倒数是;③﹣(﹣3)的相反数是﹣3;④绝对值等于2的数2.其中正确的是()
A.1个B.2个C.3个D.4个
9.﹣12020=()
A.1 B.﹣1 C.2020 D.﹣2020
10.已知a、b、c在数轴上对应的点如图所示,则代数式|﹣a|﹣|b﹣a|+|c﹣a|化简后的结果为()
A.﹣a﹣b+c B.3a﹣b+c C.2a﹣b+c D.a﹣b﹣c
二.填空题
11.根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为.
12.比较大小:﹣(﹣)﹣|﹣|(横线上填“<”、“>”).
13.数轴上点A,B,C对应的数分别为a,b,c,若a<b<c,|a|>|b|>|c|(ac<0),D,E分别是AB,BC的中点,点F与点D对应的数互为相反数,P点数轴上一动点,则PC+PE+PF 的最小值为.(用含a,b,c的式子表示)
14.在数轴上,数a对应的点距离﹣3的点5个单位长度,若b是a的相反数,c是最大的负整数,则的值是.
15.已知|a|=6,|b|=2,且a<0,b>0,那么a+b的值为.
三.解答题
16.计算下列各题:
(1)6+(﹣14)﹣(﹣39);
(2)﹣7﹣(﹣11)+(﹣9)﹣(+2);
(3)20.36+(﹣1.4)+(﹣13.36)+1.4;
(4)(+3)+(﹣2)﹣(﹣5)+(﹣).
17.若有a,b两个数,满足关系式a+b=ab﹣1,则称a.b为“共生数对“,记作(a,b).例如:当2,3满足2+3=2×3﹣1时,则(2,3)是“共生数对“.
(I)若(x,﹣3)是“共生数对“,求x的值:
(2)若(m,n)是“共生数对“,判断(n,m)是否也是“共生数对“,请通过计算说明:
(3)请再写出两个不同的“共生数对”.
18.解答下列各题
(1)请把下列各数填入相应的集合中
正分数集合:{ }:
整数集合:{ }:
负数集合:{ }
(2)在数轴上表示(1)中负数集合中各数(标在数轴上方),并用“<”号连接
19.若用点A、B、C分别表示有理数a、b、c如图:
(1)判断下列各式的符号:a+b0;c﹣b0;c﹣a0
(2)化简|a+b|﹣|c﹣b|﹣|c﹣a|
20.一辆货车从仓库出发去送货,向东走了2千米到达超市A,继续向东走了2.5千米到达超市B,然后向西走了8.5千米到达超市C,继续向西走了5千米到达超市D,此时发现车上还有距离仓库仅1千米的超市E的货还未送,于是开往超市E,最后回到仓库.(1)超市C在仓库的东面还是西面?距离仓库多远?
(2)超市B距超市D多远?
(3)如果货车每千米耗油0.08升,那么货车在这次送货中共耗油多少升?
21.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:
与标准质量的差值(单位:千克)﹣3 ﹣2 ﹣1.5 0 1 2.5 筐数 2 4 2 3 3 6 (1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?
(2)与标准重量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价1.6元,则出售这20筐白菜可卖多少元?(结果保留整数)
参考答案
一.选择
1.解:5﹣(﹣4)=5+4=9℃.
故选:A.
2.解:47.24亿=4724 000 000=4.724×109.
故选:B.
3.解:原式=4×2=8.
故选:C.
4.解:负数的绝对值等于它的相反数,所以﹣6的绝对值是6.故选:B.
5.解:点B在原点的右侧,且到原点3个单位长度,因此点B表示的数为3,故选:C.
6.解:∵是假分数,是真分数,
∴14≤x<16,
∵x是正整数,
∴x=14或15,
故选:C.
7.解:有理数有﹣5,3.14,,20%共4个.
故选:B.
8.解:①﹣a不一定是负数,错误;
②﹣2的倒数是,正确;
③﹣(﹣3)的相反数是﹣3,正确;
④绝对值等于2的数是±2,错误;
故选:B.
9.解:﹣12020=﹣1.
故选:B.
10.解:根据a、b、c在数轴上的位置可知,
a<0,b﹣a>0,c﹣a>0,
∴|﹣a|﹣|b﹣a|+|c﹣a|=﹣a﹣(b﹣a)+(c﹣a)=﹣a﹣b+a+c﹣a=﹣a﹣b+c,故选:A.
二.填空题(共5小题)
11.解:4400000000=4.4×109.
故答案为:4.4×109
12.解:﹣(﹣)=,﹣|﹣|=,
∴﹣(﹣)>﹣|﹣|,
故答案为:>
13.解:∵ac<0,a<b<c,
∴c>0,a<0,
∵D、E是AB、BC的中点,
∴D所表示的数为,E所表示的数为,
∵点F与点D对应的数互为相反数,
∴点F所表示的数为﹣,
当P在点C上时,PC+PE+PF最小,就是EF,
EF=﹣﹣=﹣.
故答案为:﹣.
14.解:根据题意得:a=﹣8或2,b=8或﹣2,c=﹣1,
当a=﹣8,b=8,c=﹣1时,原式=16;
当a=2,b=﹣2,c=﹣1时,原式=﹣4,
故答案为:﹣4或16
15.解:∵|a|=6,|b|=2,
∴a=±6,b=±2;
∵a<0,b>0,
∴a=﹣6,b=2,
∴a+b=﹣6+2=﹣4.
故答案为:﹣4.
三.解答题(共6小题)
16.解:(1)原式=﹣8+39=31;
(2)原式=﹣7+11﹣9﹣2=﹣7;
(3)原式=(20.36﹣13.36)+(1.4﹣1.4)=7+0=7;
(4)原式==9﹣3=6.
17.解:(1)∵(x,﹣3)是“共生数对”,
∴x﹣3=﹣3x﹣1,
解得:x=;
(2)(n,m)也是“共生数对”,
理由:∵(m,n)是“共生数对”,
∴m+n=m﹣1,
∴n+m=m+n=mn﹣1=nm﹣1,
∴(n,m)也是“共生数对”;
(3)由a+b=ab﹣1,得b=,
若a=3时,b=2;若a=﹣1时,b=0,
∴(3,2)和(﹣1,0)是“共生数对”
18.解:(1)正分数集合:{,3.25……}:
整数集合:{﹣2,0……}:
负数集合:{﹣2,﹣3.8,﹣……},
故答案为:,3.25……;﹣2,0……;:﹣2,﹣3.8,﹣……;
(2)如图:
,
﹣3.8<﹣2<﹣.
19.解:(1)a+b<0,c﹣b<0,c﹣a>0.
故答案为:<,<,>;
(2)|a+b|﹣|c﹣b|﹣|c﹣a|
=﹣(a+b)+(c﹣b)﹣(c﹣a)
=﹣a﹣b+c﹣b﹣c+a
=﹣2b.
20.解:如图所示:
(1)由图可知超市C在仓库西面,设点C对应的数为x,∵到达A、B两超市对应的数分别为2,4.5,
∴4.5﹣x=8.5,
解得:x=4,
∴CO=|x|=|4|=4,
∴距离仓库4km;
(2)设点D在数轴上对应的数为y,则有,
﹣4﹣y=5,
解得:y=﹣9,
∴BD=|y﹣4.5|=|﹣9﹣4.5|=13.5,
∴超市B距超市13.5km;
(3)点E的位置有两种情况:
①若点E在仓库的东边,货车从点D到点E的距离为10,
则货车所走的路程为:
|+2|+|+2.5|+|﹣8.5|+|﹣5|+|+10|+|﹣1|=29km,
又∵货车每千米耗油0.08升,
∴货车在这次送货中共耗油:29×0.08=2.32(L),
②若点E在仓库的西边,货车从点D到点E的距离为8,
则货车所走的路程为:
|+2|+|+2.5|+|﹣8.5|+|﹣5|+|8|+|+1|=27km,
又∵货车每千米耗油0.08升,
∴货车在这次送货中共耗油:27×0.08=2.16(L),
综合所述:货车在这次送货中共耗油2.16升或2.32升.
21.解:(1)最重的一筐比最轻的一筐多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20筐白菜中,最重的一筐比最轻的一筐多重5.5千克;
(2)﹣3×2+(﹣2)×4+(﹣1.5)×2+0×3+1×3+2.5×6=1(千克),
答:20筐白菜总计超过1千克;
(3)(25×20+1)×1.6=501×1.6≈802(元),
答:白菜每千克售价1.6元,则出售这20筐白菜可卖802元.。