工程数学--微分方程
工程数学包括什么内容

工程数学是好几门数学的总称。
工科专业的学生大一学了高数后。
就要根据自己的专业学“积分变换”,“复变函数”“线性代数”“概率论”“场论”等数学,这些都属工程数学。
1如何建立数学模型:矢量代数,矢量分析,张量分析
矩阵代数,矩阵分析
解析几何,微分几何
泛函分析,变分法
常微分方程,偏微分方程
最优化方法
图和网络模型
随机数学(概率,统计,随机过程)
计算智能(ANN,GA,SVM等)模型
模式识别,机器学习,数据挖掘
2如何解数学模型:计算线性代数,线性规划,数值分析
非线性问题数值解(非线性方程组,非线性函数最小化,非线性最小二乘法)
复变函数
微分方程的边值问题,初值问题
组合优化,图论算法
计算几何
学习的关键在于实践,在于将几何,分析,代数的思想融会贯通。
片面的追求知识面,其对实际工作的效用不会太大。
相反,把一些关键的思想贯通,则可收到触类旁通之效。
3. 计算/建模/仿真工具Matlab
Mathematica
Maple
Netlib
NEOS。
工程数学试题A及答案

工程数学试题A及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^3 - 3x^2 + 2 \)的导数是:A. \( 3x^2 - 6x \)B. \( 3x^2 - 6x + 2 \)C. \( x^3 - 3x^2 + 2 \)D. \( 3x^2 - 6x + 3 \)答案:A2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. \( \pi \)D. \( \infty \)答案:B3. 函数\( y = e^x \)的不定积分是:A. \( e^x + C \)B. \( \ln x + C \)C. \( x e^x + C \)D. \( \frac{1}{x} + C \)答案:A4. 微分方程\( y' + 2y = 0 \)的通解是:A. \( y = Ce^{-2x} \)B. \( y = Ce^{2x} \)C. \( y = C\sin(2x) \)D. \( y = C\cos(2x) \)答案:A5. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是:A. 5B. -2C. 2D. -5答案:B6. 函数\( f(x) = x^2 \)在区间\( [1, 2] \)上的定积分是:A. 1B. 2C. 3D. 4答案:C7. 函数\( y = \ln x \)的二阶导数是:A. \( \frac{1}{x^2} \)B. \( \frac{1}{x} \)C. \( x \)D. \( x^2 \)答案:A8. 矩阵\( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)的逆矩阵是:A. \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)B. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)D. \( \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \)答案:C9. 函数\( y = x^3 \)的不定积分是:A. \( \frac{x^4}{4} + C \)B. \( \frac{x^3}{3} + C \)C. \( \frac{x^2}{2} + C \)D. \( \frac{x}{3} + C \)答案:B10. 函数\( y = \sin x \)的不定积分是:A. \( \cos x + C \)B. \( \sin x + C \)C. \( -\cos x + C \)D. \( -\sin x + C \)答案:A二、填空题(每题4分,共20分)1. 函数\( f(x) = x^2 - 4x + 4 \)的极小值点是 \( x =\_\_\_\_\_ \)。
工程数学本科试题及答案

工程数学本科试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是微分方程 \( y'' - y' - 2y = e^{2x} \) 的一个解?A. \( y = e^{-x} \)B. \( y = e^{2x} \)C. \( y = e^{x} \)D. \( y = e^{3x} \)2. 在复数域中,下列哪个表达式是正确的?A. \( |z|^2 = z \cdot \bar{z} \)B. \( |z|^2 = z + \bar{z} \)C. \( |z|^2 = z - \bar{z} \)D. \( |z|^2 = z / \bar{z} \)3. 对于向量 \( \mathbf{A} = (2, -3, 4) \) 和 \( \mathbf{B} = (1, 2, -1) \),它们的点积 \( \mathbf{A} \cdot \mathbf{B} \) 等于:A. 1B. 2C. 3D. 54. 在 \( z = x^2 + y^2 \) 中,如果 \( \frac{\partialz}{\partial x} = 2x \),那么 \( \frac{\partial z}{\partial y} \) 等于:A. \( 2y \)B. \( -2y \)C. \( 2x \)D. \( -2x \)5. 一个函数 \( f(x) \) 在点 \( x = a \) 处连续的充分必要条件是:A. \( \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \)B. \( \lim_{x \to a} f(x) = f(a) \)C. \( f(a) \) 存在D. \( f(x) \) 在 \( x = a \) 处可导6. 微分方程 \( y' = y^2 \) 的解的形式是:A. \( y = Ce^x \)B. \( y = \frac{1}{Ce^x + 1} \)C. \( y = Ce^{-x} \)D. \( y = \frac{1}{Cx + 1} \)7. 傅里叶级数中的 \( a_n \) 系数是由以下哪个积分计算得出的?A. \( a_n = \frac{2}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)B. \( a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)C. \( a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)D. \( a_n = \frac{1}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)8. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( |A| \) 等于:A. 7B. 2C. 1D. -29. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的零点个数是:A. 1B. 2C. 3D. 410. 拉普拉斯变换 \( \mathcal{L} \{ f(t) \} \) 的定义是:A. \( \mathcal{L} \{ f(t) \} = \int_{0}^{\infty} e^{-st} f(t) dt \)B. \( \mathcal{L} \{ f(t) \} = \int_{-\infty}^{\infty} e^{-st} f(t) dt \)C. \( \mathcal。
高等工程数学难度排名

高等工程数学难度排名
高等工程数学的难度排名可能因人而异,但通常来说,以下是高等工程数学中一些科目的难度排名:
1. 微积分:作为高等工程数学的基础,微积分的难度相对较低,但概念较多,需要理解和运用。
2. 线性代数:线性代数的概念相对抽象,但难度适中,掌握了基本概念和方法后,可以轻松应对。
3. 概率论与数理统计:概率论与数理统计的难度相对较高,需要对概念有深入的理解,并能熟练运用各种概率分布和统计方法。
4. 微分方程:微分方程涉及到函数的导数和微分,以及各种类型的方程,难度相对较高。
需要注意的是,以上排名并不是绝对的,难度也与个人基础和兴趣有关。
在学习高等工程数学时,需要耐心和努力,多做练习和思考,才能掌握好这些科目。
工程数知识点总结

工程数知识点总结工程数学是工程领域中的一门基础学科,它是数学的一个分支,旨在为工程问题建立数学模型,并使用数学方法解决工程中的问题。
工程数学的研究内容非常广泛,包括微积分、线性代数、概率统计、离散数学等多个方面的知识。
本文将从工程数学的基本概念和基本原理出发,系统地介绍工程数学的各个知识点。
一、微积分微积分是工程数学中最重要的一个分支,它是研究函数的极限、导数、积分和级数的数学方法。
在工程领域中,微积分被广泛应用于求解各种问题,包括曲线的长度、曲线下面积、物体的体积和表面积、动力学分析、电路分析等。
因此,对微积分的学习是工程学生的必修课程。
1.1 函数的极限与连续性几乎所有的微积分知识都是建立在函数的极限和连续性基础上的。
函数的极限是描述函数在某一点附近的变化趋势,它是微积分的基本概念。
函数在某一点处的极限存在的充分必要条件是函数在该点处连续。
因此,函数的连续性也是微积分中的重要内容。
1.2 导数与微分导数是描述函数在某一点处的变化率,它是微积分的重要概念。
在工程中,导数被广泛应用于求解问题的最优解,如最小化成本、最大化收益等。
微分是导数的一种近似表达,它被应用在函数近似和微分方程的求解中。
1.3 积分与不定积分积分是描述函数下方的面积,它是微积分的另一重要概念。
在工程领域中,积分被广泛应用于求解曲线下的面积、物体的体积和表面积等。
不定积分是积分的一种形式,它是积分的反运算,常用于求解不定积分方程。
1.4 微分方程微分方程是描述自变量和因变量及其导数之间关系的方程,它是微积分在实际问题中的应用。
在工程领域中,微分方程被广泛应用于描述动力学系统、电路系统、热传导系统、弹性系统等,因此它是工程数学中非常重要的知识点。
二、线性代数线性代数是研究向量空间和线性变换的数学方法,它是工程数学中的另一个重要分支。
在工程问题中,线性代数被广泛应用于解决线性方程组、矩阵运算、特征值和特征向量等问题,因此对线性代数的学习也是工程学生的必修课程。
大学数学类专业课程大全

大学数学类专业课程大全一、高等数学1. 微积分微积分是数学中最基础的一门课程,通过学习微积分可以更好地理解函数、极限、导数、积分等概念。
2. 线性代数线性代数是一门关于线性方程组、行列式、向量空间与线性变换等内容的课程,其在几何学、计算机科学、物理学等领域都有广泛的应用。
3. 概率论与数理统计概率论与数理统计是一门基础课程,其通过介绍随机事件、随机变量、概率分布、统计推断等概念,让学生深入了解随机性的规律与应用。
二、工程数学1. 工程数学分析工程数学分析是一门介绍基本数学概念,如极限、连续性、微积分等内容,并通过实例让学生了解这些概念在工程领域的应用。
2. 微分方程微分方程是一门介绍微分方程理论与方法的课程,内容包括常微分方程、偏微分方程、数值方法等,并讲授微分方程在工科和自然科学中的应用。
3. 数值计算方法数值计算方法是一门计算数学的课程,其重点介绍各种数值算法,如数值积分、数值解线性方程组、非线性方程组、微分方程初值问题、边值问题等。
三、应用数学1. 微分几何微分几何是一门介绍流形、张量场、黎曼流形等内容,并讨论这些概念在物理和工程中的应用。
2. 数学建模数学建模是一门将数学理论与实际问题相结合的课程,其内容包括数据收集、分析、建模、验证及方案评估等。
3. 图论与组合优化图论与组合最优化是一门介绍图论、组合优化、算法设计、计算复杂性等概念的课程,重点讲解在领域和工程中的应用。
四、统计学1. 因子分析与聚类分析因子分析与聚类分析是一门介绍统计模型和分析方法的课程,包括因子分析、聚类分析、判别分析等相关概念和方法,这些方法都广泛应用于数据分析和统计处理。
2. 时间序列分析时间序列分析是一门介绍时间序列概念、程序方法、模型检验等方法的课程,这些方法广泛应用于金融、宏观经济和自然灾害等领域。
3. 非参数统计非参数统计是一门介绍绝对差、秩、核估计、分位数等方法的课程,这些方法广泛应用于数据分析和统计推断。
工程数学作业3参考答案

工程数学作业3参考答案工程数学作业3参考答案在工程数学中,作业是帮助学生巩固所学知识的重要环节。
作业3是一个综合性较强的作业,涉及到多个概念和技巧。
本文将为大家提供一份参考答案,帮助大家更好地理解和掌握工程数学的相关内容。
1. 题目一:求解微分方程给定微分方程 dy/dx = 2x,求解其通解。
解答:首先将方程分离变量,得到 dy = 2x dx。
然后对两边同时积分,得到∫dy = ∫2x dx。
对右边进行积分,得到 y = x^2 + C,其中C为常数。
所以方程的通解为 y = x^2 + C。
2. 题目二:求解线性方程组给定线性方程组:2x + 3y = 54x + 6y = 10求解该线性方程组的解。
解答:首先将方程组写成增广矩阵的形式:[2 3 | 5][4 6 | 10]然后对增广矩阵进行行变换,目标是将矩阵化简为上三角形式。
通过第一行乘以2再减去第二行,得到新的矩阵:[2 3 | 5][0 0 | 0]由于第二行全为0,说明该线性方程组有无穷多个解。
我们可以令x = t,其中t 为任意实数,然后代入第一行方程求解y。
所以该线性方程组的解为:x = ty = (5 - 2t)/33. 题目三:求解极限求极限 lim(x->0) [(sinx)/x]。
解答:将极限表达式化简为不定型,得到 lim(x->0) [(sinx)/x] = 1。
这是一个常见的极限结果,被称为正弦函数的极限。
4. 题目四:求解定积分求解定积分∫(0 to π/2) sinx dx。
解答:对于这个定积分,可以直接使用定积分的性质进行求解。
根据定积分的定义,我们有∫(0 to π/2) sinx dx = [-cosx] (0 to π/2) = -cos(π/2) - (-cos(0)) =-1 - (-1) = 0。
5. 题目五:求解常微分方程的特解给定常微分方程 y'' - 4y' + 4y = 0,求解其特解。
自考工程数学试题及答案

自考工程数学试题及答案一、选择题(每题2分,共10分)1. 下列函数在x=0处不可导的是()。
A. y = x^2B. y = |x|C. y = sin(x)D. y = e^x2. 微分方程dy/dx + 2y = 3x的通解中,若y(0)=1,则y(x)为()。
A. y = (3/2)x - (1/2)x^2 + 1B. y = (3/2)x + (1/2)x^2 + 1C. y = (3/2)x - (1/2)x^2D. y = (3/2)x + (1/2)x^23. 若矩阵A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},则矩阵A的特征值为()。
A. 1, -1B. 5, 3C. 2, 3D. 5, -34. 在概率论中,随机变量X服从二项分布B(n, p),若n=10,p=0.1,则P(X=2)为()。
A. 0.0456B. 0.0486C. 0.0554D. 0.04865. 利用傅里叶变换求解偏微分方程时,通常需要满足的充分条件是()。
A. 函数在无穷远处趋于零B. 函数在有限区间内连续C. 函数在整个实数域上可积D. 函数及其所有导数在无穷远处连续二、填空题(每题3分,共15分)1. 若函数f(x) = ∫(0, x) e^t dt,则f'(x) = ____________。
2. 向量v = \begin{bmatrix} 2 \\ -1 \end{bmatrix}和向量w = \begin{bmatrix} 3 \\ 4 \end{bmatrix}的点积为 ____________。
3. 若随机变量X服从正态分布N(μ, σ^2),则其期望E(X) =____________。
4. 函数y = ln(x^2 + 1)的最小值是 ____________。
5. 若矩阵B是矩阵A的逆矩阵,则AB = ____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
範圍: (Chaps.1-5)
1/2, 1/4 1/9 Finals 範圍: (Chaps. 6, 7, 11, 12, 14)
課程大綱
Introduction (Chap. 1) First Order DE 解法 (Chap. 2) 應用 (Chap. 3) 解法 (Chap. 4) Higher Order DE 應用 (Chap. 5) 多項式解法 (Chap. 6) Partial DE (Chap. 12) Laplace Transform (Chap. 7) Transforms Fourier Series (Chap. 11) Fourier Transform (Chap. 14)
an x d y3 dx
n n
a n 1 x
d
Hale Waihona Puke n 1y3dx
n 1
a1 x
dy3 dx
a 0 x y 3 b g 1 x cg 2 x
11
(6) Non-Linear Differentiation Equation
Example 2
5
6
Chapter 1 Introduction to Differential Equations
1.1 Definitions and Terminology (術語)
(1)Differential Equation (DE): any equation containing derivation (page 2, definition 1.1)
d
n 1
y1
dx d
n 1
a1 x a1 x
d y1 dx dy2 dx
a 0 x y1 g 1 x a0 x y2 g 2 x
d y2 dx
n
n 1
y2
dx
n 1
and y3 = by1 + cy2, then
1
工程數學--微分方程 Differential Equations (DE)
授課者:丁建均
教學網頁:.tw/DE.htm (請上課前來這個網站將講義印好)
歡迎大家來修課!
2
授課者:丁建均
Office: 明達館723室, TEL: 33669652 Office hour: 星期三下午 1:00~5:00 個人網頁:.tw/ E-mail: djj@.tw, 上課時間: 星期三 第 3, 4 節 (AM 10:20~12:10) 星期五 第 2 節 (AM 9:10~10:00) 上課地點: 電二143 課本: "Differential Equations-with Boundary-Value Problem", 7th edition, Dennis G. Zill and Michael R. Cullen 評分方式:四次作業一次小考 10%, 期中考 45%, 期末考 45%
dy dx dy dx 1 1
and y(0) = 2
y = x+2
and y(2) =3.5
y = x+1.5
14
The kth order differential equation usually requires k initial conditions (or k boundary conditions) to obtain the unique solution.
d A (t ) dt
2 2
2
d A (t ) dt
1
18
Review
• dependent variable and independent variable
• DE
• PDE and ODE
• Order of DE • linear DE and nonlinear DE
• explicit solution and implicit solution
上課日期
Week Number 1. Date (Wednesday, Friday)
9/12, 9/14
4
Remark
2.
3. 4. 5.
9/19, 9/21
9/26, 9/28 10/3, 10/5 10/12
10/10 國慶
6.
7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
• initial value • IVP
19
Chapter 2 First Order Differential Equation
2-1 Solution Curves without a Solution
Instead of using analytic methods, the DE can be solved by graphs (圖解) slopes and the field directions: y-axis
a0 x y g x
All the coefficient terms are independent of y. Property of linear differentiation equations: If a n x
an x d y1 dx
n n n
a n 1 x a n 1 x
dy ( x) dx
1
x:
independent variable 自變數
y(x): dependent variable 應變數
d f (x) dx
3 3
x 0
sin ( 2 t ) f ( t ) d t
g x
7
• Note: In the text book, f(x) is often simplified as f
10/17, 10/19
10/24, 10/26 10/31, 11/2 11/7: Midterm; (Chaps.1-5), 11/9 11/14, 11/16 11/21, 11/23 11/28, 11/30 12/5, 12/7 12/12, 12/14 12/19, 12/21 12/26, 12/28
( y 3)
2
d y dx
2
2
dy dx
2
2y x
d y dx
2 2
dy dx
y e
x
d y dx
2
dy dx
e e
y
x
12
(7) Explicit Solution (page 6) The solution is expressed as y = (x) (8) Implicit Solution (page 7)
(x0, y0)
dy dx f
x, y
the slope is f(x0, y0)
x-axis
20
Example 1
dy/dx = 0.2xy
資料來源: Fig. 2-1-3(a) in “Differential Equations-with BoundaryValue Problem”, 8th ed., Dennis G. Zill and Michael R. Cullen.
• notations of differentiation
df dx
d f
2
d f
3
d f
4
, ,
dx
2
, ,
dx
3
, ,
dx
4
, ………. , ……….
Leibniz notation prime notation
f
f
f
f
(4)
f
fx
,
,
f
f xx
,
,
f
f xxx
,
,
f
f xxxx
, ……….
, ……….
dot notation
subscript notation
8
(2) Ordinary Differential Equation (ODE): differentiation with respect to one independent variable
u 0
7th order
d y dx
2
2
5
dy dx
4y e
x
2nd order
10
(5) Linear Differentiation Equation:
an x d y dx
n n
a n 1 x
d
n 1
y
dx
n 1
a1 x
dy dx
d u dx
3 3
d u dx
2
2
du dx
c o s(6 x ) u 0
dx dt
dy dt
dz dt
2 xy z
(3) Partial Differential Equation (PDE):
differentiation with respect to two or more independent variables
For the kth order differential equation, the initial conditions can be 0th ~ (k–1)th derivatives at some points.
15
1.3 Differential Equations as Mathematical Model