2016年高考数学复习专题14计数原理与概率统计排列与组合备考策略

合集下载

2016高考总复习课件高中数学 第九章 计数原理、概率、随机变量及其分布 第2讲 排列与组合

2016高考总复习课件高中数学 第九章 计数原理、概率、随机变量及其分布 第2讲 排列与组合
栏目 第十九页,编辑于星期六:点 十九导分。引
第九章 计算原理、概率、随机变量及其分布
(2)男生甲和女生乙入选,即只要再从除男生甲和女生乙外 的 10 人中任选 3 名即可,共有 C22C310=120(种)选法. (3)间接法:“男生甲、女生乙至少有一个人入选”的反面 是“两人都不入选”,即从其余 10 人中任选 5 人有 C510种 选法,所以“男生甲、女生乙至少有一个人入选”的选法 数为 C512-C510=540(种).
栏目 第十五页,编及其分布
[规律方法] 求解排列应用题的主要方法
直接法 优先法
捆绑法
把符合条件的排列数直接列式计算
优先安排特殊元素或特殊位置 把相邻元素看作一个整体与其他元素一起排列, 同时注意捆绑元素的内部排列
插空法
对不相邻问题,先考虑不受限制的元素的排 列,再将不相邻的元素插在前面元素排列的 空档中
第九章 计算原理、概率、随机变量及其分布
[做一做]
3.(2014·高考大纲全国卷)有 6 名男医生、5 名女医生,从
中选出 2 名男医生、1 名女医生组成一个医疗小组,则不同
的选法共有( C )
A.60 种
B.70 种
C.75 种
D.150 种
解析:由题意知,选 2 名男医生、1 名女医生的方法有 C26C51
第九章 计算原理、概率、随机变量及其分布
考点二 组合应用题 要从 5 名女生,7 名男生中选出 5 名代表,按下列要
求,分别有多少种不同的选法? (1)至少有 1 名女生入选; (2)男生甲和女生乙入选; (3)男生甲、女生乙至少有一个人入选.
栏目 第十八页,编辑于星期六:点 十九导分。引
第九章 计算原理、概率、随机变量及其分布

排列组合二项式定理与概率及统计

排列组合二项式定理与概率及统计

排列组合二项式定理与概率及统计一、复习策略排列与组合是高中数学中从内容到方法都比较专门的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题都有专门性,概念性强,抽象性强,思维方法新颖,解题过程极易犯〝重复〞或〝遗漏〞的错误,同时结果数目较大,无法一一检验,因此给考生带来一定困难.解决问题的关键是加深对概念的明白得,把握知识的内在联系和区别,科学周全的摸索、分析问题.二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点.概率那么是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意差不多概念的明白得,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律.纵观近几年高考,排列、组合、二项式定理几乎每年必考,考题多以选择题、填空题显现,题小而灵活,涉及知识点都在两三个左右,综合运用排列组合知识,分类计数和分步计数原理;二项式定理及二项式系数的性质运算或论证一些较简单而有味的小题也在高考题中常见,概率及概率统计的内容,从近几年新课程卷高考来看,每年都有一道解答题,占12分左右.排列与组合的应用题,是高考常见题型,其中要紧考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足专门元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足专门位置的要求,再考虑其他位置.(3)先不考虑附加条件,运算出排列或组合数,再减去不符合要求的排列数或组合数.〔4〕某些元素要求必须相邻时,能够先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为〝捆绑法〞;〔5〕某些元素不相邻排列时,能够先排其他元素,再将这些不相邻元素插入空挡,这种方法称为〝插空法〞;在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理依旧分步计数原理;(3)分析题目条件,幸免〝选取〞时重复和遗漏;(4)列出式子运算和作答.二、典例剖析题型一:排列组合应用题解决此类问题的方法是:直截了当法,先考虑专门元素〔或专门位置〕,再考虑其他元素〔或位置〕;间接法,所有排法中减去不合要求的排法数;关于复杂的应用题,要合理设计解题步骤,一样是先分组,后分步,要求不重不漏,符合条件.例1、〔08安徽理12〕12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,假设其他人的相对顺序不变,那么不同调整方法的种数是〔〕A.B.C.D.解:从后排8人中选2人共种选法,这2人插入前排4人中且保证前排人的顺序不变,那么先从4人中的5个空挡插入一人,有5种插法;余下的一人那么要插入前排5人的空挡,有6种插法,故为;综上知选C.例2、〔08湖北理6〕将5名理想者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名理想者的方案种数为〔〕A.540B.300C.180D.150解:将5分成满足题意的3份有1,1,3与2,2,1两种,因此共有种方案,故D正确.例3、四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为〔〕A.96B.48C.24D.0解:由题意分析,如图,先把标号为1,2,3,4号化工产品分别放入①②③④4个仓库内共有种放法;再把标号为5,6,7,8号化工产品对应按要求安全存放:7放入①,8放入②,5放入③,6放入④;或者6放入①,7放入②,8放入③,5放入④;两种放法.综上所述:共有种放法.应选B.例4、在正方体中,过任意两个顶点的直线中成异面直线的有____________对.解法一:连成两条异面直线需要4个点,因此在正方体8个顶点中任取4个点有种取法.每4个点可分共面和不共面两种情形,共面的不符合条件得去掉.因为在6个表面和6个体对角面中都有四点共面,故有种.但不共面的4点可构成四面体,而每个四面体有3对异面直线,故共有对.解法二:一个正方体共有12条棱、12条面对角线、4条体对角线,计28条,任取两条有种情形,除去其中共面的情形:〔1〕6个表面,每个面上有6条线共面,共有条;〔2〕6个体对角面,每个面上也有6条线共面,共有条;〔3〕从同一顶点动身有3条面对角线,任意两条线都共面,共有,故共有异面直线---=174对.题型二:求展开式中的系数例5、〔08广东理10〕〔是正整数〕的展开式中,的系数小于120,那么__________.解:按二项式定理展开的通项为,我们明白的系数为,即,也即,而是正整数,故只能取1.例6、假设多项式,那么a9等于〔〕A.9B.10C.-9D.-10解:=∴.例7、展开式中第6项与第7项的系数的绝对值相等,求展开式中系数最大的项和系数绝对值最大的项.解:,依题意有,∴n=8.那么展开式中二项式系数最大的项为.设第r+1项系数的绝对值最大,那么有.那么系数绝对值最大项为.例8、求证:.证:〔法一〕倒序相加:设①又∵②∵,∴,由①+②得:,∴,即.〔法二〕:左边各组合数的通项为,∴.〔法三〕:题型三:求复杂事件的概率例9、〔08福建理5〕某一批花生种子,假如每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是〔〕A.B.C.D.解:由.例10、甲、乙两个围棋队各5名队员按事先排好的顺序进行擂台赛,双方1号队员先赛,负者被剔除,然后负方的队员2号再与对方的获胜队员再赛,负者又被剔除,一直如此进行下去,直到有一方队员全被剔除时,另一方获胜,假设每个队员的实力相当,那么甲方有4名队员被剔除,且最后战胜乙方的概率是多少?解:依照竞赛规那么可知,一共竞赛了9场,同时最后一场是甲方的5号队员战胜乙方的5号队员,而甲方的前4名队员在前8场竞赛中被剔除,也确实是在8次独立重复试验中该事件恰好发生4次的概率,可得,又第9场甲方的5号队员战胜乙方的5号队员的概率为,因此所求的概率为.题型四:求离散型随机变量的分布列、期望和方差例11、某先生居住在城镇的A处,预备开车到单位B处上班. 假设该地各路段发生堵车事件差不多上相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.〔例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为〔1〕请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;〔2〕假设记路线A→C→F→B中遇到堵车次数为随机变量,求的数学期望解:〔1〕记路段MN发生堵车事件为MN.因为各路段发生堵车事件差不多上独立的,且在同一路段发生堵车事件最多只有一次,因此路线A→C→D→B中遇到堵车的概率P1为=1-[1-P〔AC〕][1-P〔CD〕][1-P〔DB〕]=1-;同理:路线A→C→F→B中遇到堵车的概率P2为1-P〔〔小于〕.路线A→E→F→B中遇到堵车的概率P3为1-P〔〔小于〕.明显要使得由A到B的路线途中发生堵车事件的概率最小.只可能在以上三条路线中选择.因此选择路线A→C→F→B,可使得途中发生堵车事件的概率最小.〔2〕路线A→C→F→B中遇到堵车次数可取值为0,1,2,3.答:路线A→C→F→B中遇到堵车次数的数学期望为例12、如下图,甲、乙两只小蚂蚁分别位于一个单位正方体的点和点,每只小蚂蚁都能够从每一个顶点处等可能地沿各条棱向各个方向移动,但不能按原线路返回.比如,甲在处时能够沿、、三个方向移动,概率差不多上;到达点时,可能沿、两个方向移动,概率差不多上,小蚂蚁每秒钟移动的距离为1个单位.(Ⅰ)假设甲、乙两只小蚂蚁都移动1秒钟,那么它们所走的路线是异面直线的概率是多少?它们之间的距离为的概率是多少?(Ⅱ)假设乙蚂蚁不动,甲蚂蚁移动3秒钟后,甲、乙两只小蚂蚁之间的距离的期望值是多少?解:(Ⅰ)甲蚂蚁移动1秒能够有三种的走法:即沿、、三个方向,当沿方向时,要使所走的路线成异面直线,乙蚂蚁只能沿、C1C方向走,概率为,同理当甲蚂蚁沿方向走时,乙蚂蚁走、C1C,概率为,甲蚂蚁沿时,乙蚂蚁走、,概率为,因此他们所走路线为异面直线的概率为;甲蚂蚁移动1秒能够有三种走法:即沿、、三个方向,当甲沿方向时,要使他们之间的距离为,那么乙应走,现在的概率为,同理,甲蚂蚁沿方向走时、甲蚂蚁沿方向走时,概率都为,因此距离为的概率为.(Ⅱ)假设乙蚂蚁不动,甲蚂蚁移动3秒后,甲乙两个蚂蚁之间距离的取值有且只有两个:和,当时,甲是按以下路线中的一个走的:、、、、、,因此其概率为,当时,甲是按以下路线中的一个走的:、、、、、、因此其概率为,因此三秒后距离期望值为.例13、〔08湖北理17〕袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个〔n=1,2,3,4〕.现从袋中任取一球.ξ表示所取球的标号.〔Ⅰ〕求ξ的分布列,期望和方差;〔Ⅱ〕假设η=aξ-b,Eη=1,Dη=11,试求a,b的值.解:〔1〕的分布列为:0 1 2 3 4因此.〔2〕由,得,即,又,因此当时,由,得;当时,由,得.,或,即为所求.题型五:统计知识例14、〔08广东〕某校共有学生2000名,各年级男、女生人数如下表.在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,那么应在三年级抽取的学生人数为〔〕一年级二年级三年级女生373男生377 370A.24B.18C.16D.12解:依题意我们明白二年级的女生有380人,那么三年级的学生的人数应该是500,即总体中各个年级的人数比例为,故在分层抽样中应在三年级抽取的学生人数为.答案:C例15、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布.成绩在90分以上〔含90分〕的学生有12名.〔Ⅰ〕试问此次参赛学生总数约为多少人?〔Ⅱ〕假设该校打算奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的〔部分〕标准正态分布表.0 1 2 3 4 5 6 7 8 91.2 1.3 1.41.92.0 2.1 0.88490.90320.91920.97130.97720.98210.88690.90490.92070.97190.97780.98260.8880.90660.92220.97260.97830.98300.89070.90820.92360.97320.97880. 98340.89250.90990.92510.97380.97930.98380.89440.91150.92650.97440.97980.98420.89620.91310.92780.97500.98030.98460.89800.91470.92920.97560.98080.98500.89970.91620.93060.97620.98120.98540.90150.91770.93190.97670.98170.9857解:〔Ⅰ〕设参赛学生的分数为,因为~N(70,100),由条件知,P(≥90)=1-P〔<90〕=1-F(90)=1-=1-(2)=1-0.9772=0.0228.这说明成绩在90分以上〔含90分〕的学生人数约占全体参赛人数的2.28%,因此,参赛总人数约为≈526〔人〕.〔Ⅱ〕假定设奖的分数线为x分,那么P(≥x)=1-P〔<x〕=1-F(90)=1-==0.0951,即=0.9049,查表得≈1.31,解得x=83.1.故设奖的分数线约为83.1分.。

2016高考数学复习资料及答题技巧:概率与统计_答题技巧

2016高考数学复习资料及答题技巧:概率与统计_答题技巧

2016高考数学复习资料及答题技巧:概率与统计_答题技巧
摘要:高考在即,查字典数学网为了帮助考生们掌握最新资讯,特分享高考数学复习资料及答题技巧,供大家阅读!
1。

高考对两个原理的考查主要集中在排列、组合及其综合题方面,题目灵活多样。

2。

二项式定理重点考查二项展开式中的指定项及二项式的展开式系数问题。

3。

概率统计内容是中学数学的重要知识,与高等数学联系非常密切,是进一步学习高等数学的基础,也是高考数学命题的热点内容,纵观全国及各自主命题省市近几年的高考试题,概率与统计知识在选择、填空、解答三种题型中每年都有试题,分值在17分到20分之间。

主要考查以下三点:
(1)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;
(2)理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率;
(3)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些相应的实际问题。

高考数学复习资料及答题技巧就介绍到这里了,更多精彩内容请继续关注查字典数学网!。

2016届高考数学教师用书配套课件:第十章 计数原理、概率、随机变量 10.2 排列与组合

2016届高考数学教师用书配套课件:第十章 计数原理、概率、随机变量 10.2 排列与组合
第三十二页,编辑于星期五:二十一点 十一分。
(2)先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内 每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分 为三堆放入三个盒中即可,共有 =C11226 0(种)方法. 答案:120
第三十三页,编辑于星期五:二十一点 十一分。
也不在最右端,有 A11A=144A×44 24=96(种)排法,共计72+96=168(种)
排法.
答案:168
第二十三页,编辑于星期五:二十一点 十一分。
【易错警示】解答本例题(2)有三点容易出错: (1)先排3个数字出现4个空位,再将符号“+”“-”从这4个空中选两个插空.
(2)先排列两个符号,再将3个数字插空,但没有考虑排列问题,造成结 论错误. (3)想将3个数字全排列,中间有2个空位,将两个符号插空,但没有考虑 顺序,造成结论错误.
第六页,编辑于星期五:二十一点 十一分。
2.必备结论 教材提炼 记一记
与组合数相关的几个公式:
(1) C0n C1n … Cnn 2n (全组合公式).
(2)
Cmn
Cm n 1…Fra bibliotekCm m1
Cmm
Cnm11.
(3)
kCkn
nCkn
.1
1
第七页,编辑于星期五:二十一点 十一分。
3.必用技法 核心总结 看一看 (1)常用方法:元素分析法(优先考虑特殊元素)、位置分析法(优先考虑特殊位 置)、直接法、间接法(排除法)、等机会法、插空法、捆绑法等. (2)数学思想:分类讨论、转化与化归.
相邻的元素插在前面元素排列的空中
除法
对于定序问题,可先不考虑顺序限制,排列后,再除以定元素的 全排列

2016高考数学一轮总复习课件:第10章 计数原理、概率随机变量及其分布 第2节 排列与组合

2016高考数学一轮总复习课件:第10章 计数原理、概率随机变量及其分布 第2节 排列与组合

n!;0!=1
Cnm+Cmn -1=Cnm+1
备注
n、m∈N*且 m≤n
第十章 计数原理、概率、随第四机页,变编辑于量星期及六:点其二十分三分。布
创新大课堂
考点自主回扣
考向互动探究
考能感悟提升
课时作业
质疑探究:如何区分某一问题是排列问题还是组合问题? 提示:看选出的元素与顺序是否有关,若与顺序有关,则 是排列问题;若与顺序无关,则是组合问题.
创新大课堂
考点自主回扣
考向互动探究
考能感悟提升
课时作业
[解析] 分两类,第一类:甲排在第一位时,丙排在最后 一位,中间 4 个节目无限制条件,有 A44种排法;第二类:甲排 在第二位时,从甲、乙、丙之外的 3 个节目中选 1 个节目排在 第一位有 C13种排法,其他 3 个节目有 A33种排法,故有 C13A33种 排法.依分类加法计数原理,知共有 A44+C13A33=42(种)编排方 案.故选 B.
第十章 计数原理、概率、随第十机九页变,编辑量于星及期六:其点 二分十三分布。
创新大课堂
考点自主回扣
考向互动探究
考能感悟提升
课时作业
拓展提高 组合问题常有以下两类题型: (1)“含有”或“不含有”某些元素的组合题型:“含”,则 先将这些元素取出,再由另外元素补足;“不含”,则先将这 些元素剔除,再从剩下的元素中去选取. (2)“至少”或“至多”含有几个元素的题型:解这类题必须 十分重视“至少”与“至多”这两个关键词的含义,谨防重复 与漏解,用直接法和间接法都可以求解,通常用直接法分类复 杂时,考虑逆向思维,用间接法处理. 提醒:区分一个问题是排列问题还是组合问题,关键在于 是否与顺序有关.
[解析] 第一步确定甲工程队承建的子项目,从 1,2,4,5 号

高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布 第二节 排列与组合

高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布 第二节 排列与组合
比赛,在下列情形中各有多少种选派方法?
(1)男运动员3名,女运动员2名;
(2)至少有1名女运动员;
(3)队长中至少有1人参加;
(4)既要有队长,又要有女运动员.
解 (1)分两步完成:第 1 步,选 3 名男运动员,有C63 种选派方法;第 2 步,选 2 名女
运动员,有C42 种选派方法.由分步乘法计数原理可得,共有C63 × C42 =120 种选派
A.1 800
B.3 600
C.4 320
)
D.5 040
(3)(2024九省联考)甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间
恰有2人,则不同排法共有(
A.20种
B.16种
)
C.12种
D.8种
答案 (1)B (2)B
(3)B
解析 (1)因为 A 在 B 的前面出场,且 A,B 都不在 3 号位置,则情况如下:
n!.
-1

4.kC =nC-1 .
5.C
=


-1
C-1
=


6.A
=
C
·A


.

-

C-1
=
- +1

-1
·C .
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)所有元素完全相同的两个排列为相同排列.( × )
(2)两个组合相同的充要条件是其中的元素完全相同.( √
有 2C84 + C83 =196 种选派方法.
5
(方法 2 间接法)从 10 人中任选 5 人有C10
种选派方法,其中不选队长的选派

高考数学总复习排列组合与概率统计.doc

高考数学总复习------ 排列组合与概率统计【重点知回】1.排列与合⑴ 分数原理与分步数原理是关于数的两个基本原理,两者的区在于分步数原理和分步有关,分数原理与分有关.⑵ 排列与合主要研究从一些不同元素中,任取部分或全部元素行排列或合,求共有多少种方法的 . 区排列与合要看是否与序有关,与序有关的属于排列,与序无关的属于合.⑶ 排列与合的主要公式①排列数公式:(m≤n)A=n! =n(n ―1)(n ―2) ... 2·1.② 合数公式:(m≤n).③ 合数性:① (m≤n).②③2.二式定理⑴ 二式定理(a +b) n nn- 1 n-r r nC,展开式共有 n+1 =Ca +Ca b+⋯+Ca b +⋯+ Cb ,其中各系数就是合数n-r r,第 r+1 是 T r+1 =Ca b .二展开式的第r+1T r+1 =Ca n-r b r (r=0,1,⋯n)叫做二展开式的通公式。

⑶ 二式系数的性①在二式展开式中,与首末两端“等距离”的两个二式系数相等,即C= C (r=0,1 ,2, ⋯,n).②若 n 是偶数,中( 第 ) 的二公式系数最大,其两 ( 第和第 ) 的二式系数相等,并且最大,其C= C.C;若n 是奇数,中③所有二式系数和等于2n,即 C+C+C+⋯+C=2n.④奇数的二式系数和等于偶数的二式系数和,即 C+C+⋯=C+C+⋯=2 n―1.3.概率( 1)事件与基本事件:基本事件:中不能再分的最的“ 位”随机事件;一次等可能的生一个基本事件;任意两个基本事件都是互斥的;中的任意事件都可以用基本事件或其和的形式来表示.( 2)率与概率:随机事件的率是指此事件生的次数与次数的比.率往往在概率附近,且随着次数的不断增加而化,幅度会越来越小.随机事件的概率是一个常数,不随具体的次数的化而化.( 3)互斥事件与立事件:事件定集合角度理解关系互斥事件事件与不可能同生两事件交集空事件与立,与必立事件事件与不可能同两事件互互斥事件;生,且必有一个生事件与互斥,但不一是立事件(4)古典概型与几何概型:古典概型:具有“等可能生的有限个基本事件”的概率模型.几何概型:每个事件生的概率只与构成事件区域的度(面或体)成比例.两种概型中每个基本事件出的可能性都是相等的,但古典概型中所有可能出的基本事件只有有限个,而几何概型中所有可能出的基本事件有无限个.( 5)古典概型与几何概型的概率算公式:古典概型的概率算公式:.几何概型的概率算公式:.两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同.(6)概率基本性与公式①事件的概率的范:.②互斥事件与的概率加法公式:.③ 立事件与的概率加法公式:.(7)如果事件 A 在一次中生的概率是p,它在n 次独立重复中恰好生k 次k ―p) n―k上,它就是二式n 的展开式的第k+1 . 的概率是 p (k) = Cp (1 . [(1 ―p)+p]n( 8)独立重复与二分布①.一般地,在相同条件下重复做的 n 次称 n 次独立重复.注意里了三点:( 1)相同条件;( 2)多次重复;( 3)各次之相互独立;②.二分布的概念:一般地,在n 次独立重复中,事件 A 生的次数X,在每次中事件 A 生的概率p,那么在 n 次独立重复中,事件 A 恰好生 k 次的概率.此称随机量服从二分布,作,并称成功概率.4、( 1)三种抽方法① 随机抽随机抽是一种最、最基本的抽方法.抽中取个体的方法有两种:放回和不放回.我在抽中用的是不放回抽取.随机抽的特点:被抽取本的体个数有限.从体中逐个行抽取,使抽便于在践中操作.它是不放回抽取,使其具有广泛用性.每一次抽,每个个体等可能的被抽到,保了抽方法的公平性.施抽的方法:抽法:方法,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出0, 1,2,⋯, 9 十个数字的数表.随机数表中各个位置上出各个数字的等可能性,决定了利用随机数表行抽抽取到体中各个个体序号的等可能性.②系抽系抽适用于体中的个体数多的情况.系抽与随机抽之存在着密切系,即在将体中的个体均分后的每一段中行抽,采用的是随机抽.系抽的操作步:第一步,利用随机的方式将体中的个体号;第二步,将体的号分段,要确定分段隔,当(N体中的个体数,n 本容量)是整数,;当不是整数,通从体中剔除一些个体使剩下的个体个数N能被 n 整除,;第三步,在第一段用随机抽确定起始个体号,再按事先确定的抽取本.通常是将加上隔 k 得到第2个号,将加上k,得到第3个号,下去,直到取整个本.③分抽当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.( 2)用样本估计总体样本分布反映了样本在各个范围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.①用样本频率分布估计总体频率分布时,通常要对给定一组数据进行列表、作图处理.作频率分布表与频率分布直方图时要注意方法步骤.画样本频率分布直方图的步骤:求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点:一是所有的信息都可以从图中得到;二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程度,其计算公式为.有时也用标准差的平方———方差来代替标准差,两者实质上是一样的.( 3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解.分析两个变量的相关关系时, 我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系:如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,其对应的方程叫做回归直线方程.在本节要经常与数据打交道,计算量大,因此同学们要学会应用科学计算器.(4)求回归直线方程的步骤:第一步:先把数据制成表,从表中计算出;第二步:计算回归系数的 a, b,公式为第三步:写出回归直线方程.( 4)独立性检验列联表 1①列联表:列出的两个分类变量和,它们的取值分别为和的样本频数表称为分类总计1 212总计构造随机变量(其中)得到的观察值常与以下几个临界值加以比较:如果,就有的把握因为两分类变量和是有关系;如果就有的把握因为两分类变量和是有关系;如果就有的把握因为两分类变量和是有关系;如果低于,就认为没有充分的证据说明变量和是有关系.【典型例题】考点一:排列组合【方法解读】1、解排列组合题的基本思路:①将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步②对“组合数”恰当的分类计算是解组合题的常用方法;③是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;2、解排列组合题的基本方法:①优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;②排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

【福建省】2016届高考数学年(理科)计数原理、概率统计专题练习答案


C. 0.648
D . 0.792
(4)从 0,6 中选一个数字,从 5,7,9 中选两个数字,组成无重复数字的三位数,其中奇数的个数为(

A.6
B . 12
C. 18
D .24
(5)采用系统抽样方法从 960 人中抽取 32 人做问卷调查:首先将这 960 人随机编号为 1,2, ,960 并分组,
P 的值恰好等于与
(13)(本小题满分 15 分) 某工厂生产的甲、 乙两种产品都需经过两道工序加工而成,
且两道工序的加工结果均有 A, B 两个等级. 当两
道工序的加工结果都为 A 级时, 产品为一等品, 其余均为二等品. 已知两种不同的产品之间及其每一道工序
的加工结果都相互独立,且加工结果为 A 级的概率如表一所示.
C. 3 413
D. 4 772
(3)甲、乙二人进行一次乒乓球比赛,约定先胜
3 局者为胜方,比赛结束.假设在每一局比赛中,甲获胜
的概率为 0.6,乙获胜的概率为 0.4,且各局比赛结果相互独立,那么在前 2 局比赛中甲、乙各胜 1 局的情
况下,甲为比赛胜方的概率为(

A . 0.156
B . 0.504
福建省 2016 年高考数学(理科) -专题练习
计数原理、概率统计
一、选择题:本大题共 6 小题,每小题 6 分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)变量 x , y 的几组实验测量数据如下表所示:
x
0.50
0.99
2.01
2.98
y
1.42
1.99
3.98
8.00
则根据上表数据,在下列函数中,拟合变量
1

高考数学压轴专题(易错题)备战高考《计数原理与概率统计》基础测试题含解析

高中数学《计数原理与概率统计》知识点归纳一、选择题1.把15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,则共有多少种放法( ) A .18 B .28C .38D .42【答案】B 【解析】 【分析】根据题意,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3. 个球,则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题,由挡板法分析可得答案. 【详解】根据题意,15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3个球, 则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题, 将剩下的9个球排成一排,有8个空位,在8个空位中任选2个,插入挡板,有2887282C ⨯==种不同的放法, 即有28个不同的符合题意的放法; 故选B . 【点睛】本题考查排列、组合的应用,关键是将原问题转化为将3个球放入3个盒子的问题,属于基础题.2.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是( )A .甲类水果的平均质量10.4kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数2 1.99δ= 【答案】D 【解析】由图象可知,甲类水果的平均质量μ1=0.4kg ,乙类水果的平均质量μ2=0.8kg ,故A ,B ,C ,正确;乙类水果的质量服从的正态分布的参数σ2= 1.99,故D不正确.故选D .3.若不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域为Ω,不等式222210x y x y +--+≤表示的区域为T ,则在区域Ω内任取一点,则此点落在区域T 中的概率为( ) A .4π B .8π C .5π D .10π 【答案】D 【解析】 【分析】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩对应的平面区域,求出对应的面积,利用几何概型的概率公式即可得到结论. 【详解】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域Ω,不等式222210x y x y +--+≤化为()()22111x y -+-≤它表示的区域为T ,如图所示;则区域Ω表示ABC V ,由240230x y x y -+=⎧⎨--=⎩,解得点()12B -,; 又()20A -,,30B (,),∴()132252ABC S =⨯+⨯=V , 又区域T 表示圆,且圆心()11M ,在直线230x y +-=上,在ABC V 内的面积为21 122ππ⨯=;∴所求的概率为2510P ππ==,故选D .【点睛】本题主要考查了几何概型的概率计算问题,利用数形结合求出对应的面积是解题的关键,属于中档题.4.《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,则这两卦的六根线中恰好有4根阴线的概率为( )A .314B .27C .928D .1928【答案】A 【解析】 【分析】列出所有28种情况,满足条件的有6种情况,计算得到概率. 【详解】 根据题意一共有:乾坤、乾巽、乾震、乾坎、乾离、乾艮、乾兑;坤巽、坤震、坤坎、坤离、坤艮、坤兑; 巽震、巽坎、巽离、巽艮、巽兑;震坎、震离、震艮、震兑;坎离、坎艮、坎兑; 离艮、离兑;艮兑,28种情况.满足条件的有:坤巽,坤离,坤兑,震坎,震艮,坎艮,共6种.故632814p ==. 故选:A . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.5.已知59290129(1)(2)(1)(1)...(1)x x a a x a x a x ++-=+-+-++-,则7a =( )A .9B .36C .84D .243【答案】B 【解析】()()59x 1x 2++-等价变形为[()][()()]59x 12x 11-++-+-,然后利用二项式定理将其拆开,求出含有7(1)x -的项,便可得到7a .【详解】解:55(1)[(1)2]x x +=-+展开式中不含7(1)x -;()[()()]99x 2x 11-=-+-展开式中含7(1)x -的系数为()729C 136-=所以,7a 36=,故选B 【点睛】本题考查二项式定理,解题的关键是要将原来因式的形式转化为目标因式的形式,然后再进行解题.6.三位同学参加数学、物理、化学知识竞赛,若每人都选择其中两个科目,则有且仅有两人选择的科目完全相同的概率是( ) A .14B .13C .12D .23【答案】D 【解析】 【分析】先求出三位同学参加数学、物理、化学知识竞赛,每人都选择其中两个科目的基本事件总数,再求出有且仅有两人选择的科目完全相同所包含的基本事件个数,利用古典概型的概率计算公式即可得到答案. 【详解】三位同学参加数学、物理、化学知识竞赛,每人都选择其中两个科目共有233()27C =种不同结果,有且仅有两人选择的科目完全相同共有22133218C C C ⋅⋅=种,故由古典概型的概率计算公式可得所求概率为182273=. 故选:D 【点睛】不同考查古典概型的概率计算问题,涉及到组合的基本应用,考查学生的逻辑推理与数学运算能力,是一道中档题.7.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .710【答案】B【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==Q ,11155561116691()1216C C C P B C C C =-= ()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.8.6件产品中有4件合格品,2件次品.为找出2件次品,每次任取一个检验,检验后不放回,则恰好在第四次检验后找出所有次品的概率为( ) A .35B .13C .415D .15【答案】C 【解析】 【分析】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,第二种情况是前面四次都是正品,则剩余的两件是次品,计算概率得到答案. 【详解】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,2314615C p C ==;第二种情况是前面四次都是正品,则剩余的两件是次品,44246115C p C ==;故12415p p p =+=. 故选:C . 【点睛】本题考查了概率的计算,忽略掉前面四次都是正品的情况是容易发生的错误.9.在区间[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆221x y +=相交的概率为( ) A .12B .13C.4D.3【答案】C【分析】根据直线与圆相交,可求出k 的取值范围,根据几何概型可求出相交的概率. 【详解】因为圆心(0,0),半径1r =,直线与圆相交,所以1d =≤,解得44k -≤≤所以相交的概率224P ==,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.10.若52345012345(23)x a a x a x a x a x a x -=+++++,则0123452345a a a a a a +++++为() A .-233 B .10C .20D .233【答案】A 【解析】 【分析】对等式两边进行求导,当x =1时,求出a 1+2a 2+3a 3+4a 4+5a 5的值,再求出a 0的值,即可得出答案. 【详解】对等式两边进行求导,得:2×5(2x ﹣3)4=a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4, 令x =1,得10=a 1+2a 2+3a 3+4a 4+5a 5; 又a 0=(﹣3)5=﹣243,∴a 0+a 1+2a 2+3a 3+4a 4+5a 5=﹣243+10=﹣233. 故选A . 【点睛】本题考查了二项式定理与导数的综合应用问题,考查了赋值法求解二项展开式的系数和的方法,利用导数得出式子a 1+2a 2+3a 3+4a 4+5a 5是解题的关键.11.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A .12种 B .18种C .24种D .36种【答案】D 【解析】4项工作分成3组,可得:24C=6, 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:36363A ⨯=种.故选D.12.已知离散型随机变量X 服从二项分布~(,)X B n p ,且()4E X =,()D X q =,则11p q+的最小值为( ) A .2 B .52C .94D .4【答案】C 【解析】 【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值. 【详解】离散型随机变量X 服从二项分布()X B n p :,, 所以有()4E X np ==,()()1D X q np p ==-(,所以44p q +=,即14qp +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号.故选C . 【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题.13.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .118【答案】C 【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有21045C =种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为31=4515,选C. 点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.14.河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画出的“八卦”,而龙马身上的图案就叫做“河图”.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.“河图”将一到十分成五行属性分别为金,木,水,火,土的五组,在五行的五种属性中,五行相克的规律为:金克木,木克土,土克水,水克火,火克金;五行相生的规律为:木生火,火生土,土生金,金生水,水生木.现从这十个数中随机抽取3个数,则这3个数字的属性互不相克的条件下,取到属性为土的数字的概率为( )A .110B .15C .25D .12【答案】C 【解析】 【分析】从这十个数中随机抽取3个数,这3个数字的属性互不相克,包含的基本事件个数1122152222()20n C C C C C =+=,这3个数字的属性互不相克的条件下,取到属性为土的数字包含的基本事件个数为:1122122222()8,m C C C C C =+=,由此能求出这3个数字的属性互不相克的条件下,取到属性为土的数字的概率. 【详解】由题意得数字4,9属性为金,3,8属性为木,1,6属性为水, 2,7属性为火,5,10属性为土,从这十个数中随机抽取3个数,这3个数字的属性互不相克,包含的基本事件个数1122152222()20n C C C C C =+=,这3个数字的属性互不相克的条件下,取到属性为土的数字包含的基本事件个数为:1122122222()8,m C C C C C =+=,∴这3个数字的属性互不相克的条件下,取到属性为土的数字的概率82205m p n ===. 故选:C . 【点睛】此题考查古典概型,关键在于根据计数原理准确求解基本事件总数和某一事件包含的基本事件个数.15.设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时,“()E ξ减小”是“()D ξ增加”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】首先求()E ξ和()D ξ,然后换元()t E ξ=,()221331321222228D t t t ξ⎛⎫=-++=--+ ⎪⎝⎭,利用函数的单调性,判断充分必要条件.【详解】由题意可知:()()221210p p p p -+-+= , 且()2011p <-<,()0211p p <-<,201p <<解得:01p <<,()()()2211121341E p p p p p ξ=-⨯-+⨯-+⨯=-,()()()()()()22222141114121341D p p p p p p p ξ=----+--⨯-+--⨯⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦288p p =-+,设()411,3E p t ξ=-=∈-,221113884422t t D t t ξ++⎛⎫=-⨯+⨯=-++ ⎪⎝⎭ ()21122t =--+, 当()1,1t ∈-时,D ξ增大,当()1,2t ∈时,D ξ减小, 所以当E ξ减小时,不能推出D ξ增加; 设()2880,2D p p t ξ=-+=∈,21822p t ⎛⎫--+= ⎪⎝⎭,21228t p -⎛⎫-= ⎪⎝⎭,当102p <<时,12p =,此时1412E ξ⎛=- ⎝,当D t ξ=增加时,E ξ也增加,当112p ≤<时,12p =+1412E ξ⎛=+- ⎝,当D t ξ=增加时,E ξ减小,所以当D ξ增加,不能推出E ξ减小.综上可知:“E ξ减小”是“D ξ增加”的既不充分也不必要条件. 故选:D 【点睛】本题考查充分必要条件,离散型随机变量的期望和方程,重点考查换元,二次函数的单调性,属于中档题型.16.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .112【答案】B 【解析】 【分析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动, 基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】 本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.17.二项式51(2)x x -的展开式中含3x 项的系数是A .80B .48C .−40D .−80 【答案】D【解析】512x x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()()55521551C 212C r r r r r r r r T x x x ---+⎛⎫=-=- ⎪⎝⎭n n n n , 令523r -=,1r =,所求系数为145C 280-=-n ,故选D .18.某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为 1.160.5ˆ37yx =-,以下结论中不正确的为( )A .15名志愿者身高的极差小于臂展的极差B .15名志愿者身高和臂展成正相关关系,C .可估计身高为190厘米的人臂展大约为189.65厘米D .身高相差10厘米的两人臂展都相差11.6厘米,【答案】D【分析】根据散点图和回归方程的表达式,得到两个变量的关系,A根据散点图可求得两个量的极差,进而得到结果;B,根据回归方程可判断正相关;C将190代入回归方程可得到的是估计值,不是准确值,故不正确;D,根据回归方程x的系数可得到增量为11.6厘米,但是回归方程上的点并不都是准确的样本点,故不正确.【详解】A,身高极差大约为25,臂展极差大于等于30,故正确;B,很明显根据散点图像以及回归直线得到,身高矮臂展就会短一些,身高高一些,臂展就长一些,故正确;C,身高为190厘米,代入回归方程可得到臂展估计值等于189.65厘米,但是不是准确值,故正确;D,身高相差10厘米的两人臂展的估计值相差11.6厘米,但并不是准确值,回归方程上的点并不都是准确的样本点,故说法不正确.故答案为D.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.19.某人连续投篮6次,其中3次命中,3次未命中,则他第1次、第2次两次均未命中的概率是()A.12B.310C.14D.15【答案】D【解析】【分析】先求出基本事件总数,再求出第1次、第2次两次均未命中包含的基本事件个数,计算即可求出第1次、第2次两次均未命中的概率.【详解】由题可得基本事件总数336320n C C==,第1次、第2次两次均未命中包含的基本事件个数2132434m C C C==所以他第1次、第2次两次均未命中的概率是41205mPn===故选D.【点睛】本题考查计数原理及排列组合的应用,解题的关键是正确求出基本事件个数.20.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,甲不是最后一个出场”的前提下,学生丙第一个出场的概率为()A.13B.14C.15D.12【答案】A【解析】【分析】根据条件概率的公式与排列组合的方法求解即可.【详解】由题意得学生甲和乙都不是第一个出场,甲不是最后一个出场的概率113333155C C A9A20P==,其中学生丙第一个出场的概率1333255C A3A20P==,所以所求概率为2113PPP==.故选:A【点睛】本题主要考查了根据排列组合的方法求解条件概率的问题,属于中等题型.。

2016年高考数学总复习第九章第1讲计数原理与排列组合课件理


A.144种
B.120种
C.72种
D.24种
解析:先放3把空椅子,剩下3人带着椅子插空坐,共有
考点2 组合问题 例2:从4名男同学和3名女同学中,选出3人参加学校 的某项调查,求在下列情况下,各有多少种不同的选法? (1)无任何限制; (2)甲、乙必须当选; (3)甲、乙都不当选; (4)甲、乙只有一人当选; (5)甲、乙至少有一人当选; (6)甲、乙至多有一人当选.
1
1.将 3 个不同的小球放入 4 个盒子中,则不同放法种数有
(B )
A.81 种
B.64 种
C.12 种
D.14 种
2.(2013 年大纲)从进入决赛的 6 名选手中决出 1 名一等奖,
2 名二等奖,3 名三等奖,则可能的决赛结果共有__6_0___种.(用
数字作答)
3.(2013 年大纲)6 个人排成一行,其中甲、乙两人不相邻的 不同排法共有___4_8_0__种.(用数字作答)
【规律方法】求解排列、组合问题的思路是:“排组分清, 加乘明确;有序排列,无序组合;分类相加,分步相乘.” 求解排列、组合问题的常用方法: ①简单问题直接法:把符合条件的排列数直接列式计算; ②部分符合条件排除法:先求出不考虑限制条件的排列, 然后减去不符合条件的排列数;
③相邻问题捆绑法:在特定条件下,将几个相关元素当作 一个元素来考虑,待整个问题排好之后再考虑它们“内部”的” 排列,它主要用于解决相邻或不相邻的问题; ④相间问题插空法:先把一般元素排列好,然后把待定元 素插排在它们之间或两端的空中,它与捆绑法有同等作用; ⑤特殊元素位置优先安排:对问题中的特殊元素或位置首 先考虑排列,再排列其他一般元素或位置; ⑥多元问题分类法:将符合条件的排列分为几类,而每一 类的排列数较易求出,然后根据分类计数原理求出排列总数;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列与组合备考策略
主标题:排列与组合备考策略
副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。

关键词:排列,组合,备考策略
难度:2
重要程度:4
考点一排列应用题
【例1】 4个男同学,3个女同学站成一排.
(1)3个女同学必须排在一起,有多少种不同的排法?
(2)任何两个女同学彼此不相邻,有多少种不同的排法?
(3)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?
解(1)3个女同学是特殊元素,共有A33种排法;由于3个女同学必须排在一起,视排好的女同学为一整体,再与4个男同学排队,应有A55种排法.
由分步乘法计数原理,有A33A55=720种不同排法.
(2)先将男生排好,共有A44种排法,再在这4个男生的中间及两头的5个空档中插入3个女生有A35种方法.
故符合条件的排法共有A44A35=1 440种不同排法.
(3)先排甲、乙和丙3人以外的其他4人,有A44种排法;由于甲、乙要相邻,故先把甲、乙排好,有A22种排法;最后把甲、乙排好的这个整体与丙分别插入原先排好的4人的空档及两边有A25种排法.
总共有A44A22A25=960种不同排法.
【备考策略】(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.
(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.
考点二组合应用题
【例2】某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?
(1)只有一名女生;
(2)两队长当选;
(3)至少有一名队长当选;
(4)至多有两名女生当选;
(5)既要有队长,又要有女生当选.
解 (1)一名女生,四名男生.故共有C 15·C 4
8=350(种).
(2)将两队长作为一类,其他11人作为一类,故共有C 22·C 311=165(种).
(3)至少有一名队长含有两类:只有一名队长和两名队长.故共有:C 12·C 411+C 22·C 311=825(种)或采用排除法:C 513-C 511=825(种).
(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生.故选法为: C 25·C 38+C 15·C 48+C 58=966(种).
(5)分两类:第一类女队长当选:C 412;第二类女队长不当选:
C 14·C 37+C 24·C 27+C 34·C 17+C 44.
故选法共有:
C 412+C 14·C 37+C 24·C 27+C 34·C 17+C 44=790(种).
【备考策略】组合问题常有以下两类题型变化 (1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.
(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.
考点三 排列、组合的综合应用
【例3】 (1)将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有________种(用数字作答).
(2)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( ).
A .A 26C 24 B.12
A 26C 24 C .A 26A 24 D .2A 26 审题路线 (1)选出3个位置排特殊元素A 、
B 、
C ,并把元素A 、B 作为元素集团进行排列;
(2)可将4名同学分成两组(每组2人),再分配到两个班级.
解析 (1)先将A ,B 视为元素集团,与C 先排在6个位置的三个位置上,有C 36A 22C 12种排法; 第二步,排其余的3个元素有A 33种方法.
∴由分步乘法计数原理,共有C 36A 22C 12·A 33=480种排法.
(2)法一 将4人平均分成两组有12
C 24种方法,将此两组分配到6个班级中的2个班有A 26种. 所以不同的安排方法有12
C 24A 26种. 法二 先从6个班级中选2个班级有C 26种不同方法,然后安排学生有C 24C 22种,故有C 26C 24=12
A 26C 24种.
答案(1)480 (2)B
【备考策略】 (1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).
(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.。

相关文档
最新文档