2013中考数学试题汇编之圆的概念与性质

合集下载

2013年中考数学100份试卷分类汇编:圆的垂径定理

2013年中考数学100份试卷分类汇编:圆的垂径定理

2013中考全国100份试卷分类汇编圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.54答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠= ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =185 3、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF(C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。

由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。

因为ABC ADC ∠∠和所对的弧是劣弧 AC ,根据同弧所对的圆周角相等可知(D )一定正确。

【答案】C4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )Bcm B cm cm或cm D cm或cmOM==3cm==4==2cm5、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()cm BcmAB=4cmAB=4cmx=故半径为6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()求出==4m7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()BABABOB==8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()2BE===6CE===29、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()B的长为=2=210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()==511、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B、,正确,故本选项错误;13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O 的半径()OB===14、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()4BAC=∠可得出=BAC=∠∴=15、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.7分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键16、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确...的是()A、当弦PB最长时,ΔAPC是等腰三角形。

2013年中考数学模拟试题分类汇编42:圆有关的性质

2013年中考数学模拟试题分类汇编42:圆有关的性质

2013年中考数学模拟试题汇编圆有关的性质一、选择题1、(2013江苏东台实中)如右图,⊙O的半径OA等于5,半径OC⊥AB于点D,若OD=3,则弦AB的长为( )A、10B、8C、6D、4答案:B2、如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于( )A.8 B.4 C.10 D.5答案:D3、(2013江苏扬州弘扬中学二模)若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A 与⊙O 的位置关系是( )A.点A 在圆外B. 点A 在圆上C. 点A 在圆内D.不能确定 答案:C4、如图,已知⊙O 是正方形ABCD 的外接圆,点E 是 AD 上任意 一点,则∠BEC 的度数为 ( ) A. 30° B. 45°答案:B5、(2013山西中考模拟六) 如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =,∠AOC 为( )A .120° B.130C .140° D.150°答案:A 6、(2013温州市一模)如图,⊙O 的半径为5,若OP =3,,则经过点P 的弦长可能是 ( )A .3B .6C .9D .12答案:C 7、(2013·湖州市中考模拟试卷1)如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C=70°,现给出以下四个结论: ① ∠A=45°; ②AC=AB ;③ ; ④CE·AB=2BD 2其中正确结论的个数为 ( )A .1个B .2个C .3个D .4个答案:B 8、(2013·湖州市中考模拟试卷7)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A ∠.则D ∠等于( )O P(第5题) ︵ ︵ AE =A . 20B . 30C . 40D . 50 答案:C9、(2013·湖州市中考模拟试卷8)如右图,已知圆的半径是5,弦AB 的长是6,则弦AB 的弦心距是( )A .3B .4C .5D .8答案:B 10、(2013·湖州市中考模拟试卷10)如图,AB 是⊙O 的直径,CD 为弦,AB CD 于E ,则下列结论中不.成立的是( ) A.∠A ﹦∠D B.CE ﹦DE C.∠ACB ﹦90°D .CE ﹦BD答案:D11、(2013年河北四摸)如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( ) (A )6 (B )8 (C )10(D )12答案:A二、填空题 1、(2013江苏东台实中)已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是 _____. 答案:30°或150° 2、(2013江苏东台实中)如第18题图,已知过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠A =63 º,那么∠B = º. 答案:18°3、(2013江苏射阴特庸中学)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD , 则∠PCA = °.(第4题)答案:67.54、(2013·曲阜市实验中学中考模拟)如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为 BC上一点,若∠CEA=28 ,则∠ABD=°.答案: 28°5、(2013·湖州市中考模拟试卷7)一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为__________. 答案: 72°或108°6、(2013·湖州市中考模拟试卷8)如图,点A 、B 、C 在圆O 上,且040BAC ∠=,则BOC ∠= .答案:0807、 (2013年河北二摸)如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm . 答案:38、(2013年上海市)如果一边长为20cm 的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,那么铁圈直径的最小值为 ▲ cm (铁丝粗细忽略不计). 答案:第17题图三、解答题1、(2013安徽芜湖一模)如图,在Rt ABC △中,90C ∠= ,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥.(1)判断直线AC 与DBE △外接圆的位置关系,并说明理由;(2)若6AD AE ==,BC 的长.解:(1)直线AC 与DBE △外接圆相切.理由:∵DE BE ⊥, ∴ BD 为DBE △外接圆的直径, 取BD 的中点O (即DBE △外接圆的圆心),连结OE , ∴OE OB =,∴OEB OBE ∠=∠,∵BE 平分ABC ∠,∴ OBE CBE ∠=∠,∴ OEB CBE ∠=∠, ∵90CBE CEB ∠+∠=°,∴ 90OEB CEB ∠+∠=°, 即OE AC ⊥,∴直线AC 与DBE △外接圆相切. ………………………………………………(6分) (2)设OD OE OB x ===,∵OE AC ⊥,∴222(6)x x +-=, ∴3x =, ∴12AB AD OD OB =++=,∵OE AC ⊥,∴AOE ABC △∽△, ∴AO OE AB BC =,即9312BC=,] ∴4BC =. ……………………………………………………………………(12分)2、(2013吉林镇赉县一模)如图,BC 是⊙O 的直径,AD ⊥CD ,垂足为D ,AC 平分∠BCD ,AC =3,CD =1,求⊙O 的半径.答案:C(第1题) B D AEDA3、(2013吉林镇赉县一模)已知A 、B 、C 是半径为2的圆O 上的三个点,其中点A 是弧BC 的中点,连接AB 、AC ,点D 、E 分别在弦AB 、AC 上,且满足AD =CE . (1)求证:OD =OE ;(2)连接BC ,当BC =22时,求∠DOE 的度数. 答案:4、(2013江苏射阴特庸中学)如图,AB 是⊙O 的直径,点A 、C 、D 在⊙O 上,过D 作PF ∥AC 交⊙O 于F 、交AB 于E ,且∠BPF =∠ADC .(1)判断直线BP 和⊙O 的位置关系,并说明你的理由; (2)当⊙O 的半径为5,AC =2,BE =1时,求BP 的长. 答案:(1)直线BP 和⊙O 相切. ……1分理由:连接BC,∵AB 是⊙O 直径,∴∠ACB=90°. ......2分 ∵PF ∥AC,∴BC ⊥PF, 则∠PBH+∠BPF=90°. ......3分 ∵∠BPF=∠ADC,∠ADC=∠ABC,得AB ⊥BP, (4)所以直线BP 和⊙O 相切.(2)由已知,得∠ACB=90°,∵AC=2,AB=25,∴BC=4. ……6分 ∵∠BPF=∠ADC,∠ADC=∠ABC,∴∠BPF=∠ABC,由(1),得∠ABP=∠ACB=90°,∴△ACB ∽△EBP, ……8分∴AC BE =BCBP,解得BP=2.即BP 的长为2. ……10分 5、(2013山西中考模拟六) 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径32r =,2AC =,请你求出cos B 的值.20题图BP BAABP答案:∵AD 是⊙O 的直径,32r =,∴∠ACD =90°,AD =3, ∵AC =2,∴CD ==cos D ∵∠B 和∠D 是同弧所对的圆周角,∴∠B =∠D ,∴cos cos B D ==6、(2013温州市一模)如图,AB 是⊙O 的直径,BC 是⊙O 的切线, D 是⊙O 上一点,且AD ∥OC .(1)求证:△ADB ∽△OBC .(2)若AB =6,BC =4.求AD 的长度 .(结果保留根号) 答案:证明:(1)∵AB 是⊙O 的直径,BC 是⊙O 的切线,∴∠D =∠OBC =90° ∵AD ∥OC[中国^∴∠A =∠COB ∴△ADB ∽△OBC(2)∵AB =6, ∴OB =3, ∵BC=4,[]5OC ∴===∵△ADB ∽△OBC∴6,,35AD AB AD OB OC =∴= 185AD ∴=。

中考复习讲义 圆的基本概念与性质含答案.doc

中考复习讲义 圆的基本概念与性质含答案.doc

圆的基本概念与性质内容基本要求略高要求较高要求圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题1. 圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,其中固定端点O 叫做圆心,OA 叫做半径. 2. 弧与弦:弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 弦心距:从圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作»AB ,读作弧AB . 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. 3. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

一 与圆有关概念【例1】 判断题(1)直径是弦 ( ) (2)弦是直径 ( ) (3)半圆是弧 ( ) (4)弧是半圆( ) (5)长度相等的两条弧是等弧 ( ) (6)等弧的长度相等( )中考说明自检自查必考点中考必做题(7)两个劣弧之和等于半圆 ( ) (8)半径相等的两个圆是等圆 ( ) (9)两个半圆是等弧( ) (10)圆的半径是R ,则弦长的取值范围是大于0且不大于2R( )【答案】(1)√;(2)×;(3)√;(4)×;(5)×;(6)√;(7)×;(8)√;(9)×;(10)√【例2】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>ON MHGFE DC B A【答案】B【例3】 如图,直线12l l ∥,点A 在直线1l 上,以点A 为圆心,适当长为半径画弧,分别交直线12l l 、于B 、C 两点,连接AC BC 、.若54ABC ∠=︒,则∠1的大小为________【答案】72°【例4】 如图,ABC ∆内接于O e ,84AB AC D ==,,是AB 边上一点,P 是优弧¼BAC 的中点,连接PA 、PB 、PC 、PD ,当BD 的长度为多少时,PAD ∆是以AD 为底边的等腰三角形?并加以证明.【答案】解:当4BD =时,PAD ∆是以AD 为底边的等腰三角形.证明:∵P 是优弧¼ABC 的中点∴»»PBPC = ∴PB PC =在PBD ∆与PCA ∆中, ∵4PB PC PBD PCB BD AC =⎧⎪∠=∠⎨⎪==⎩∴PBD PCA SAS ∆∆≌().∴PD PA =,即4BD =时,PAD ∆是以AD 为底边的等腰三角形.【例5】 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A B C D A ⇒⇒⇒⇒滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B C D A B ⇒⇒⇒⇒滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为_________【答案】4π- 【解析】根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M 到正方形各顶点的距离都为1,故点M 所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,点M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去4个扇形的面积.二 垂径定理及其应用【例6】 如图,AB 是O e 的直径,BC 是弦,OD BC ⊥于E ,交弧BC 于D .(1)请写出五个不同类型的正确结论; (2)若82BC ED ==,,求O e 的半径.【答案】(1)不同类型的正确结论有:22290•ABC BE CE BD DC BED BOD A AC OD AC BC OE BE OB S BC OE BOD BOE BAC ==∠=︒∠=∠⊥+==⋯V P V V V ①;②弧弧;③;④;⑤;⑥;⑦;⑧;⑨是等腰三角形;⑩∽(2)∵OD BC ⊥,∴12BE CE ==4BC =设O e 的半径为R ,则2OE OD DE R =-=-,在Rt OEB V中,由勾股定理得: 22222224OE BE OB R R +=-+=,即(),解得:5R = ,∴O e 的半径为5.【例7】 如图,在O e 中,120,3AOB AB ∠=︒=,则圆心O 到AB 的距离=_______【答案】23【例8】 如图,D 内接于O e ,D 为线段AB 的中点,延长OD 交O e 于点E , 连接,AE BE 则下列五个结论①AB DE ⊥,②AE BE =,③OD DE =,④AEO C ∠=∠,⑤»¼12AB ACB =,正确结论的个数是( )A .2B .3C . 4D .5【答案】A【例9】 如图,AB 为O e 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )AA . 70︒B . 35︒C . 30︒D .20︒【答案】B【例10】 如图,AB 是O e 的在直径,弦CD AB ⊥于点E ,若8CD =,3OE =,则O e 的直径为( )BAA .10B .12C .14D .16【答案】A【例11】 如图,O e 是ABC ∆的外接圆,60BAC ∠=︒,若O e 的半径OC 为2,则弦BC 的长为( ) A .1B C .2D .【答案】D【例12】 小英家的圆镜子被打破了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( )A .2BC .D .3【答案】B【解析】考查垂径定理与勾股定理的应用.此题关键找到圆心,由不在同一条直线上的三点确定唯一一个圆.如图,作线段,AB BC 的垂直平分线交于点O ,点O 即为圆镜的圆心,连结OA ,由图可知 1,2AD OD==,由勾股定理得半径OA =ODCBA【例13】 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得=∠DOE sin 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5m 的速度下降,则经过多长时间才能将水排干?【答案】(1)∵OE ⊥CD 于点E ,CD =24, ∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ). (2)OE5. ∴将水排干需:50.510÷=小时.【例14】 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )ABCDA .5米B . 8米C .7米 D.米 【答案】B【例15】 如图,AB 为O e 的直径,弦CD AB ⊥,垂足是E ,连接OC ,若5,8OC CD ==,则AE =_______OBA【答案】2【例16】 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A .16B .10C .8D .6 【答案】A【例17】 已知,如图,1O e 与坐标轴交与A (1,0)、B ( 5,0)两点,点1O 的纵坐标为5,求1O e 的半径。

九年级圆知识点及习题(含答案)

九年级圆知识点及习题(含答案)

圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90°,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。

2013年中考数学总复习第30讲圆的有关概念及性质

2013年中考数学总复习第30讲圆的有关概念及性质

2013年初中毕业生学业考试复习初中数学第30讲圆的有关概念及性质考点知识梳理考点一圆的定义及其性质1.圆的定义有两种方式(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点叫,线段OA叫做.(2)圆是到定点的距离等于定长的点的.2.圆的对称性(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.(2)圆是以圆心为对称中心的中心对称图形.(3)圆是旋转对称图形.圆绕圆心旋转任意角度,都能和原来的图形重合,这就是圆的旋转不变性.考点二垂径定理及推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧.考点三圆心角、弧、弦、弦心距之间的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等.2.推论:同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等;(4)两条弦的弦心距相等.四项中有一项成立,则其余对应的三项都成立.考点四圆心角与圆周角1.定义:顶点在圆心上的角叫圆心角;顶点在圆上,角的两边和圆都相交的角叫圆周角.2.性质(1)圆心角的度数等于它所对弧的度数;(2)一条弧所对的圆周角的度数等于它所对圆心角的 ; (3)同弧或等弧所对的圆周角 .同圆或等圆中相等的圆周角所对的 相等;(4)半圆(或直径)所对的圆周角是 ,90°的圆周角所对的弦是直径.考点五圆的性质的应用1.垂径定理的应用用垂径定理进行计算或证明,常需作出圆心到弦的垂线段(即弦心距),则垂足为弦的中点,再利用解半径、弦心距和弦的一半组成的直角三角形来达到求解的目的 .2.借助同弧、等弧所对圆周角相等,所对圆心角相等进行角的等量代换;也可在同圆或等圆中,由相等的圆周角所对的弧相等,进行弧(或弦)的等量代换.中考典型精析例1 (1)(2012·陕西)如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .42(2)(2012·河北)如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是( )A .AE >BE B.AD =BCC .∠D =12∠AEC D .△ADE ∽△CBE (3)如图,⊙O 是△ABC 的外接圆,∠B =60°,OP ⊥AC 于点P ,OP =23,则⊙O 的半径为( )A .4 3B .6 3C .8D .12例1(1)题图 例1(2)题图 例1(3)题图例2 (1)(2012·昆明)如图,AB ,CD 是⊙O 的两条弦,连接AD ,BC .若∠BAD =60°,则∠BCD的度数为( )A.40°B.50° C.60°D.70°(2)(2012·重庆)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为( )A.45°B.35° C.25° D.20°例2(1)题图例2(2)题图例2(3)题图(3)(2012·衢州)如图,点A,B,C在⊙O上,∠ACB=30°,则sin∠AOB的值是( )A.12B.22C.32D.33例3(2012·长沙)如图,A,P,B,C是半径为8的⊙O上的四点,则满足∠BAC=∠APC=60°.(1)求证:△ABC是等边三角形;(2)求圆心O到边BC的距离OD.基础巩固训练1.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=12,BE=2,则⊙O的直径为( )A.8 B.10 C.16 D.202.已知:⊙O的半径为13 cm,弦AB∥CD,AB=24 cm,CD=10 cm,则AB、CD之间的距离为( )A.17 cm B.7 cm C.12 cm D.17 cm或7 cm 3.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为 3 cm,则弦CD 的长为( )A.32cm B.3 cm C.2 3 cm D.9 cm第1题图第3题图第4题图第5题图4.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么BD = .5.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O上一点,若∠CAB=55°,则∠ADC的大小为度.6.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.考点训练一、选择题(每小题4分,共48分)1.(2012·台州)如图,点A,B,C是⊙O上三点,∠AOC=130°,则∠ABC等于( ) A.50° B.60° C.65° D.70°2.(2012·苏州)如图,已知BD是⊙O的直径,点A、C在⊙O上,AB=BC,∠AOB=60°,则∠BDC的度数是( )A.20° B.25° C.30° D.40°3.(2012·襄阳)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是( ) A.80° B.160° C.100° D.80°或100°4.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为( )A.6 B.13 C.13 D.213第1题图第2题图第4题图第5题图第6题图5.(2012·泰安)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论中不成立的是( )A.CM=DM B.CB=DBC.∠ACD=∠ADC D.OM=MD6.(2012·湘潭)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=( ) A.20° B.40° C.50° D.80°7.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B 的值是( )A.23B.32C.34D.438.如图所示,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( )A .19B .16C .18D .209.(2012·广元)如图,A 、B 是⊙O 上两点,若四边形ACBO 是菱形,⊙O 的半径为r ,则点A 与点B 之间的距离为( )A.2rB.3r C .r D .2r第7题图 第8题图 第9题图 第10题图 第11题图10.如图,在5×5的正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在圆的圆心是( )A .点PB .点QC .点RD .点M11.如图,在Rt△ABC 中,∠ACB =90°,点P 是半圆弧AC 的中点,连接BP 交AC 于点D ,若半圆弧的圆心为O ,点D 、点E 关于圆心O 对称,则图中的两个阴影部分的面积S 1,S 2之间的关系是( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .不确定12.每位同学都能感受到日出时美丽的景色.如图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A 、B 两点,他测得“图上”圆的半径为5厘米,AB =8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,则“图上”太阳升起的速度为( )A .0.4厘米/分B .0.5厘米/分C .0.6厘米/分D .0.7厘米/分二、填空题(每小题4分,共16分)13.(2012·吉林)如图,A,B,C是⊙O上的三点,∠CAO=25°,∠BCO=35°,则∠AOB =度.14.(2012·大连)如图,△ABC是⊙O的内接三角形,若∠BCA=60°,则∠ABO= .第13题图第14题图第15题图第15题图15.(2012·安徽)如图所示,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= .16.(2012·宁波)如图,在△ABC中,∠BAC=60°,∠ABC=45°,AB=22,D是线段BC 上的一个动点,以AD为直径画⊙O分别交AB,AC于点E,F,连接EF,则线段EF长度的最小值为 .三、解答题(共36分)17.(10分)(2012·宁夏)如图,在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.18.(12分)如图,AB 是⊙O 的直径,CD ⊥AB 于点E ,交⊙O 于C 、D 两点,连接BC ,BD ,OF ⊥AC 于点F .(1)请写出三条与BC 有关的正确结论;(2)当∠D =30°,BC =1时,求圆中阴影部分的面积.19.(14分)如图,点C 、D 分别在扇形AOB 的半径OA 、OB 的延长线上,且OA =3,AC =2,CD 平行于AB ,并与弧AB 相交于点M 、N .(1)求线段OD 的长;(2)若tan C =12,求弦MN 的长.希望对大家有所帮助,多谢您的浏览!。

2013中考数学:圆知识点汇总

2013中考数学:圆知识点汇总

2013年中考数学:圆知识点汇总1不在同一直线上的三点确定一个圆。

2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2圆的两条平行弦所夹的弧相等3圆是以圆心为对称中心的中心对称图形4圆是定点的距离等于定长的点的集合5圆的内部可以看作是圆心的距离小于半径的点的集合6圆的外部可以看作是圆心的距离大于半径的点的集合7同圆或等圆的半径相等17切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角18圆的外切四边形的两组对边的和相等外角等于内对角19如果两个圆相切,那么切点一定在连心线上20①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-rr)④两圆内切d=R-r(R>r)⑤两圆内含dr)21定理相交两圆的连心线垂直平分两圆的公共弦22定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形23定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆24正n边形的每个内角都等于(n-2)×180°/n25定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形26正n边形的面积Sn=pnrn/2p表示正n边形的周长27正三角形面积√3a/4a表示边长28如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 29弧长计算公式:L=n兀R/18030扇形面积公式:S扇形=n兀R^2/360=LR/231内公切线长=d-(R-r)外公切线长=d-(R+r)32定理一条弧所对的圆周角等于它所对的圆心角的一半33推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等34推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径35弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角12①直线L和⊙O相交d②直线L和⊙O相切d=r③直线L和⊙O相离d>r13切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线14切线的性质定理圆的切线垂直于经过切点的半径15推论1经过圆心且垂直于切线的直线必经过切点16推论2经过切点且垂直于切线的直线必经过圆心精心整理,仅供学习参考。

2013年中考数学100份试卷分类汇编:直线和圆的位置关系

2013中考全国100份试卷分类汇编直线和圆的位置关系1、(2013•常州)已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关2、(13年山东青岛、7)直线l 与半径r 的圆O 相交,且点O 到直线l 的距离为6,则r 的取值范围是( )A 、6<rB 、6=rC 、6>rD 、6≥r 答案:C解析:当圆心到直线的距离小于半径时,直线与圆相交,所以选C 。

3、(2013•黔东南州)Rt △ABC 中,∠C=90°,AC=3cm ,BC=4cm ,以C 为圆心,r 为半径1),D (﹣2,﹣2),E (0,﹣3).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;(2)若直线l经过点D(﹣2,﹣2),E(0,﹣3),判断直线l与⊙P的位置关系.考点:直线与圆的位置关系;点与圆的位置关系;作图—复杂作图.专题:探究型.分析:(1)在直角坐标系内描出各点,画出△ABC的外接圆,并指出点D与⊙P的位置关系即可;(2)连接OD,用待定系数法求出直线PD与PE的位置关系即可.解答:解:(1)如图所示:△ABC外接圆的圆心为(﹣1,0),点D在⊙P上;(2)连接OD,设过点P、D的直线解析式为y=kx+b,∵P(﹣1,0)、D(﹣2,﹣2),∴,解得,∴此直线的解析式为y=2x+2;设过点D、E的直线解析式为y=ax+c,∵D(﹣2,﹣2),E(0,﹣3),∴,解得,∴此直线的解析式为y=﹣x﹣3,∵2×(﹣)=﹣1,∴PD⊥PE,∵点D在⊙P上,∴直线l与⊙P相切.点评:本题考查的是直线与圆的位置关系,根据题意画出图形,利用数形结合求解是解答此题的关键.圆的切线1、(2013济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B. C.6 D.考点:切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理.专题:计算题.分析:连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC 为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由AB﹣AF求出FB的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.解答:解:连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴OD∥AB,又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB﹣AF=8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选B点评:此题考查了切线的性质,等边三角形的性质,含30°直角三角形的性质,勾股定理,熟练掌握切线的性质是解本题的关键.2、(2013年武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,⊙B的半径为R,则⋂DEA.()9090Rx-πB.()9090Ry-πC.()180180Rx-πD.()180180Ry-π答案:B解析:由切线长定理,知:PE=PD=PC,设∠PEC=z°所以,∠PED=∠PDE=(x+z)°,∠PCE=∠PEC=z°,∠PDC=∠PCD=(y+z)°,∠DPE=(180-2x-2z)°,∠DPC=(180-2y-2z)°,P 第10题图在△PEC中,2z°+(180-2x-2z)°+(180-2y-2z)°=180°,化简,得:z=(90-x-y)°,在四边形PEBD中,∠EBD=(180°-∠DPE)=180°-(180-2x-2z)°=(2x+2z)°=(2x+180-2x-2y)=(180-2y)°,所以,弧DE的长为:(1802)180y Rπ-=()9090Ry-π选B。

2013年全国各地中考数学试卷分类汇编:正多边形与圆

正多边形与圆一.选择题1.(2013山东滨州,7,3分)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为A .6,错误!未找到引用源。

B .错误!未找到引用源。

,3C .6,3D .错误!未找到引用源。

,【答案】:B .【解析】∵正方形的边长为6,∴AB=3,又∵∠AOB=45°,∴OB=3,∴错误!未找到引用源。

,故选B .【方法指导】本题考查了正多边形和圆,重点是了解有关概念并熟悉如何构造特殊的直角三角形,比较重要.由正方形的边长、外接圆半径、内切圆半径正好组成一个直角三角形,从而求得它们的长度.第34章 正多边形与圆2.(2013浙江台州,9,4分)如图,已知边长为2的正三形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在点A 下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为( )A .3B .错误!未找到引用源。

C .4D .错误!未找到引用源。

【答案】:B .【解析】在正三形ABC 中,边长为2,易得o 旋转一周的过程中,若DE 的值最小,则E 点位于y 轴的正半轴上,在正六边形中易得OE=2,此时DE=AO-AD-OE=6-错误!未找到引用源。

-2=4-错误!未找到引用源。

【方法指导】本题考查等边三角形和正六边形的计算,在动态问题中,抓住旋转过程中DE 最小的特殊时刻解决问题。

3.(2013江西南昌,11,3分)如图,正六边形ABCDEF 中,AB=2,点P 是ED 的中点,连接AP ,则AP 的长为( ).A .2错误!未找到引用源。

B .4C .13yD.错误!未找到引用源。

【答案】C【解析】连接AE、BE,由正六边形的性质知,△ABE、△APE为直角三角形,错误!未找到引用源。

,所以错误!未找到引用源。

【方法指导】本题考查了正六边形的有关计算,运用正六边形的性质将正六边形转化为直角三角形或等边三角形是解题的关键。

2012-2013年中考数学试题分类解析专题11:圆

2011-2012年中考数学试题分类解析汇编专题:圆一、选择题1. (2001江苏苏州3分)如图,已知∠AOB=30°,P 为边OA 上一点,且OP=5 cm ,若以P 为圆心,r 为半径的圆与OB 相切,则半径r 为【 】A .5cmB .52cm D 【答案】C 。

【考点】直线与圆的位置关系,含30度角直角三角形的性质。

【分析】作PD⊥OB 于D ,∵在直角三角形POD 中,∠AOB=30°,P 为边OA 上一点,且OP=5 cm , ∴PD=52(cm )。

∵根据直线和圆相切,则圆的半径等于圆心到直线的距离, ∴r=52cm 。

故选C 。

2. (2001江苏苏州3分)如图,在△ABC 中,∠C=90°,AB=10,AC=8,以AC 为直径作圆与斜边交于点P ,则BP 的长为【 】A .6.4B .3.2C .3.6D .8 【答案】C 。

【考点】圆周角定理,相似三角形的判定和性质。

【分析】连接PC ,∵AC 是直径,∴∠APC=90°。

∵在△ABC 中,∠C=90°,AB=10,AC=8,∴∠APC=∠ACB=90°。

∵∠A=∠A,∴△APC∽△ACB。

∴PA ACAC AB=,即PA8810=。

∴PA=6.4。

∴PB=AB-PA=10-6.4=3.6。

故选C。

3.(江苏省苏州市2002年3分)如图,⊙O的弦AB=8cm,弦CD平分AB于点E。

若CE=2 cm,则ED长为【】A. 8cmB. 6cmC. 4cmD. 2cm【答案】A。

【考点】相交弦定理【分析】根据相交弦定理求解:根据相交弦定理,得AE•BE=CE•ED,即ED=4482⨯=(cm)。

故选A。

4.(江苏省苏州市2002年3分)如图,四边形ABCD内接于⊙O,若∠BOD=1600,则∠BCD=【】A. 160︒B. 100︒C. 80︒D. 20︒【答案】B。

【考点】圆内接四边形的性质,圆周角定理。

山东省17市2013年中考数学试题分类解析汇编 专题11 圆

山东17市2013年中考数学试题分类解析汇编 专题11 圆一、选择题1. (2013年山东滨州3分)如图,已知圆心角∠BOC=78°,则圆周角∠BAC 的度数是【 】A .1560B .780C .390D .1202. (2013年山东东营3分)已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程32x x 1=-的根,1O ⊙与1O ⊙的圆心距为1,那么两圆的位置关系为【 】A .内含B .内切C .相交D .外切3. (2013年山东东营3分)如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为【 】A. a πB. 2a πC. 1a 2πD.3a π4. (2013年山东济南、德州3分)如图,扇形AOB 的半径为1,∠AOB=90°,以AB 为直径画半圆,则图中阴影部分的面积为【 】A .14πB .12π- C .12 D .1142π+ 【答案】C 。

【考点】扇形面积的计算,勾股定理,转换思想的应用。

【分析】在Rt△AOB 中,AB ==5. (2013年山东济宁3分)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为【】A.4 B.C.6 D.【分析】连接OD,∵DF为圆O的切线,∴OD⊥DF。

∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°。

∵OD=OC,∴△OCD为等边三角形。

∴OD∥AB。

又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线。

则根据勾股定理得:FG=。

故选B。

6. (2013年山东莱芜3分)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为【】A. C D.3 27. (2013年山东莱芜3分)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为【】A.135° B.122.5° C.115.5° D.112.5°【答案】D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考全国100份试卷分类汇编圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.542、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A.95 B. 245 C. 185 D. 523、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF (C )AD ∥BC (D )ABC ADC ∠=∠4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )cmcmcm 或cmcm或cm5、(2013•广安)如图,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,CD=3cm ,则圆O 的半径为( )cmcmB6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()9、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()10、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()11、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()14、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()15、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.716、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx ﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确...的是()A、当弦PB最长时,ΔAPC是等腰三角形。

B、当ΔAPC是等腰三角形时,PO⊥AC。

C、当PO⊥AC时,∠ACP=300.D、当∠ACP=300,ΔPBC是直角三角形。

19、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.20、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为cm.21、(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.22、(2013•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.23、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.24、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.25、(2013哈尔滨)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O 的半径为52,CD=4,则弦AC的长为.26、(2013•张家界)如图,⊙O 的直径AB 与弦CD 垂直,且∠BAC=40°,则∠BOD= .27、(2013•遵义)如图,OC 是⊙O 的半径,AB 是弦,且OC ⊥AB ,点P 在⊙O 上,∠APC=26°,则∠BOC= 度.28、(2013陕西)如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点, 且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点,若⊙O 的半径为7, 则GE+FH 的最大值为 .29、(2013年广州市)如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P的坐标为 ____________.第16题图30(2013•白银)如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.(1)若OC=5,AB=8,求tan∠BAC;(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.31、(2013•黔西南州)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O的直径.32、(2013•恩施州)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB 于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.33、(2013•资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.答案1.答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决. 2.答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =1853.【解析】由垂径定理可知:(A )一定正确。

由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。

因为ABC ADC ∠∠和所对的弧是劣弧AC ,根据同弧所对的圆周角相等可知(D )一定正确。

【答案】C=AC===4==2AC=AB=4cm AC=求出AD===4mABAB====2=2OC===51 1.=,正确,故本选项错误;==.BAC==,BAC=∴=,DE=15.分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键16考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.,,NO=MN=4OD===2,,=10AD===中点,由圆周角定理可得∠ADB=∠∴=,ADB=CD=2∴所在圆的半径为:OD=AB=2AD=2=2..25考点:垂径定理;勾股定理。

切线的性质。

分析::本题考查的是垂径定理的应用切线的性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键。

解答:连接OA,作OE⊥CD于E,易得OA⊥AB,CE=DE=2,由于CD∥AB得EOA三点共线,连OC,在直角三角形OEC中,由勾股定理得OE=32,从而AE=4,再直角三角形AEC中由勾股定理得AC=中点,由圆周角定理可得∠∴=,,根据垂径定理的即可求得:=∴=,28考点:此题一般考查的是与圆有关的计算,考查有垂径定理、相交弦定理、圆心角与圆周角的关系,及扇形的面积及弧长的计算公式等知识点。

解析:本题考查圆心角与圆周角的关系应用,中位线及最值问题。

连接OA,OB,因为∠ACB=30°,所以∠AOB=60°,所以OA=OB=AB=7,因为E、F中AC、BC的中点,所以EF=AB21=3.5,因为GE+FH=GH-EF,要使GE+FH最大,而EF为定值,所以GH取最大值时GE+FH有最大值,所以当GH为直径时,GE+FH的最大值为14-3.5=10.529分析:过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键OE=BAC==可以确定∠,即=∴=,AD=AF=1AD=DF=,即AG=2AE=OE=所对的圆周角,等于所对的圆周角AE=AC=×OE=(r=所对的圆周角,。

相关文档
最新文档