永磁同步电动机齿槽转矩的测量方法图解

合集下载

永磁电机齿槽转矩及其计算方法探究

永磁电机齿槽转矩及其计算方法探究

永磁电机齿槽转矩及其计算方法探究随着环保意识和节能理念的普及,永磁电机作为一种高效、可靠、节能的电机,被广泛应用于工业和民用领域。

永磁电机不仅拥有优良的速度控制性能和负载响应性能,还能在补偿系统和传动系统中发挥非常重要的作用。

但是,在永磁电机的性能设计和有效应用中,齿槽转矩的计算是至关重要的。

一、永磁电机的齿槽转矩齿槽转矩是永磁电机的一种特殊转矩,是由于永磁体和锯齿型铁芯之间的相互作用所引起的。

在同步运行电机中,锯齿型铁芯中的齿槽产生磁场,而永磁体中的磁场被磁通链裹着,如果有些磁通链与锯齿型铁芯中的齿槽产生剪切,则会发生永磁体的转动。

这个现象就是齿槽转矩。

二、齿槽转矩计算方法1、永磁电机的齿槽转矩计算可以通过齿槽系数来实现。

齿槽系数是指永磁电机中锯齿型铁芯的齿槽数目与角度之比。

齿槽系数越大,齿槽转矩就越大。

可以通过调整永磁电机的齿槽系数提高转矩的质量和性能。

2、永磁电机的齿槽转矩还可以通过计算磁场分布来估算。

磁场分布是模拟器得到的理论计算值,可以提供永磁电机转矩的数值。

通常情况下,计算磁场分布需要使用有限元分析方法,因此需要使用各种软件进行计算。

3、另外一种方法是使用电机参数来计算永磁电机的齿槽转矩。

这种方式根据公式:T=K×Bp×Imax×A;其中,T是电机的齿槽转矩,K是系数,Bp是永磁体磁场密度,Imax是电机的电流峰值,A是永磁体和铁芯之间的面积。

这种方法可以快速计算永磁电机的齿槽转矩,但是需要知道有关永磁体参数和电路参数。

三、永磁电机齿槽转矩的影响因素1、永磁体的磁场强度和形状。

永磁体的磁场密度和形状对齿槽转矩的大小和效果有很大影响。

磁场强度越大,齿槽转矩越大。

2、永磁体和铁芯之间的面积。

面积越大,齿槽转矩越大。

3、电流峰值大小。

电流峰值越大,齿槽转矩越大。

四、结论永磁电机齿槽转矩的计算是永磁电机性能设计的一个重要步骤。

齿槽转矩的大小直接影响永磁电机的转矩质量和性能。

ANSYS-Maxwell-2D求解齿槽转矩的几种方法

ANSYS-Maxwell-2D求解齿槽转矩的几种方法

ANSYS-Maxwell-2D求解齿槽转矩的几种方法ANSYS Maxwell 2D求解齿槽转矩的几种方法齿槽转矩是永磁电机特有的问题之一,是高性能永磁电机设计和制造中必须考虑和解决的关键问题。

其表现是当永磁电机绕组不通电时,永磁体和定子铁芯之间相互作用产生的转矩,它是永磁体与电枢齿之间相互作用力的切向分量引起的。

Maxwell 2D可以有效仿真得出永磁电机电磁方案的齿槽转矩,且方法较多。

本文以R17.2 RMxprt中的自带案例4极24槽“assm-1”为模板,介绍3种方法。

打开该案例后,首先将系统中的案例另存到工作目录下,然后在DesignSettings 中设置“Fractions 1”,计算并生成Maxwell 2D瞬态场算例。

复制该算例,将新算例修改为静磁场算例,并分别再复制一次静磁场和瞬态场算例,删除RMxprt 算例,按照图1重命名各个算例。

图1 算例重命名1静磁场扫描转子旋转角度首先选中转子轭和4个永磁体,做旋转操作,在弹出窗口中设置旋转角度为变量“my_ang”,并定义变量初始值为“0 deg”,如图2所示。

图5 结果调用界面重命名该结果报告为“Cogging_ Torque”,齿槽转矩结果如图6所示。

图6 扫描转子旋转角度所得齿槽转矩曲线值得注意的是,RMxprt一键有限元生成的表贴式永磁体充磁方向为径向充磁,其充磁方向由极坐标定义,即N极充磁方向为R的正方向,S极充磁方向为R的负方向,参考坐标系为“Global”坐标。

而实际工程中常常会遇到平行充磁的电机,对于平行充磁最常用的处理方式是建立参考坐标系,永磁体的充磁方向参考特定参考坐标系的X轴正方向。

而在上述操作中,参考坐标系无法跟随转子旋转,使用本方法分析平行充磁时的结果将是错误的,因此可以利用第2种方法分析齿槽转矩。

2静磁场扫描定子旋转角度打开“2_Cogging_Torque_MS_Stator”算例,首先选择“Stator”和所有的线圈,做旋转操作,设置旋转角度为变量“my_Stator_ang”,变量初始值为“0 deg”,如图7所示。

永磁同步电机齿槽转矩的分析

永磁同步电机齿槽转矩的分析

(即两个相邻齿的距离 )大小就可 以改变G 的值


这样会引起气 隙磁导 的变化 ,从而使齿槽 转
理论 与 设计
永磁 同步 电机 齿槽 转 矩 的分析
朱 兴 旺 方 超 李 勇 吴 帮超 刘 丰 广东 工 业 大 学 (510006)
Analysis on the Cogging Torque of Perm anent M agnet Synchronous M otor
K eywords:PM SM cogging torque slot—pole m atch perm anent m agnet w ith unequal thickness
能不过多地 增加工艺的难度和制造成本。
l 齿槽转 矩的削弱
齿槽转矩是由永磁电机的特殊结构引起 的, 是电机 固有 的,无法完全消除,只能最 大程 度地 削弱 。齿槽 转 矩 表 现 为 电机 的永 磁体 和 相 对 的 齿 槽 结 构 间相 互作 用 的切 向力 。这 种 力会 引起 永 磁 体 和 齿槽 保 持 对齐 的趋 势 ,即使 电机 不 通 电这个 力也不会消失 。这是因为在 电机的转 子转动时, 电枢齿周围的磁场基本不 变,而永磁体 两侧相对 的 电枢 齿所 在 的一 小段 区域 内 ,磁导 发 生 了较 大 的变化 ,从而 引起了能量的变化 ,进而 就产生了 齿槽转矩 。当电枢绕组不通 电时,电机的磁场能 量 为 :
ZH U Xingwang FANG Chao LI Yong
Bangchao LIU Feng
G uangdong U niversity of Technology
摘 要:对常用 的永磁 同步 电机 (PMSM)的槽 极配 合进行分析 ,选 择最佳 的槽极配合 ,并用有 限元分析软件 Maxwe11进 行仿 真 ,提 出了利用不等厚 永磁体来 有效 削 弱PMSM的齿槽转 矩从而提 高电机性能的方 法。

永磁同步电动机齿槽转矩的补偿方法

永磁同步电动机齿槽转矩的补偿方法

永磁同步电动机(PMSM)的齿槽转矩(Cogging Torque)是由于定子和转子齿槽结构之间的相互作用导致的一种非线性力矩,它在电机旋转过程中会引起周期性的扭矩波动,对电机平稳运行、低速性能及定位精度造成影响。

以下是一些常见的补偿方法:
1. 设计优化:
- 改变齿槽形状:通过采用斜槽、不等分槽或错齿技术来改变定子和转子槽的几何形状,减少齿槽效应产生的均匀间隔的磁场分布。

- 调整极槽配合:例如使用斜极技术,使得磁极与槽之间不对齐,从而分散齿槽转矩峰值。

2. 磁极弧度修正:
- 磁极弧度的微小变化可以减小齿槽转矩,通过精确计算和制造工艺实现磁极形状的小幅修正。

3. 电气补偿:
- 注入反向电流:通过控制算法,在电机运行时向定子绕组注入特定的反向电流,以抵消齿槽转矩的影响。

- 磁场定向控制系统中的补偿算法:在高级矢量控
制中,利用观测器或模型预测控制器(MPC)估计并实时补偿齿槽转矩。

4. 机械补偿:
- 转子或定子结构上的机械预加载,虽然这种方法不常见且实施复杂,但在某些特殊应用中可能会用到。

5. 软件补偿:
- 在伺服驱动器的控制软件中加入齿槽转矩补偿算法,根据电机特性和实际测量数据进行动态补偿。

6. 材料和制造改进:
- 使用高磁导率材料或者优化铁芯叠片的厚度和绝缘涂层,减少气隙不均匀性。

现代电机控制技术通常结合多种方法共同作用,以有效降低永磁同步电动机的齿槽转矩,并提高其整体性能。

永磁同步电机齿槽转矩分析与控制总结

永磁同步电机齿槽转矩分析与控制总结

永磁同步电机齿槽转矩分析与控制总结齿槽转矩是永磁电机固有的特性,它会使电机产生转矩脉动,引起速度波动、振动和噪声,当转矩脉动的频率与电机定、转子或端盖的固有频率相等时,电机产生共振,振动和噪声会明显增大。

齿槽转矩也会影响电机的低速性能和控制精度。

1.齿槽转矩定义:转子在旋转过程中,定子槽口引起磁路磁阻变化, 转子磁通与定子开槽引起的气隙磁导(磁阻的倒数)交互作用在圆周方向产生的转矩为齿槽转矩。

齿槽转矩也称定位转矩,它的产生来自永磁体与电枢齿间的切向力,使转子有一种沿着某一特定方向与定子对齐的趋势.2.齿槽转矩影响因素:齿槽形状、磁极极弧系数、永磁体形状、极槽配合、气隙、磁场强度等.3.齿槽转矩每机械周期齿槽转矩周期数:N co=LCM(Z,2p),Z为槽数,2p为极数,LCM表示最小公倍数.4.齿槽转矩一个周期机械角度为:θsk=360°/N co5.齿槽转矩基波频率为: f c=N co n s=N co fpn s=fp(r/s)为同步转速,p为极对数,f为电源频率.6.齿槽转矩的通用表达式:T co=∑T n∞n=1sin(nN coθ+ϕn)n=1时对应的齿槽转矩的基波幅值为T1, θ为转子机械角位置.7.齿槽转矩的计算:齿槽转矩可以通过计算响应区域的磁能积得到,T ec=dW cdθ,式中,磁共能:W c=∫Bθ22μ0d(υr)(J)对气间隙区域应用麦克斯韦张力张量法计算齿槽转矩,有:T ec=LL gμ0∫rB nS gB t ds,L为有效转子长度;L g为气隙长度;μ0为自由空间磁导率;r为虚拟半径;B n和B t为气间隙磁通的径向和切向分量;S g为气隙表面积.8.降低齿槽转矩措施:1)无槽绕组:采用无槽绕组可以完全消除齿槽转矩,但气隙磁通密度会降低,需要增加永磁体的材料(高度).2)定子斜槽:通常定子斜槽等于一个槽距,可将齿槽转矩降为零,但定子斜槽减小电动势,电机性能会下降,转子偏心情况,斜槽有效性降低。

永磁电机齿槽转矩测试的必要性和方法

永磁电机齿槽转矩测试的必要性和方法

永磁电机齿槽转矩测试的必要性和方法
永磁电机齿槽转矩测试的必要性和方法
近年来随着永磁材料的发展,永磁电机成了电机行业的新宠。

然而在永磁电机中,齿槽转矩的存在给电机的控制性能造成了很大的影响,那齿槽转矩到底是怎幺产生的?我们又该怎幺去测呢?
玩过永磁电机的朋友都有过类似的经历:我们在电机掉电的情况下去转电机的转子,发现会有一种卡顿的感觉,而不像传统直流电机那幺顺畅的就能把转子徒手转起来。

这种卡顿其实就是因为永磁电机存在齿槽转矩。

永磁电机内部结构图如图1所示,齿槽转矩是永磁电机的固有的特征之一,它是在电枢绕组不通电的状态下,由永磁体产生的磁场同电枢铁心的齿槽作用在圆周方向上产生的转矩。

它其实是永磁体与电枢齿之间的切向力,使永磁电动机的转子有一种沿着某一特定方向与定子对齐的趋势,试图将转子定位在某些位置,由此趋势产生的一种振荡转矩就是齿槽转矩。

基于ANSOFT的永磁同步伺服电机齿槽转矩分析

基于ANSOFT的永磁同步伺服电机齿槽转矩分析

①r 0第 32 卷 第 4 期 佳 木 斯 大 学 学 报 ( 自 然 科 学 版 ) Vol . 32 No . 4 2014 年 07 月 Journal of Jiamusi University ( Natural Science Edition) July 2014文章编号: 1008 - 1402( 2014) 04 - 0559 - 04基于 ANSOFT 的永磁同步伺服电机齿槽转矩分析黄金霖1 , 易 靓2 , 曹光华1( 1. 安徽机电职业技术学院电气工程系,安徽 芜湖 241000; 2. 江西理工大学电气工程与自动化学院,江西 赣州 341000)摘 要: 齿槽转矩是永磁电机的固有属性,引起电机的转矩波动,产生振动和噪声. 为减小齿槽 转矩,提高永磁伺服电机的控制精度,在研究永磁电机齿槽转矩产生机理的基础上,根据永磁电 机齿槽转矩的解析式,研究定子齿部开辅助槽和转子磁极偏移对永磁电机齿槽转矩的影响; 利用 有限元软件 ANSOFT ,建立 36 槽 8 极永磁伺服电机的有限元分析模型,计算不同尺寸辅助槽和 磁极偏心距离时的齿槽转矩,分析辅助槽尺寸和磁极偏心距离对齿槽转矩的影响. 研究结果表 明,合理的辅助槽尺寸和磁极偏心距离可有效削弱永磁伺服电机的齿槽转矩. 关键词: 齿槽转矩; 磁极偏心; 辅助槽; 永磁电机中图分类号: TM303 文献标识码: A随着矢量控制算法、电力电子器件和计算机 控制技术的不断发展,永磁伺服电机的应用越来越 广. 在数控机床、小型机器人、机械传动设备以及混 合电动汽车等领域,永磁伺服电机已经代替传统的 异步电机和直流电机,成为许多领域必不可少的传 其中,μ0 是空气磁导率.根据式( 1) 、( 2) 以及气隙磁密随着电机定转 子相对位置角和沿气隙切向不同位置分布的解析 表达式,得到齿槽转矩的表达式为: 动设备[1].T= -12πL Fe ( R2 - R2)∞nG B sinnz α 永磁伺服电机结构与普通异步电机相比,转子 永磁体取代了传统的转子绕组,转子永磁体的存 cog2μ0α∫B dV = 4μ2 1∑ n = 1 nzn 2p( 3)在,使得电机的效率和功率密度高; 与此同时,转子 永磁体与定子槽相互作用,产生齿槽转矩,使得电 机转矩波动增加,产生振动与噪声,影响伺服电机 的控制精度. 齿槽转矩是永磁电机特有的属性,因 此,怎样减小永磁电机的齿槽转矩成为相关专家学 者研究的重点之一[2].1 齿槽转矩产生机理齿槽转矩是永磁电机固有属性,是指电机空载 运行时,永磁体磁极和定子铁心之间的相互作用而 产生的转矩. 它体现了磁极与电枢槽口之间相互作 用力的切向分量的波动[3].根据其定义,可得出齿槽转矩的计算表达式如下:T = - Wcogθ气隙与永磁体磁场中的能量又可以表示为:由式 3 可知,永磁电机的齿槽转矩随着定子槽 数、永磁体的尺寸、极弧系数等值的变化而变化,式 3 为齿槽转矩的削弱提供了理论研究依据[4].2 有限元模型的建立2. 1 电机结构本文设计一台 36 槽 8 极永磁同步伺服电机,以此 为 研 究 对 象,利用有限元分析软 件 Ansoft Mawell 14. 0,研究定子齿开辅助槽、磁极偏移对永 磁同步伺服电机齿槽转矩的影响,提出减小齿槽转 矩的一些方法. 电机的技术指标和具体尺寸分别如 表 1,2 所示. 根据主要尺寸,建立电机的有限元分析模型,1 2W = W air + W PM =2μ ∫B dV( 2)如图 1 所示. 电机由定子铁芯、定子绕组、永磁体、①收稿日期: 2014 - 04 - 30基金项目: 国家自然科学基金青年基金项目( 51267006) ; 江西省自然科学基金项目( 20122BAB206031) . 作者简介: 黄金霖( 1988 - ) ,女,江西赣州人,硕士研究生,助教,研究方向: 永磁电机的设计与分析.定子外径 122. 3mm 转子外径 78mm 定子内径 80mm 转子内径 30mm 定子槽数36 磁极对数 4 减重孔个数8气隙长度 / mm1h 560 佳 木 斯 大 学 学报 ( 自 然 科 学 版 ) 2014 年转子铁心和转轴等部分组成; 永磁同步伺服电机对 控制精度的要求较高,为减小电机的转动惯量,采 用转子开减重孔的结构.表 1 永磁同步伺服电机的技术指标对永磁体的磁动势和磁导分别进行傅里叶分 解,得到:Λ( θ) = ∑Λn cos( kQ θ)( 5) nF 2( θ,θ ,l) = f cos2pv( θ - θ )( 6)额定功率 / kW 4. 5 额定电压 / V 220 额定转速 / rpm 3000 额定转矩 / N . m14. 33表 2 电机的主要尺寸∑ vv式中 θ0 为永磁电机中,定子某齿的中心轴线 与磁极中心线的的初始角度,θ 是磁极与某固定定 子齿相差的角度; Q 为定子槽数,p 为磁极对数,Λn 为 第 n 次磁导谐波幅值,f v 为第 n 次磁动势谐波幅值. 将式( 5) ,( 6) 带入式( 2) 中得到: n12πT cog = - 式中,D4 D α l ∑Λn f n I ∫0 cosn θcos( θ - θ0) d θ ( 7)枢直径,n 为定子槽数 Q 与磁极对数 2p图 1 电机结构图2. 2 空载磁场分布建好模型后,确定合适的求解场,分配正确的 材料属性,施加边界条件,选择合适的激励源方式, 确定所需的时间步长,得出电机的空载磁通分布如 图 2 所示.图 2 永磁同步伺服电机空载磁通分布图 网格剖分时应注意,齿槽转矩的大小受网格剖分的 影响较大,应该精确剖分电机的 band 和气隙部分.3 定子齿开槽减小齿槽转矩由磁路的基础知识,永磁体的磁导为μ0a 电的最小公倍数. 由式( 7) 可知,只有当磁动势的谐波次数与磁导的谐波次数相同时,永磁电机才会产 生齿槽转矩; 且随着谐波次数的增加,与之对应的 磁势谐波与磁导谐波幅值随之减小,则齿槽转矩也 减小,当在每个定子齿上开 m 个槽,相当槽数由 Q 增 加 为 ( m + 1) Q , 则 当 LCM( ( Q + 1) m ,2p) / LCM( Q ,2p) 不等于 1 时,就增加了基本齿槽 转矩次数,则降低了齿槽转矩,其中 LCM( Q ,2p) 为 Q 与 2p 的最小公倍数.文献 5 研究表明,定子齿开辅助槽可有效的减 小永磁伺服电机的齿槽转矩,达到减小电机的振动 和噪声的目的[5]. 开辅助槽时,应注意辅助槽的间 隔相等,大小相等,均匀分布在定子齿上.图 3 不同结构的辅助槽3. 1 辅助槽槽型对齿槽转矩的影响辅助槽的形状和电机的定转子槽一样,也可以 选择不同的槽型结构,确定具体槽型尺寸的前提 下,分别选取不同的槽型结构( 三角形槽、矩形槽、 圆形槽) ,如图 3 所示. 对其进行有限元分析,分析不 同槽型结构对永磁同步伺服电机齿槽转矩的影响.三种 辅助槽型尺寸分别为矩形槽槽宽为 1mm ,槽深为 0. 4mm; 三角形槽的槽宽为 2mm ,槽 深为 0. 8mm; 圆形槽的半径为 0. 5mm . 得到的齿槽 Λ( θ) =m ( 4)+ g( θ)转矩波形图如图 4 所示.第4 期黄金霖,等: 基于ANSOFT 的永磁同步伺服电机齿槽转矩分析561图4 不同槽型结构的齿槽转矩波形由图 4 可知,不同槽型的辅助槽,永磁电机齿槽转矩幅值的大小不同.其中,矩形槽降低齿槽转矩的效果最好,圆形槽次之,三角形槽最差.图5 槽口宽度对齿槽的影响图6 槽深对齿槽转矩的影响3.2 辅助槽尺寸对齿槽转矩的影响定子齿开辅助槽虽可有效减小永磁电机的齿槽转矩,但辅助槽的尺寸对齿槽转矩有较大影响,选择合适的尺寸可以进一步减小永磁电机齿槽转矩[6]; 若槽口和槽深选择不当,反而会增大电机的齿槽转矩.建立定子齿开矩形槽的永磁同步伺服电动机有限元分析模型,研究不同辅助槽型尺寸对电机齿槽转矩的影响,得出齿槽转矩波形图.图 5 与图6给出了辅助槽的槽口宽度和槽深,对电机齿槽转矩的影响.由图5、6可知,永磁电机的齿槽转矩随着辅助槽槽口宽度的增大先增大后减小再增大,当辅助槽槽口的宽度为0.6mm 时,即为定子槽口宽度的一半时,齿槽转矩达到最小值; 齿槽转矩随着辅助槽槽深的增大先减小后增大,当辅助槽深为0.4mm时,齿槽转矩达到最小值.此外,开辅助槽时,辅助槽要均匀的分布在电枢齿上,辅助槽的槽口宽度和槽深要选取合适,太深会导致齿部磁密过大,太浅达不到明显的效果.图7 磁极偏心结构图8 偏心电机的齿槽转矩波形图9 偏心电机的空载反电势波形4 磁极偏心对齿槽转矩的影响开辅助槽虽可有效的降低齿槽转矩,但加工难度较高,而且定子齿开辅助槽会产生高次谐波,有些场合对电机的控制精度要求很高,开辅助槽一般不能满足需要.对于表面式结构的永磁伺服电机,r 562 佳 木 斯 大 学 学 报 ( 自 然 科 学 版 ) 2014 年还可以采用磁极偏心的结构来减小永磁电机的齿槽转矩[7,8].不采用采用偏心磁极的结构时,其气隙径向磁 密为h m( 1) 定子齿部开辅助槽可有效减小永磁电机 的齿槽转矩; ( 2) 辅助槽型的形状影响齿槽转矩的 大小,其中矩形槽的效果最好,三角形槽最差; ( 3 ) 辅助槽的尺寸影响齿槽转矩的变化,随着辅助槽深 度的增加,齿槽转矩的幅值先减小,后增大; 随着辅 B( θ) = B r ( θ)( 8) h m + g( θ)助槽槽口宽度的增大,齿槽转矩先增大,再减小,最采用偏心磁极的结构时,永磁电机的永磁体内 外径不同心( 如图 7 所示) ,外圆的圆心为,半径为 Ro1 ,内圆的圆心为,半径为 Ro2 . O 1 和 O 2 之间的距 离为永磁体的偏心距离,用 h_px 表示.其气隙磁密的径向分布为:后增大; ( 4 ) 在保证永磁伺服电机性能的条件下, 采用磁极偏心的结构可有效的降低永磁电机的齿槽 转矩. 参考文献:h_px h _p x[1] 刘细平,郑爱华,王晨. 偏心与此同步伺服电动机优化设计 B'( θ) = B r ( θ) h_px + g( θ) ' = B r ( θ) h m + g( θ) [J ]. 微特电机,2012,40( 10) : 23 - 25. [2] Kyu Yun Hwang ,Hai Lin ,Se Hyun Rhyu . A Study on the Novel=h_pxB ( θ)h m h mm θh m= B r '( θ)h + g( θ)m ( 9)Coefficient Modeling for a Skewed Permanent Magnet and Over-hang Structure for Optimal Design of Brushless DC Motor [J ].I EEE Transactions on Magnetics ,2012,48( 5) : 1918 - 1923.由公式( 3) 和( 9) 可知,当 Ro1 和 Ro2 等参数不 变时,永磁电机齿槽转矩的大小只与气隙磁密的分 布有关,因此只要改变磁极形状,使得相应的径向 磁密分布减小,就可减小齿槽转矩[9,10].建立偏心永磁伺服电机的有限元分析模型,分 析磁极偏心的距离对齿槽转矩的影响,如图 8 所 示. 图 9 是磁极偏心时,电机空载反电势的波形图.由图 8 可知,磁极偏心距离 h_px = 15mm 时, 电机的齿槽转矩达到最小值; 由图 9 可知,改变磁 极的偏心距离,电机空载反电势的大小基本不变, 波形正弦性保持较好. 因此,合适的磁极偏心距离 可有效削弱永磁电机的齿槽转矩.5 结 论本文在研究齿槽转矩解析式的基础上,采用有 限元分析的方法,提出减小齿槽转矩的一些方法, 研究表明:[3] 王秀和. 永磁电机[M ]. 2 版. 北京: 中国电力出版社,2007. [4] 王秀和,丁婷婷,杨玉波. 自起动永磁同步电动机齿槽转矩的研究[J ]. 中国电机工程学报,2005,25( 18) : 166 - 170. [5] 夏加宽,于冰. 定子齿开槽对永磁电机齿槽转矩的影响[J ].微电机,2010,43( 7) : 13 - 16. [6] 罗宏浩,廖自力. 永磁电机齿槽转矩的谐波分析与最小化设计[J ]. 电机与控制学报,2010,14( 4) : 36 - 40. [7] 杨玉波,王秀和,张鑫等. 磁极偏移削弱永磁电机齿槽转矩方 法[J ]. 中国电机工程学报,2006,21( 10) : 22 - 25.[8] Zhu Z Q . Evaluation of Superposition Technique for Calculating Cogging Torque in Permanent Magnet Brush Less Machines [J ].I EEE ,Trans . on magnetics . 2006,42( 5) : 1597 - 1603.[9] Nakamura K ,Fujimoto H ,Fujitsuna M . Torque Ripple Suppres- sionControl for Pm Motor with Current Control based on PTC .I n: Proc 0f Power Electronics . Conference ( IPEC ) ,Sapporo , 2010: 1077 - 1082.[10] 杨玉波,王秀和,丁婷婷. 基于单一磁极宽度变化的内置式 永磁同步电 动 机 齿 槽 转 矩 削 弱 方 法[J ]. 电 工 技 术 学 报, 2009,24( 7) : 41 - 45.Cogging Torque Analysis of Permanent Magnet SynchronousMotor Based on ANSOFTHUANG Jin - lin 1, YI Liang 2, CHAO Guang - hua1( 1. Department of Electrical Engineering ,Anhui Technological College of Machinery and Electricity ,Wuhu 241000,China; 2. School of Electrical Engineering and Automation ,Jiangxi University of Science and Technology ,Ganzhou 341000,China)Abstract: Cogging torque could cause the motor 's torque ripple occurred ,and lead to mechanical vibration and acoustic noise . In order to weaken the PMSM 's cogging torque and improved control precision ,this paper based on the study of cogging torque 's generating mechanism ,according to the analysis formula of cogging torque , the impact of assist slot and PM eccentric distance affected the cogging torque was researched . The FEA software ANSOFT was used ,the FEA model of 36 slots 8 pole was established ,the cogging torque of different assist slot 's size and PM eccentric distance has been calculated ,and the influence of assist slot 's size and PM eccentric dis- tance to cogging torque were analyzed . The results indicate that a reasonable assist slot size and eccentric dis- tance could help to reduce the PMSM 's cogging torque .Key words: cogging torque; eccentric; assist slot; permanent magnet machines。

几种简单的齿槽转矩测量方法

几种简单的齿槽转矩测量方法

F N h o i , o gh n , I G Y n i A ucu , N ig eg E G Z abn WU K nse g D N u f ,H N G i n WA G Qn pn g e h ( a a un yn c n ea dT c nlg nier gC . t , a a 6 0 C N) D l nG ag agSi c n eh o yE g e n o ,Ld D l n16 0 , H i e o n i i 1
置, 即稳定平衡点 ; 电磁转矩为零 , 偏离时都有 回复到
该位 置 的作 用 转 矩 , 趋 于 另一 相 邻 的稳 定 平 衡 点 。 或
可 见转 矩 的作 用方 向是交 变 的 , 常 所说 的定 位 转矩 通
是 指交 变 幅值 。 由于 定位 转 矩 主 要源 于定 子齿 槽 , 所 以也被 叫做齿 槽转 矩 , 者 叫做齿槽 定位 转矩 。 或 在 永磁 电动 机 中 , 槽转 矩常 常成 为引起 振动 、 齿 噪 声 和提 高控 制精 度 困难 的基 本 原 因。 因此 , 何 测 量 如 齿 槽转 矩也 是受 到相 当关注 的 问题 。本 文介绍 几种 齿
的位 置 。正 因为这样 , 常把 永 磁 电 动机 不 通 电且 绕 常 组开 路情 况下 转动转 子 的转矩称 为定 位转 矩 。 定位 转矩 的产 生主要 源于定 子齿槽 的存 在 。当永 磁转 子 的磁极 与定 子齿 槽 的相对 位 置 不 同时 , 主磁 路
槽转 矩 的测 量方 法 。
( )4 — 1 1 :4 5 .
图 1 杠杆测量法
杠 杆测 量法是 一种 非常 简单 、 直观 、 易实 现的测 量
方法 , 但是 精度很 难保证 , 以常在 测量要 求精 度不 高 所 或者 条件 受 限 时采 用 。测 量 时 需 注 意 几 点 : 1 杠 杆 ()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永磁同步电动机齿槽转矩的测量方法图解
齿槽转矩是指永磁同步电动机绕组开路时,电机回转一周内,由于电枢铁心开槽,有趋于最小磁阻位置的倾向而产生的周期性转矩。

永磁同步电机的三相绕组在不通电且绕组开路的情况下,用手轻轻转动转子,你会感觉到转子上面有一个力在与你较劲。

这个力在一圈的范围内大小不均匀,而且会发现转子具有若干个定位点。

在自然的状态下转子保持在这些定位点,只有外界施加一定的力,才能改变转子的位置,正因为这样齿槽转矩也被称为定位转矩。

齿槽转矩的产生主要是由于定子齿槽的存在,齿槽转矩的产生会造成电机运行中的振动、噪声、启动和调速控制困难。

如何抑制或消除齿槽转矩一直是永磁电机研究的重要方向,准确测量齿槽转矩可以为永磁电机设计和控制提供帮助,下面本文对几种齿槽转矩测试方法进行对比介绍。

一、传感器的动态测量方法测量齿槽转矩
图示1:使用传感器的动态测量方法示意图
如图1所示,被测电动机通过转矩传感器与制动器(例如磁粉制动器)相连,制动器加载,被测电动机稳速运转,从转矩测试仪直接测量转矩瞬时值(图2),在测得的转矩值中求得齿槽转矩值。

图示2:转矩测试仪测得的转矩瞬时值
这种测量方法测得的转矩包含了被测电动机自身的齿槽转矩、控制器控制引起的脉动转矩(闭环控制运行条件下情况更为复杂)和负载引起的脉动转矩。

所以为了能得到最接近真实的齿槽转矩,测试时需注意几点:
1) 要求负载自身的脉动转矩要小(建议采用磁粉制动器);
2) 要求传感器系统的采样速率要高(建议3K以上),能实现动态转矩测量;
3) 要求转矩检测仪器能够进行数据处理。

二、步进电机的静态测量方法测量齿槽转矩
图示3:使用步进电动机的静态测量方法示意图
如图3所示,将步进电动机、转矩传感器和被测电动机固连载同一轴线上,通过控制脉冲数使步进电动机精确地将被试电机转子旋转一定角度后,步进电动机利用自身的保持转矩作为转矩传感器的一个固定端,这样齿槽转矩就作用在转矩传感器上,从测试仪可以直接独处齿槽转矩。

测量过程中还应注意几点:
1) 由于大多数电动机的齿槽转矩都比较小,为了提高转矩传感器的测试精度,可以在被测电动机侧增加一偏置重物,提高测试质量;
2) 针对齿槽较多的被测电动机,步进电动机的步数应该足够多;
3) 为避免引入步进电动机运转的波动,步数之间的间隔时间应该足够长。

三、测电压法测量齿槽转矩
图示4:测电压法示意图
测试系统示意图如图4所示,它主要由步进电机、机械分度头及电参量测量仪组成。

步进电机和被测电机转子轴作刚性连接,机械分度头爪夹住步进电动机的外壳,控制步进电机转过角度。

在步进电机中如果给其中一相绕组通直流电,其他两相绕组加以交流电压,由
于步进电机中三相绕组间的耦合关系,就会在通直流电的绕组上产生感应电势,感应电势的大小取决于步进电机中的气隙磁通。

根据步进电机的矩角特性,静态时外加力矩的大小跟失调角有关,而失调角决定转子位置,直接影响气隙磁通。

利用这一原理,可通过检测步进电机通直流电绕组上的感应电势得出被测电机的齿槽转矩。

该方法首先测得步进电机感应电势随力矩变化的曲线,然后连接被测电机,转动分度头,选取采样点,从电压表上读取步进电机通直流电绕组上的电压,计算出感应电势,根据感应电势,查步进电机感应电势-力矩曲线,得到该采样点的齿槽转矩。

使用该方法可以在齿槽转矩的一个周期内进行多采样点测量,但试验方法复杂,操作麻烦,步进电机感应电势与力矩的曲线精度不高,测量误差较大。

四、杠杆测量法测量齿槽转矩
图示5:杠杆测量法示意图
如图5所示,被测电动机不通电,手动拉动数字测力仪,拉到杠杆滑动前瞬间的力的显示值Fmax,乘以力臂长L,就是齿槽转矩幅值(单峰幅值)。

杠杆测量法是一种非常简单、直管、易于实现的测量方法,但是精度很难保证,所以常在测量要求精度不高或者条件受限时采用。

测量时需注意几点:
1) 杠杆垂直向下起始测量(杠杆尽量轻;
2) 手拉时,要尽量保持力F与力臂F垂直;
3) 手拉要保持缓慢、平稳。

电子秤法测量齿槽转矩
五、被测变频器基本参数
图示6:电子秤法示意图
图6所示是利用电子秤测量齿槽转矩的原理图,被测电机的定子用可以精确控制转动角度的装置(如车床,步进电机等)夹紧。

在被
测电机轴伸端加以平衡杆,在平衡杆两端加装以支杆。

测试时,支杆压在电子秤上,在平衡杆上加一配重物,确保不论电机正反转,支杆始终与电子秤接触。

调节电子秤的高度,使平衡杆水平,记录电子秤示数M,保持平衡杆水平,转动电机,每转过一个角度记录一次电子秤示数F。

齿槽转矩为:
用电子秤测量,需要时刻保持平衡杆的水平,试验过程比较繁琐。

六、砝码法测量齿槽转矩
上述的方法大多存在的问题是测量时需要一个高精度的能控制被测电机转角的装置,试验需要的夹装工具较多,且需要针对具体电机设计。

为了简化测量方法,降低试验成本,下
面采用一种新的测量方法——砝码法,测试原理图如图7所示,在转轴上装悬挂砝码的支杆,在定子上安装带角度刻度的圆盘,以方便测出悬挂砝码的力臂以及确定转子转过角度。

图示7:砝码法测试示意图
测量时先用水平仪调节圆盘的0刻度线水平,将加工的支杆安装在电机轴伸端。

在砝码上缠上一定强度较轻的绳索,转动支杆到被测点的刻度,在支杆上轻轻加挂砝码,记录支杆开始转动时的砝码质量M。

用下式计算测得的转矩T:
式中:
g:重力加速度;
θ为被测点的角度。

测得的转矩包含电机的齿槽转矩和摩擦转矩,对于被试电机来说不同位置的摩擦转矩基本不变,齿槽转矩根据理论分析是周期性变化的,可通过求测得转矩最大值和最小值的均值来得到摩擦转矩,最后测得的转矩就能得到齿槽转矩。

测量时要注意以下几点:
1) 根据被测电机齿槽转矩的大小,选择合适长度的支杆和砝码。

2) 砝码要轻轻的挂在支架上。

相关文档
最新文档