常微分方程 练习题

合集下载

常微分方程练习题

常微分方程练习题

常微分方程练习题§1 一阶常微分方程1.求下列微分方程的通解:(1))(22y y y x y '+='-;(2)0)4(2=-+dy x x ydx ;(3)0)2()2(2222=-++-+dy x xy y dx y xy x ;(4)xy x y y x tan =-'; (5)2122⎪⎪⎭⎫ ⎝⎛-++='y x y y ; (6)0)2(=-+dy y xe dx e y y ;(7)0)cos sin 3()1cos (222=-+-dy y y x y dx y x ;(8)0)(4223=+++dy y x y ydy xdx ;(9)0)()(2=++-dy x y dx xy x ;(10)22x xe xy y -=+';(11)x x e x y y x 122-=-';(12)02)6(2=+'-y y x y ;(13)xy y y y y -+='ln 2; (14)0)(24=-+dy x y xydx ;(15)x y x x y y =-+'1412; (16)0]1)[ln(=--'xy y y x ;(17)0cos 232=+-'x x y y xy ;(18)21222sin 22sin 1x e y x y y x ++='+; (19)02)1(322=+'-xy y y x ;(20)y y x y x ++='22)(。

2.求下列微分方程的特解:(1)ydy x xdx y ln ln =,11==x y ;(2)x y x y y tan +=',61π==x y ; (3)022=---'x y y y x ,11==x y ;(4)0)()2(2=+++y x ydy dx y x ,10==x y ; (5)0)1(2=---dx x ydx xdy ,01==x y ;(6)x x y x y 2cos sin cos =+',10==x y ;(7)0tan )sin (=+-ydx dy y x ,61π==x y ;(8)0)cos 1(cos sin ln =-+'y x y y x y x ,π==1x y 。

常微分方程习题集

常微分方程习题集

《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数。

2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。

4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。

二、计算题40%1、求方程2、求方程的通解。

3、求方程的隐式解。

4、求方程三、证明题30%1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。

2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+22.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)=+y=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一. 解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。

(完整版)常微分方程试题及答案

(完整版)常微分方程试题及答案

第十二章常微分方程(A)、是非题1.任意微分方程都有通解。

(X )2.微分方程的通解中包含了它所有的解。

15•微分方程xy |nx 0的通解是y 2In① y 3 In xdx xdy 0是可分离变量微分方程。

② xy 2x dx y x 2y dy 0是可分离变量微分方程。

③ x? y 4是齐次方程。

y 2y 0是二阶常系数齐次线性微分方程。

6. ysiny 是一阶线性微分方程。

(X)7. y 3 3x yxy 不是一阶线性微分方程。

(O )8. y 2y 5y 0的特征方程为r 22r 5 0。

(9. dy 1 xy 2 xy 2是可分离变量的微分方程。

dx、填空题1.在横线上填上方程的名称o )(O )2. sin xy x cosx 的通解中应含 _3个独立常数。

3. 1 e 2x 的通解是-e 2x C 1x C 2。

42x4.1 sin2x cosx 的通解是 -sin2x cosx C 1x C 2。

45. xy 2x 2yx 41是二 ______ 阶微分方程。

3.函数y 3sinx 4cosx 是微分方程y y 0的解。

(0 )4.函数y x 2 e x 是微分方程y 2y y0的解。

(X )C (C 为任意常数)。

(0 )④xyy x 2 sinx 是一阶线性微分方程。

6 .微分方程y y阶微分方程。

1A. 3 B7. y y 满足y L 0 2的特解是(B ) oxA. y e x 1 B . y 2e x C . y 2 e 2&微分方程y y sinx 的一个特解具有形式 A . y a sinx24 .微分方程y 3y 3的一个特解是(cosxC 1e xC 2e x 是方程y y 0的(A ),其中C 1,C 2为任意常数。

A.通解B .特解C .是方程所有的解 D .上述都不对7. 8.丄所满足的微分方程是yx空的通解为y xCx 2。

9.dx dy 0的通解为 x10.dy dx 2yx 15x 1 2,其对应的齐次方程的通解为11. 方程xy 1 0的通解为y 12. 3阶微分方程x 3 * 5的通解为yx 2Cxe 2 o x C 1 x C 2 x C 3 o120三、选择题1 .微分方程 xyy 3y 4y 0的阶数是(D ) oA. 3 B 2 .微分方程x 51的通解中应含的独立常数的个数为3.下列函数中,哪个是微分方程dy 2xdx 0的解(A . y 2xB . y x 2C .2x Dy a cosxy xy 3y 2 011 .在下列函数中,能够是微分方程 y y 0的解的函数是(C )y 1 B . y x C . y sinx D . y.Cx17.微分方程0的解为(B )C . y x asin x bcosxy acosx bsinx9.下列微分方程中,是二阶常系数齐次线性微分方程。

常微分方程试题及答案

常微分方程试题及答案

常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

(完整版)常微分方程试题库.(最新整理)

(完整版)常微分方程试题库.(最新整理)

常微分方程一、填空题1.微分方程的阶数是____________0(22=+-+x y dxdy dx dy n 答:12.若和在矩形区域内是的连续函数,且有连续的一阶偏导数,则),(y x M ),(y x N R ),(y x 方程有只与有关的积分因子的充要条件是 0),(),(=+dy y x N dx y x M y _________________________答:)()1(y Mx N y M φ=-∂∂-∂∂3._________________________________________ 称为齐次方程.答:形如的方程(xy g dx dy =4.如果 ___________________________________________ ,则存在),(y x f ),(y x f dx dy =唯一的解,定义于区间 上,连续且满足初始条件 ,其中)(x y ϕ=h x x ≤-0)(00x y ϕ=_______________________ .=h 答:在上连续且关于满足利普希兹条件 R y ),min(mb a h =5.对于任意的 , (为某一矩形区域),若存在常数使 ),(1y x ),(2y x R ∈R )0(>N N ______________________ ,则称在上关于满足利普希兹条件.),(y x f R y 答: 2121),(),(y y N y x f y x f -≤-6.方程定义在矩形区域:上 ,则经过点 的解的22y x dxdy +=R 22,22≤≤-≤≤-y x )0,0(存在区间是 ___________________ 答:4141≤≤-x 7.若是齐次线性方程的个解,为其伏朗斯基行列式,则满足),.....2,1)((n i t x i =n )(t w )(t w 一阶线性方程 ___________________________________答:0)(1'=+w t a w 8.若为齐次线性方程的一个基本解组,为非齐次线性方程的一个),.....2,1)((n i t x i =)(t x 特解,则非齐次线性方程的所有解可表为_____________________答:xx c x ni i i +=∑=19.若为毕卡逼近序列的极限,则有 __________________)(x ϕ{})(x n ϕ≤-)()(x x n ϕϕ答:1)!1(++n n h n ML 10.______________________称为黎卡提方程,若它有一个特解 ,则经过变换 )(x y ___________________ ,可化为伯努利方程.答:形如的方程 )()()(2x r y x q y x p dx dy ++=y z y +=11.一个不可延展解的存在区间一定是区间.答:开12.方程满足解的存在唯一性定理条件的区域是 .1d d +=y x y 答:,(或不含x 轴的上半平面)}0),{(2>∈=y R y x D 13.方程的所有常数解是 .y x x y sin d d 2=答:,2,1,0,±±==k k y π14.函数组在区间I 上线性无关的 条件是它们的)(,),(),(21x x x n ϕϕϕ 朗斯基行列式在区间I 上不恒等于零.答:充分15.二阶线性齐次微分方程的两个解为方程的基本解组充分必要条件)(),(21x y x y 是. 答:线性无关(或:它们的朗斯基行列式不等于零)16.方程的基本解组是.02=+'-''y y y 答:xx x e ,e17.若在上连续,则方程的任一非零解 )(x y ϕ=),(∞+-∞y x xy )(d d ϕ=与轴相交.x 答:不能18.在方程中,如果,在上连续,那么它的0)()(=+'+''y x q y x p y )(x p )(x q ),(∞+-∞任一非零解在平面上 与轴相切.xoy x 答:不能19.若是二阶线性齐次微分方程的基本解组,则它们 共)(),(21x y x y ϕϕ==同零点.答:没有20.方程的常数解是 .21d d y x y -=答:1±=y 21.向量函数组在其定义区间上线性相关的 条件是)(,),(),(21x x x n Y Y Y I 它们的朗斯基行列式,.0)(=x W I x ∈答:必要22.方程满足解的存在唯一性定理条件的区域是 .22d d y x x y +=答: 平面xoy 23.方程所有常数解是 .0d )1(1)d (22=-+-y x y x y x 答:1,1±=±=x y 24.方程的基本解组是.04=+''y y 答:xx 2cos ,2sin 25.一阶微分方程的通解的图像是 维空间上的一族曲线. 答:2二、单项选择题1.阶线性齐次微分方程基本解组中解的个数恰好是( A )个.n(A ) (B )-1 (C )+1 (D )+2n n n n 2.如果,都在平面上连续,那么方程的任一解的存在),(y x f y y x f ∂∂),(xoy ),(d d y x f x y =区间( D ).(A )必为 (B )必为),(∞+-∞),0(∞+ (C )必为(D )将因解而定)0,(-∞3.方程满足初值问题解存在且唯一定理条件的区域是( D ).y x xy +=-31d d (A )上半平面 (B )xoy 平面(C )下半平面 (D )除y 轴外的全平面4.一阶线性非齐次微分方程组的任两个非零解之差( C ).(A )不是其对应齐次微分方程组的解 (B )是非齐次微分方程组的解 (C )是其对应齐次微分方程组的解 (D )是非齐次微分方程组的通解5. 方程过点共有( B )个解.21d d y x y -=)1,2(π (A )一(B )无数 (C )两 (D )三6. 方程( B )奇解.2d d +-=y x xy (A )有三个 (B )无 (C )有一个 (D ) 有两个7.阶线性齐次方程的所有解构成一个( A )线性空间.n (A )维 (B )维 (C )维 (D )维n 1+n 1-n 2+n 8.方程过点( A ).323d d y x y = (A )有无数个解 (B )只有三个解 (C )只有解 (D )只有两个解0=y 9. 连续是保证对满足李普希兹条件的( B )条件.),(y x f y '),(y x f y (A )充分 (B )充分必要 (C )必要 (D )必要非充分10.二阶线性非齐次微分方程的所有解( C ).(A )构成一个2维线性空间 (B )构成一个3维线性空间(C )不能构成一个线性空间 (D )构成一个无限维线性空间11.方程的奇解是( D ).y x y =d d (A ) (B ) (C ) (D )x y =1=y 1-=y 0=y 12.若,是一阶线性非齐次微分方程的两个不同特解,则该方程的)(1x y ϕ=)(2x y ϕ=通解可用这两个解表示为( C ).(A ) (B ))()(21x x ϕϕ-)()(21x x ϕϕ+(C ) (D ))())()((121x x x C ϕϕϕ+-)()(21x x C ϕϕ+13.连续是方程初值解唯一的( D )条件.),(y x f y '),(d d y x f xy =(A )必要 (B )必要非充分 (C )充分必要 (D )充分14. 方程( C )奇解.1d d +=y x y (A )有一个 (B )有两个 (C )无 (D )有无数个15.方程过点(0, 0)有( A ).323d d y x y = (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解三、求下列方程的通解或通积分1.3y x y dx dy +=解: ,则 所以 23y y x y y x dy dx +=+=)(121⎰+⎰⎰=-c dy e y e x dy y dy y cy y x +=23另外 也是方程的解 0=y 2.求方程经过的第三次近似解2y x dxdy +=)0,0(解:0)(0=x ϕ[]2020121)()(x dx x x x x =+=⎰ϕϕ[]52021220121)()(x x dx x x x x +=+=⎰ϕϕ[]81152022316014400120121)()(x x x x dx x x x x +++=+=⎰ϕϕ3.讨论方程 ,的解的存在区间 2y dx dy =1)1(=y 解:dx y dy =2两边积分 c x y+=-1所以 方程的通解为 cx y +-=1故 过的解为 1)1(=y 21--=x y 通过点 的解向左可以延拓到,但向右只能延拓到 2,)1,1(∞-所以解的存在区间为 )2,(-∞4. 求方程的奇解01(22=-+y dxdy 解: 利用判别曲线得p 消去得 即 ⎩⎨⎧==-+020122p y p p 12=y 1±=y 所以方程的通解为 , 所以 是方程的奇解)sin(c x y +=1±=y 5.0)1()1(cos 2=-++dy yx y dx y x 解: =, = , = , 所以方程是恰当方程.y M ∂∂2--y xN ∂∂2--y y M ∂∂x N ∂∂ 得 ⎪⎪⎩⎪⎪⎨⎧-=∂∂+=∂∂211cos yx y y v y x x u )(sin y y x x u ϕ++= 所以)('2y xy yu ϕ+-=∂∂-y y ln )(=ϕ故原方程的解为 c y yx x =++ln sin6. xx x y y y 22'sin cos sin 2-=-+解: 故方程为黎卡提方程.它的一个特解为x x x y y y 22'sin cos sin 2-++-= ,令 , 则方程可化为, x y sin =x z y sin +=2z dx dz -=cx z +=1即 , 故 c x x y +=-1sin c x x y ++=1sin 7.0)37()32(232=-+-dy xy dx y xy 解: 两边同除以得2y 037322=-+-xdy dy y ydx xdx 0732=--yd xy d dx 所以 , 另外 也是方程的解c y xy x =--7320=y 8.21d d x xy x y +=解 当时,分离变量得0≠y x x x y y d 1d 2+=等式两端积分得C x y ln )1ln(21ln 2++= 即通解为 21x C y +=9. xy xy 2e 3d d =+ 解 齐次方程的通解为x C y 3e -= 令非齐次方程的特解为xx C y 3e )(-=代入原方程,确定出 C x C x +=5e 51)( 原方程的通解为+ x C y 3e -=x 2e 5110. 5d d xy y xy +=解 方程两端同乘以,得5-yx y x y y +=--45d d 令 ,则,代入上式,得z y =-4xz x y y d d d d 45=-- x z x z =--d d 41 通解为 41e 4+-=-x C z x 原方程通解为41e 44+-=--x C y x 11.0)d (d 222=-+y y x x xy 解 因为,所以原方程是全微分方程. x N x y M ∂∂==∂∂2 取,原方程的通积分为)0,0(),(00=y xC y y x xy y x =-⎰⎰020d d 2 即C y y x =-323112.y y x y ln d d =解:当,时,分离变量取不定积分,得0≠y 1≠y通积分为C x y y y +=⎰⎰d ln d x C y e ln =13.03)(22=+'+''x y y y解 原方程可化为0)(2='+'x y y 于是 12d d C x xy y =+ 积分得通积分为23123121C x x C y +-=14.xy x y x y +-=2)(1d d 解:令,则,代入原方程,得xu y =x u x u x y d d d d +=21d d u xu x -= 分离变量,取不定积分,得() C x x u uln d 1d 2+=-⎰⎰0≠C 通积分为: Cx xy ln arcsin=15. xy x y x y tan d d +=解 令,则,代入原方程,得u x y =xu x u x y d d d d += , u u x u x u tan d d +=+u x u x tan d d = 当时,分离变量,再积分,得0tan ≠u C x x u u ln d tan d +=⎰⎰ Cx u ln ln sin ln +=即通积分为:Cx x y =sin 16. 1d d +=xy x y 解:齐次方程的通解为Cx y = 令非齐次方程的特解为x x C y )(=代入原方程,确定出 C x x C +=ln )( 原方程的通解为+Cx y =x x ln 17. 0d d )e (2=+-y x x y x y 解 积分因子为21)(x x =μ 原方程的通积分为1012d d (e C y x x y y x x =+-⎰⎰ 即 1e ,e C C C xy x +==+18.0)(2='+''y y y 解:原方程为恰当导数方程,可改写为0)(=''y y 即1C y y =' 分离变量得x C y y d d 1= 积分得通积分21221C x C y +=19.1)ln (='-'y x y 解 令,则原方程的参数形式为p y ='⎪⎩⎪⎨⎧='+=p y p p x ln 1 由基本关系式 ,有y xy '=d dp p pp x y y )d 11(d d 2+-⋅='= p p )d 11(-=积分得 C p p y +-=ln 得原方程参数形式通解为⎪⎩⎪⎨⎧+-=+=C p p y p p x ln ln 120.022=+'+''x y y y 解 原方程可化为0)(2='+'x y y 于是 12d d C x xy y =+ 积分得通积分为 23123121C x x C y +-=21. 0)d (d )(3223=+++y y y x x xy x 解:由于,所以原方程是全微分方程. x N xy y M ∂∂==∂∂2 取,原方程的通积分为)0,0(),(00=y x103023d d )(C y y x xy x y x =++⎰⎰即C y y x x =++42242四、计算题1.求方程的通解.x y y e 21=-''解 对应的齐次方程的特征方程为:12=-λ特征根为:1,121-==λλ故齐次方程的通解为: x x C C y -+=e e 21 因为是单特征根.所以,设非齐次方程的特解为1=αx Ax x y e )(1=代入原方程,有 , 可解出 . x x x x Ax Ax A e 21e e e 2=-+41=A 故原方程的通解为 x xx x C C y e 41e e 21++=-2.求下列方程组的通解. ⎪⎪⎩⎪⎪⎨⎧+=--=y x t y y x t x 43d d 2d d 解 方程组的特征方程为04321=----=-λλλE A 即 0232=+-λλ特征根为 ,11=λ22=λ 对应的解为11=λt b a y x e 1111⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡其中是对应的特征向量的分量,满足11,b a 11=λ ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡----0014321111b a 可解得.1,111-==b a 同样可算出对应的特征向量分量为 .22=λ3,212-==b a 所以,原方程组的通解为⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡t t t t C C y x 2221e 32e e e 3.求方程的通解.x y y 5sin 5='-''解:方程的特征根为,01=λ52=λ齐次方程的通解为 x C C y 521e += 因为不是特征根。

常微分方程练习题

常微分方程练习题

常微分方程练习题习题一一、单项选择题.1.微分方程yy32coyy5的阶数是().A.1B.2C.3D.52.克莱罗方程的一般形式是().A.y某y(y)B.某某y(y)C.y某y(某)D.某某y(y)3.下列方程中为全微分方程的是().A.某dyyd某某dyyd某0B.022某y某y22C.某dyyd某0D.某dyyd某0 2某某4.用待定系数法求方程y2yy某e的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y 某(a某b某c)e5.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件二、填空题1.方程y某tany的所有常数解是.某2某某22某某2某某2某某3某2C满足的一阶方程是.2.函数y523.设y1某e某e2某,y2某e某e 某,y3某e某e某e2某为某一常系数二阶非齐次方程的三个解,则此方程为.24.方程y1y满足解的存在唯一性定理条件的区域是.d某某dt5.系统的零解的是稳定的.dyydt三、求下列一阶微分方程的通解.dyy4某2y210d某某dyyy2(co某in某)2.d某1.3.(某2y)d某某dy0.四、求下列高阶方程的通解.1.yy1co某2.试用观察法求方程(1ln某)y11y2y0的通解.某某某y5z五、求解微分方程组y5某3y的通解.z某3zd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题1.设f(某)在[0,)上连续,且limf(某)0,求证:方程某dyyf(某)的任意解yy(某)均d某有limy(某)0.某2.假设m不是矩阵A的特征值,试证非齐线性方程组其中C,P是常数向量.d某A某Cemt,有一解形如:(t)Pemt.dt习题二一、单项选择题1.微分方程dyy2某2的阶数是().d某A.1B.2C.3D.42.克莱罗方程的一般形式是().A.y某y(y)B.某某y(y)C.y某y(某)D.某某y(y)3.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件4.n阶齐次线性常微分方程的任意n1个解必定().A.可组成方程的一个基本解组B.线性相关C.朗斯基行列式不为0D.线性无关5.用待定系数法求方程y2yy某e的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.当n时,微分方程yP(某)yQ(某)y为伯努利方程.n某2某某22某某2某某2某某某2.在方程某p(t)某q(t)某0中,当系数满足条件时,其基本解组的朗斯基行列式等于常数.3.若y=y1(某),y=y2(某)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.24.方程y1y满足解的存在唯一性定理条件的区域是.5.设某0I,Y1(某),,Yn(某)是区间I上线性齐次微分方程的n个解,则Y1(某),,Yn(某)在区间I上线性相关的条件是向量组Y1(某0),,Yn(某0)线性相关.三、求下列一阶微分方程的通解.1.某yy(某y)ln2.某y某dyyy2(co某in某)d某3.(ye某ey)d某(1ey)dy0四、求下列高阶方程的通解.1.y某yy02.yy21co某d某5y4某dt五、求解微分方程组的通解.dy4y5某dtd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题.1.设分因子.f(某,y)及f连续,试证方程dyf(某,y)d某0为线性方程的充要条件是它有仅依赖与某的积yd2ydyp(某)q(某)y0中,p(某)在区间I上连续且恒不为零,2.设在方程试证它的任意两个线d某d某2性无关解的朗斯基行列式是在区间I上严格单调函数.习题三一、单项选择题.1.微分方程y某某iny的阶数是().A.1B.2C.3D.52.下列方程中为全微分方程的是().A.某dyyd某某dyyd某0B.022某y某yC.某dyyd某0D.某2dyy2d某03.微分方程yP(某)yQ(某)y,当n1时为().A.一阶线性齐次微分方程B.一阶线性非齐次微分方程C.伯努利方程D.里卡蒂方程4.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件5.用待定系数法求方程y2yy(某22某)e某的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.函数某c1cotc2int(其中c1,c2为任意常数)满足的一阶方程是.2.方程tanyd某cot某dy0所有常数解是.3.设y1某e某e2某,y2某e某e某,y3某e某e某e2某为某一常系数二阶非齐次方程的三个解,则此方程为.24.方程y1y满足解的存在唯一性定理条件的区域是.n某某2某某2某某2某某22某5.与初值问题某2某7t某et,某(1)7,某(1)2等价的一阶方程组的初值问题为.三、求下列一阶微分方程的通解.1.(某1)y2某y02.22dyyy2(co某in某)d某3.(某4y)y2某3y5四、求下列高阶方程的通解.1.t某2t某2某02.某某2某02某y5z五、求解微分方程组y5某3y的通解.z某3zd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题.1.设f(某)在[0,)上连续,且limf(某)0,求证:方程某dyyf(某)的任意解yy(某)均d某有limy(某)0.某2.证明:二阶线性齐次方程的任意两个线性无关解组的朗斯基行列式之比是一个不为零的常数.习题四一、单项选择题1.微分方程y某y某2的通解中含有任意常数的个数为().A.1B.2C.3D.42.当n1时,微分方程yp(某)yq(某)yn最确切的名称为().A.一阶线性齐次微分方程B.伯努利方程C.一阶线性非齐次微分方程D.里卡蒂方程3.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件4.在整个数轴上线性无关的一组函数为().A.某,C.e某2,某1,某1B.0,某,某2,某3e某2D.e2某,某e某25.用待定系数法求方程y2yy某2e某的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.方程tanyd某cot某dy0所有常数解是.2.若yy1(某),yy2(某)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.23.方程y1y满足解的存在唯一性定理条件的区域是.某2某某2某某2某某22某4.已知cot和int是二阶齐次线性方程某a(t)某b(t)某0的两个解,则a(t).5.如果常系数线性方程组某A某的特征值的实部都是负数,则该方程组的任一解当t时收敛于.三、求下列一阶微分方程的通解1.dyyytand某某某dyy某22.d某2某2y3.(ye某ey)d某(1ey)dy0四、求下列高阶方程的通解1.t某3t某5某02.某''某tant2d某4某5ydt五、求解常微分方程组.dy4y5某dt某ya某3六、判定系统(这里的a)的零解稳定性.3y某ay七、设y(某)在[0,)上连续可微,且有lim[y(某)y(某)]0,试证:limy(某)0.某某。

常微分方程练习题

常微分方程练习题

常微分方程练习题在数学中,微分方程是研究函数及其导数之间关系的方程。

常微分方程(Ordinary Differential Equation,ODE)是指只含有一个自变量的微分方程。

常微分方程的研究对于很多领域都具有重要意义,比如物理学、经济学、工程学等。

本文将通过一些常见的常微分方程练习题来帮助读者巩固对这一概念的理解。

练习题一:一阶线性常微分方程求解微分方程 $\frac{{dy}}{{dx}} + y = 2x$。

解答:根据微分方程的一阶线性常数系数形式,我们可以将方程写为$\frac{{dy}}{{dx}} + P(x)y = Q(x)$ 的形式,其中 $P(x) = 1$,$Q(x) =2x$。

首先,我们求解齐次线性微分方程 $\frac{{dy_{h}}}{{dx}} + y_{h} = 0$。

解得 $y_{h} = Ce^{-x}$,其中 $C$ 为常数。

接下来,我们求解非齐次线性微分方程的特解。

首先,我们猜测特解形式为 $y_{p} = Ax + B$,代入微分方程得到 $A = 2$,$B = -1$,因此特解为 $y_{p} = 2x - 1$。

最后,将齐次解和特解相加,得到原微分方程的通解为 $y = Ce^{-x} + 2x - 1$。

练习题二:二阶齐次常微分方程求解微分方程 $y'' - 4y' + 4y = 0$。

解答:首先,我们设 $y = e^{rx}$,代入微分方程得到 $r^{2} - 4r + 4 = 0$。

解这个二次方程得到重根 $r = 2$。

因此,齐次线性微分方程的通解为 $y = (C_{1} + C_{2}x)e^{2x}$,其中 $C_{1}$ 和 $C_{2}$ 为常数。

练习题三:二阶非齐次常微分方程求解微分方程 $y'' + 3y' + 2y = 4x^{2} + 1$。

解答:首先,我们求解齐次线性微分方程 $y'' + 3y' + 2y = 0$。

第七章常微分方程练习题(含答案)

第七章常微分方程练习题(含答案)

第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程练习题
常微分方程(Ordinary Differential Equations, ODEs)是数学中一门
重要的分支,研究的是未知函数的导数与自变量之间的关系。

在物理、经济学、生物学等领域中,常微分方程广泛应用于描述系统的动态行为。

本文将为您提供一些常微分方程的练习题,帮助您加深对常微分
方程的理解。

练习一:一阶常微分方程
1. 求解初值问题:dy/dx = x^2 - y^2, y(0) = 1。

解:观察到方程右侧与左侧的差异较大,我们可以尝试寻找一个特
殊的函数,使得方程变得简单。

假设y = x + u(x),则dy/dx = 1 + u',
代入原方程得到:
1 + u' = x^
2 - (x + u)^2
u' = x^2 - x^2 - 2ux - u^2 - 1
u' = -2ux - u^2 - 1
这是一个关于u和x的常微分方程。

我们可以尝试通过求解这个方
程来得到y的解。

2. 求解初值问题:dy/dx = (x^2 - 1)/(y + 1), y(0) = 0。

解:将方程进行变形,得到(y+1)dy = (x^2 - 1)dx,两边同时积分:∫(y+1)dy = ∫(x^2 - 1)dx
1/2(y^2 + 2y) = 1/3(x^3 - x) + C
其中C为常数。

代入初值条件y(0) = 0,解得C = 0,进一步化简得到:
y^2 + 2y = 2/3(x^3 - x)
这就是给定初值问题的解。

练习二:二阶常微分方程
1. 求解方程:y'' + 2y' + y = e^(-x),已知初值条件y(0) = 1,y'(0) = 0。

解:我们可以使用特征方程法求解这个二阶常微分方程。

首先求解
齐次方程:
r^2 + 2r + 1 = 0
解齐次方程得到r = -1,因此齐次方程的通解为y_h = C1e^(-x) +
C2xe^(-x)。

接下来求非齐次方程的一个特解。

由于非齐次方程的右侧为e^(-x),我们可以猜测一个特解形式为y_p = Ae^(-x),代入方程得到:e^(-x) + 2(-Ae^(-x)) + Ae^(-x) = e^(-x)
-Ae^(-x) = 0
解得A = -1,因此非齐次方程的一个特解为y_p = -e^(-x)。

将通解和特解相加,考虑到初值条件y(0) = 1,y'(0) = 0,我们得到:y = y_h + y_p = C1e^(-x) + C2xe^(-x) - e^(-x)
代入初值条件,解得C1 = 0,C2 = 2,因此方程的解为y = 2xe^(-x) - e^(-x)。

2. 求解方程:y'' - 6y' + 9y = 2e^(3x),已知初值条件y(0) = 0,y'(0) = 1。

解:同样使用特征方程法求解这个二阶常微分方程。

首先求解齐次
方程:
r^2 - 6r + 9 = 0
解齐次方程得到r = 3,因此齐次方程的通解为y_h = (C1 +
C2x)e^(3x)。

接下来求非齐次方程的一个特解。

由于非齐次方程的右侧为2e^(3x),我们可以猜测一个特解形式为y_p = Ae^(3x),代入方程得到:9Ae^(3x) - 18Ae^(3x) + 9Ae^(3x) = 2e^(3x)
Ae^(3x) = 2e^(3x)
解得A = 2,因此非齐次方程的一个特解为y_p = 2e^(3x)。

将通解和特解相加,考虑到初值条件y(0) = 0,y'(0) = 1,我们得到:y = y_h + y_p = (C1 + C2x)e^(3x) + 2e^(3x)
代入初值条件,解得C1 = -2,C2 = 1,因此方程的解为y = (1 +
x)e^(3x)。

通过以上练习题,希望您对常微分方程的求解方法有了更深入的理解,并且能够熟练运用到实际问题中。

常微分方程作为一门重要的数
学工具,能够帮助我们解决各种动态系统的建模和分析问题,具有广泛的应用前景。

相关文档
最新文档