系统的稳态误差
系统的稳态误差为

r (t ) t
e ss
1
r (t ) t
e ss
1
2
Kp
0型 I型 II型
Kv
0
Ka
0 0
ess
1
1
2
1 K
K
p
KvKp1来自 1Ka
K
0 0
Kv
K
0
Ka
三、系统稳定误差的计算
综述,系统的稳态误差与输入信号形式有 关,对于一个结构确定的系统,如果给定 输入形式不同,其稳态误差就不同;同时 稳态误差与系统结构也密切相关,如果给 定信号一定,不同结构的系统稳态误差也 不同。 按静态误差系数法计算稳态误差的方法, 是基于拉氏变换的终值定理,只能使用阶 跃、斜坡及加速度或他们的组合,如果输 入是其他任意时间函数,以上结论则不能 成立。
ess
特征方程为D( s) 1 Gk ( s) an s n an 1s n 1 ... a2 s 2 a1s a0 0
n n 1 2 a s a s ... a s 等式两边同除以 n n 1 2 a1s a0 1 Gk ( s) 0 1 0 则 n n 1 2 an s an 1s ... a2 s 得 a1s a0 Gk ( s) 该系统为Ⅱ型系统 an s n an 1s n 1 ... a2 s 2 开环增益为 a0 a1s a0 K 2 a2 n2 n 3 s (an s an 1s ... a2 )
ess
1、先求取系统的开环传递函数 Gk ( s)
Gk (s)
C(s)
设开环传递函数为 Gk ( s) M ( s) 即,开环传递函数 N ( s) 与闭环传递函数 M (s) 有相同的零点 Gk ( s ) M (s) N (s) GB ( s ) a s a0 1 Gk ( s ) 1 M ( s ) N ( s ) M ( s ) 得 Gk ( s ) 1 ? N (s)
自动控制原理--控制系统的稳态误差

二、给定作用下的稳态误差
设系统开环传递函数为:
其中K为开环增益,v为系统中含有的积分环节数 对应于v=0,1,2的系统分别称为0型,Ⅰ型和Ⅱ型系统。
稳态误差的定义
• 误差定义为输入量与反馈量的差值
• 稳态误差为误差的稳态值 • 如果需要可以将误差转换成输出量的量纲
• 稳态误差不仅与其传递函数有关,而且与输入 信号的形式和大小有关。其终值为:
稳态误差计算
误差的定义:
E(s) R(s) B(s)
lim ess ()
( L1[ E ( s )])
(1)系统是稳定的; (2)所求信号的终值要存在。
例27 已知系统如图3-36所示。当输入信号 rt ,1干t扰信 号 n时t,求1t系 统的总的稳态误差。
Ns
Rs
Es
K1
K2 s
Y s
Bs
图3-36 例3-15系统结构图
解:⑴对于本例,只要参数 K1, K均2大于零,则系统一定是稳 定的。
⑵在r t 信1t号 作用下(此时令 n)t 0
s0
s0
1 s K1K2
K2 s K1K2
1 s
1 K1
由以上的分析和例题看出,稳态误差不仅与系统本身
的结构和参数有关,而且与外作用有关。利用拉氏变换
的终值定理求得的稳态误差值或者是零,或者是常数,
或者是无穷大,反映不出它随时间的变化过程。另外,
对于有些输入信号,例如正弦函数,是不能应用终值定
最后由终值定理求得稳态误差 ess
ess
3.7 控制系统的稳态误差

一、误差与稳态误差
R(s) E(s)
C(s)
G(s)
: ⑴从输入端定义:
系统偏差:系统的输入r (t) 和主反馈信号b (t)之差。
e(t) r(t) b(t)
⑵从输出端定义: 系统误差:输出量的希望值c’(t)与实际值c(t) 之差。
表示系统稳态误差
二、稳态误差的计算式
系统框图 给定作用下的偏差传递函数
误差的时域计算式:
采用拉氏变换终值定理计算稳态误差 (使用条件:
sE(s)的极点均在左半平面,包括原点)
3.8 稳态误差分析与计算
一、给定输入作用下系统的误差分析 1.系统型别 系统开环传递函数:GK(s)=G(s) H(s) 假设开环传递函数GK(s)的形式如下:
Ci 称为动态误差系数,Ci怎么得到?
⑴对
,在s=0的邻域内展开为泰勒级数。
⑵ 对 ,分子多项式除以分母多项式,商为:
① 0型系统 GK(s)=G(s) H(s)
给定有静差系统
②Ⅰ型系统
③Ⅱ型系统
给定无静差系统
给定无静差系统
⑵ 单位斜坡输人 ① 0型系统
大误差
②Ⅰ型系统
给定有静差
③Ⅱ型系统
给定无静差
⑶ 单位抛物线输人 ① 0型系统
大误差
②Ⅰ型系统
大误差
③Ⅱ型系统
有给定静差
无差系统:在阶跃函数作用下没有原理性稳态误差的系统。 有差系统:在阶跃函数作用下具有原理性稳态误差的系统。
式中,K:为系统的开环增益
v可称为系统无差度 ,表示系统的型别 由公式
可看出,稳态误差 ess与输入和开环传递函数型别有关。 v可称为系统无差度
2.静态误差系数 定义:
控制系统的稳态误差分析

ess
s 右半
s(s +1)(2s +1) 1 1 = lims ess = lim sE (s) = s→ s(s +1)(2s +1) + K(0.5s +1) s2 0 s →0 k
计算结果表明, 计算结果表明,稳态误差 的大小, 的大小,与系统的开环增 有关。 益K有关。系统的开环增 益越大,稳态误差越小。 益越大,稳态误差越小。 由此看出, 由此看出,稳态精度与稳 定性对K的要求是矛盾的。 定性对K的要求是矛盾的。
t→ ∞
t→ ∞
2、有差系统:通常把阶跃输入信号作用下存在误差 有差系统:
的系统称为有差系统。 的系统称为有差系统。
3、无差系统:通常把阶跃输入信号作用下不存在误 无差系统:
差的系统称为无差系统。 差的系统称为无差系统。
注意:这里所讲的误差指 注意: 系统原理上的误差。 系统原理上的误差。
二、稳态误差的计算
第五节 控制系统的稳态误差分析
一、基本概念 1.偏差、 1.偏差、误差和稳态误差 偏差 的定义: 偏差 (t) 的定义:
R(s)
ε(t) = r(t) −b(t)
E(s) = R(s) − B(s)
的定义: 误差 e(t) 的定义:
(3(3-44a)
ε
−
E(s)
G(s)
C(s)
B(s)
H(s)
图3-24 系统结构图
R(s)
−
K(0.5s +1 ) s(s +1 s +1 )(2 )
C(s)
1 R(s) = 2 s
s ( s + 1)(2 s + 1) 1 E (s) = s ( s + 1)(2 s + 1) + K (0.5 s + 1) s 2
线性系统的稳态误差计算

G( s) K S ( S 2 bS C )
p 1 p 2 b C 4 2 p 2 C 2 p K 0.5C K 2 b 3
因为 ess 按定义
1 2 Kr
s 0
Kv
K 0.5, K 0.5C C
令r (t ) Rt 2 / 2,R 常量,R(s) R / s3。
sR(s) sR / s3 R R R ess lim lim lim 2 2 lim 2 s 0 1 G( s) H ( s ) s 0 1 G( s ) H ( s ) s 0 s s G ( s ) H (s ) s 0 s G (s ) H (s ) Ka
系统稳态误差计算通式则可表示为
ess
1 lim s R ( s )
s 0
sR( s) ess lim sE ( s) lim s 0 s 0 1 G ( s ) H ( s )
K lim s
s 0
系统型别 e ss 与 K 开环增益有关 R ( s ) 输入信号
def
E ( s) 1 R(s) 1 H ( s)G( s)
E ( s ) e ( s ) R( s ) R( s ) 1 H ( s)G( s)
e(t ) L1[e (s)R(s)] ets (t ) ess (t )
瞬态分量
稳态分量
E ( s ) e ( s ) R( s )
要求对于阶跃作用下不存 在稳态误差,则必须选用 Ⅰ型及Ⅰ型以上的系统
4.斜坡输入作用下的稳态误差和静态速度误差系数
r (t ) Rt,R 常量,R(s) R / s 2。
计算机控制系统的稳态误差

计算机控制系统的稳态误差在连续系统中,稳态误差的计算可以通过两种方法进行:一种是建立在拉氏变换终值定理基础上的计算方法,可以求出系统的终值误差;另一种是从系统误差传递函数出发的动态误差系数法,可以求出系统动态误差的稳态分量。
这两种计算稳态误差的方法,在一定条件下可以推广到离散系统。
由于离散系统没有唯一的典型结构形式,所以误差脉冲传递函数也给不出一般的计算公式。
离散系统的稳态误差需要针对不同形式的离散系统来求取。
这里仅介绍利用z变换的终值定理方法,求取误差采样的离散系统在采样瞬时的终值误差。
设单位反馈误差采样系统如图4.12所示。
其中G(s)为连续部分的传递函数,e(t)为系统连续误差信号,e*(t)为系统采样误差信号,其z变换函数为(1)其中(2)为系统误差脉冲传递函数。
图1 单位反馈误差采样离散系统如果Φe(z)的极点(即闭环极点)全部严格位于z平面的单位圆内,即若离散系统是稳定的,则可用z变换的终值定理求出采样瞬时的终值误差(3)上式表明,线性定常离散系统的稳态误差,不但与系统本身的结构和参数有关,而且与输入序列的形式及幅值有关。
除此之外,离散系统的稳态误差与采样周期的选取也有关。
上式只是计算单位反馈误差采样离散系统的基本公式,当开环脉冲传递函数G(z)比较复杂时,计算e(∞)仍有一定的计算量,因此希望把线性定常连续系统中系统型别及静态误差系数的概念推广到线性定常离散系统,以简化稳态误差的计算过程。
前面的分析中我们指出,零阶保持器的引入并不影响开环系统脉冲传递函数的极点。
因此,脉冲传递函数G(z)的极点与相应的连续函数G(s)的极点是一一对应的。
如果G(s)有v个s=0的极点,即v个积分环节,则由z变换算子z=esT关系式可知,与G(s)相应的G(z)必有v个z=1的极点。
在离散系统中,也可以把开环脉冲传递函数G(z)具有z=1的极点数v作为划分离散系统型别的标准,与连续系统类似地把G(z)中v=0,1,2,…的系统,称为0型,Ⅰ型和Ⅰ离散系统等。
3-6线性系统的稳态误差计算

m 1
m2
2
+ 2ζ kτk s +1) + 2ζlTs +1) l
∏(T s +1)∏(Ts
=
2
K ⋅ G0 (s) sν
sR(s) 1 essr = lim = = s→0 1+ G (s) 1+ limGk (s) k
s→0
1 1 = K 1+ Kp 1+ lim ν ⋅ G0 (s) s→0 s
三、扰动作用下的稳态误差(3) 扰动作用下的稳态误差(3) [例]系统结构图如图所示。当 r(t) = n(t) = 1(t) 系统结构图如图所示。 时,求系统的稳态误差 ess;若要求稳态误差 为零,如何改变系统结构。 为零,如何改变系统结构。 解:该系统对给定输入而言属于Ⅰ型系统。 该系统对给定输入而言属于Ⅰ型系统。 所以当给定输入为单位阶跃函数时的稳态误差 essr = 0
3、单位抛物线输入时的稳态误差
R(s) =
1 s3
sR(s) 1 essr = lim = = 2 s→0 1+ G (s) lims ⋅ Gk (s) k
s→0
1 1 = K Ka lim ν −2 ⋅ G0 (s) s→0 s
∞ 1 = K 0
Ka
根据
ν =0,1 ν =2 ν ≥3
m2
=
K ⋅ G0 (s) ν s
K-开环增益
系统型别(即积分环节的个数) ν − 系统型别(即积分环节的个数)
当ν =0,无积分环节,称为0型系统 无积分环节,称为0
当 = ,有一个积分环节,称为Ⅰ型系统 ν 1 有一个积分环节,称为Ⅰ
稳态误差

拉普拉斯反变换,得
注意: (1) 尽管将阶跃输入、速度输入及加速度输入下 系统的误差分别称之为位置误差、速度误差和加 速度误差,但对速度误差、加速度误差而言并不 是指输出与输入的速度、加速度不同,而是指输 出与输入之间存在一确定的稳态位置偏差。 (2) 如果输入量非单位量时,其稳态偏差(误差) 按比例增加。 (3) 系统在多个信号共同作用下总的稳态偏差误 差等于多个信号单独作用下的稳态偏差(误差) 之和。
给定稳态误差与扰动稳态误差 一
终值定理: ess tlim e(t ) lim SE(s) s0 与输入有关! 给定稳态误差终值的计算
1 essr lim SEr (s) lim SR (s)Fr(s) lim S R (s) s 0 s 0 s 0 1 G(s)
消除或减少稳态误差的方法 • 产生稳态误差的原因
给定输入 1(t) 系统型号越高,无差度 t 越高。可以串联积分环 t2/2
输入信号是实际 的需要,不能变
给定稳态误差的终值 0型系统 I型系统 Ⅱ型系统 1/(1+K) 0 0 ∞ 1/K 0 ∞ ∞ 1/K
节提高系统型号。 1. 稳态误差与输入信号有关 传递系数越大,稳态误差越小。 2. 稳态误差与系统型号有关 3. 稳态误差与系统传递系数有关 4. 稳态误差与扰动有关
ess =
esr
+ esn
s 1 / H s
E s X or s X o s s X i s X o s X i s H s X o s / H s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
06-7-20
控制工程基础
6
6.2 输入引起的稳态误差
一 误差传递函数与稳态误差
Xi (s)
E(s) G(s)
X o (s)
1 单位反馈系统的误差传递函数 与稳态误差
由图6-2可得单位反馈系统 误差传递函数及误差信号
E(s) 1
e (s)
X i (s)
1 G(s)
E
(s)
e
(s)
X
i
(s)
1
1 G(s)
0
ess (t):误差信号的稳态分量,即为控制系统的稳态误差。
ess
ess ()
lim
t
ess
(t
)
如果有理函数 sE(s) 除在原点处有唯一的极点外,在S右半
平面及虚轴上解析,即 sE(s)的极点均位于S平面左半平面
(包括坐标原点),则可根据拉氏变换的终值定理,方便
地求出系统的稳态误差:
ess
lim
s0
lim
s0
s
1
1 G(s)H(s)
Xi (s)
(6-9)
1
1
ess
lim s
s0
H (s)
1 G(s)H(s)
Xi (s)
(6-10)
06-7-20
控制工程基础
9
例1 某反馈系统如图所示,当 xi (t) 1(t) 时,求系统的稳态误差。
Xi (s)
E(s) 10
s
X o (s)
10
解:(1)首先判断系统的稳定性 G(s) 10
E(s) 1 G(s) Xi (s) s2 1.6s 4 • s -0.3
-0.4
ess lims • E(s) 0.4
s0
-0.5
-0.6
Xi (s)
(s)
1 H (s)
Xi (s)
X o (s)
(6-4)
06-7-20
控制工程基础
5
比较(6-3)和(6-4)可得误差信号和偏差信号之间的关系为:
E(s) 1 (s)
H (s)
或 (s) H(s)E(s)
(6-5)
实际系统中,H (s)往往是一个常数,因此误差信号和 偏差信号之间存在一个比例关系,特别是对单位反 馈系统,H (s) 1可直接用偏差信号表示误差信号。 求了稳态偏差,就得到了稳态误差。
稳态误差:系统控制准确度的一种度量,过渡过程完成后的
误差称为系统稳态误差,通常也称为系统的稳态性能。
稳态误差的不可避免性 :
控制系统的结构 输入作用的类型(控制量或扰动量)
输入作用的形式(阶跃输入、斜坡输入或加速度输入)
机电控制系统中元件的不完善,如静摩擦、间隙及放大器 的零点偏移、元件老化或变质等。
控制系统的稳态误差是不可避免的,控制系统设计 的任务之一,就是尽量减小稳态误差。
06-7-20
控制工程基础
1
显然,只有系统稳定,研究稳态误差才有意义。对于不稳定 的系统,不存在研究稳态误差的可能性。
原理性稳态误差:由于系统不能很好跟踪输入信号,或者
由于扰动作用而引起的稳态误差。
无差系统: 在阶跃函数作用下没有原理性稳态误差的系统。
E(s) X o (s)
06-7-20
控制工程基础
3
注意误差和偏差的区别:
误差:希望的输出量和实际的输出量之差,记作e(t)
误差信号的稳态分量,称为稳态误差,记作 ess
偏差:输入信号和反馈信号之差,记作 (t)
偏差信号的稳态分量,称为稳态偏差,记作 ss
06-7-20
控制工程基础
4
误差信号 E(s) (s)Xi (s) Xo (s)
ess lims • E(s) 0
s0
Xi (s)
ωn2
_
S(S+2ξωn)
-0.4 -0.6
Xo (s) -0.8
-1 0
100
200
300
400
500
600
图6-4 标准形式的二阶系统方块图
06-7-20
控制工程基础
11
0
例3二阶系统在单位斜坡输入
作用下的响应的误差曲线
-0.1
-0.2
1
s 1.6 1
(6-1)
偏差信号 (s) Xi (s) Y (s)
(6-2)
Xoi (s) (s)Xi (s) (s)Y (s) (s)H (s) Xo (s)
Xoi (s) 和 Xo (s) 相等,则 (s) 1
H (s)
误差信号
ห้องสมุดไป่ตู้E(s)
1 H (s)
Xi (s)
X o (s)
(6-3)
偏差信号
1 H (s)
s0
s 0 s 10
误差为零,即系统能够很好地跟踪阶跃输入,稳态精度很高。
06-7-20
控制工程基础
10
例2 二阶系统在单位阶跃输入作用下的响应的误差曲线
4
4
(s)
G(s)
s2 1.6s 4
s(s 1.6) 0.4
0.4 n 2
0.2
0
1
s 1.6
E(s) 1 G(s) Xi (s) s2 1.6s 4 -0.2
X
i
(
s)
(6-6)
图6-2 单位反馈系统框图
e(t) L1[E(s)] L1[e (s) Xi (s)] e(t) ets (t) ess (t)
06-7-20
控制工程基础
7
e(t) ets (t) ess (t)
ets
(t
):误差信号的瞬态分量,由于系统稳定,必有
lim
t
ets
(t)
有差系统: 在阶跃函数作用下具有原理性稳态误差的系统。
本章主要讨论
由于系统结构、输入作用形式和类型 产生的误差 。
干扰引起的误差。
06-7-20
控制工程基础
2
6.1 稳态误差的基本概念
Xi (s)
(s)
Xoi (s)
(s)
G1(s)
N(s) G2 (s)
Y (s) H (s)
图6-1 误差和偏差的概念
t
ess
(t
)
lim sE(s)
s0
1 lim s s0 1 G(s)
Xi (s)
(6-7)
注意:上式稳态误差是误差信号的稳态分量 ess (t)在t 时的数值,它不能反映 ess (t) 随时间 t 的变化规律。
06-7-20
控制工程基础
8
2 非单位反馈系统的误差(偏差) 传递函数与稳态误差(偏差)
Xi (s)
(s)
G(s)
X o (s)
由图6-3可得非单位反馈系统偏差传
递函数及偏差信号
e (s)
(s)
Xi (s)
1 1 G(s)H(s)
H (s)
图6-3 非单位反馈系统框图
(s)
e
(s)
X
i
(s)
1
1 G(s)H
(s)
X
i
(s)
(6-8)
同(6-7)式:
ss
lim
t
ss
(t
)
lim s (s)
一阶系统,因此系统稳定的。
s
Xo (s) s 10 Xi (s) 1 10 s 10
s
(2)求误差传递函数
E(s)
e
(s)
X
i
(s)
s
s 10
e (s) •1
s
1 1 G(s)
1 1 10
s
s
s 10
lim lim lim X
i
(s)
1 s
ess
s0
s • E(s)
s• s •1 s0 s 10 s