控制系统稳态误差的计算
合集下载
系统的稳态误差为

r (t ) t
e ss
1
r (t ) t
e ss
1
2
Kp
0型 I型 II型
Kv
0
Ka
0 0
ess
1
1
2
1 K
K
p
KvKp1来自 1Ka
K
0 0
Kv
K
0
Ka
三、系统稳定误差的计算
综述,系统的稳态误差与输入信号形式有 关,对于一个结构确定的系统,如果给定 输入形式不同,其稳态误差就不同;同时 稳态误差与系统结构也密切相关,如果给 定信号一定,不同结构的系统稳态误差也 不同。 按静态误差系数法计算稳态误差的方法, 是基于拉氏变换的终值定理,只能使用阶 跃、斜坡及加速度或他们的组合,如果输 入是其他任意时间函数,以上结论则不能 成立。
ess
特征方程为D( s) 1 Gk ( s) an s n an 1s n 1 ... a2 s 2 a1s a0 0
n n 1 2 a s a s ... a s 等式两边同除以 n n 1 2 a1s a0 1 Gk ( s) 0 1 0 则 n n 1 2 an s an 1s ... a2 s 得 a1s a0 Gk ( s) 该系统为Ⅱ型系统 an s n an 1s n 1 ... a2 s 2 开环增益为 a0 a1s a0 K 2 a2 n2 n 3 s (an s an 1s ... a2 )
ess
1、先求取系统的开环传递函数 Gk ( s)
Gk (s)
C(s)
设开环传递函数为 Gk ( s) M ( s) 即,开环传递函数 N ( s) 与闭环传递函数 M (s) 有相同的零点 Gk ( s ) M (s) N (s) GB ( s ) a s a0 1 Gk ( s ) 1 M ( s ) N ( s ) M ( s ) 得 Gk ( s ) 1 ? N (s)
控制工程基础 第6章 控制系统的误差分析和计算

C0 (s)
N (s)
R(s) B(s)
(s)
-
G1 ( s )
+ G2 (s)
H (s)
e(s) -
C(s)
(b)
误差
C0(s) (s) N(s)
R(s)
1 H(s)
R1(s) C0(s)
E1(s(s))H(s)
E(s)
G1(s)
G2(s) C(s)
(c)
e(s) -+ (s)
H (s)
E(s)
因为偏差 (s) R(s) B(s) H (s)C0 (s) H (s)C(s) H (s)e(s)
这里 R(s) H (s)C0 (s) 是基于控制系统在理想工作情况下
(s) 0 得到的。
即当控制系统的偏差信号 (s) 0 时,该控制系统无调节控制
作用,此时的实际输出信号C(s)就是希望输出信号 C0 (s) 。
G(s)H(s)
i1 nv
sv (Tis 1)
i1
(4)稳态误差系数和稳态误差的总结 (系统在控制信号作用下)
此表概括了0型、Ⅰ型和Ⅱ型反馈控制系统在不同输入信号作用下的
稳态误差。在对角线上,稳态误差为有限值;在对角线以上部分,
稳态误差为无穷大;在对角线以下部分,稳态误差为零。由此表可
以得如下结论:
何改变系统结构?
(s)
- G1 K1
解:(1)给定作用下的误差传递函数为
RE (s)
(s)
R(s)
1
1
K1
K2 s
s s K1K2
当给定输入为单位阶跃输入时,稳态误差为
N (s)
+
G2
K2 s
《自动控制原理》第六章:控制系统误差分析

X i (s)
e(t)=μ(p)xi(t) εxo(t) x (t) - y(t) (t) =
i
X oi (s)
E (s )
(s)
Y (s)
N (s )
拉氏变换: E(s)=μ(s)Xi(s) -Xo(s)
G1 ( s )
+
G2 (s)
X o (s)
H (s )
ε(s) =Xi(s) - Y(s)
K1
+
K 2 xo (t ) s
解:(1)由于系统是一阶系统,故只要参数K1K2大于零,则 系统就稳定。
1 1 ]0 (2)输入引起的误差: ess1 lim[s K2 s 0 1 K1 S s
(3)干扰引起的误差:
ess 2 lim sE 2 ( s ) lim[ s
以单位反馈为例,输入引起的误差分析:
X i (s)
E (s )
G (s )
X o (s)
X o ( s) G ( s) 1 E (s) (s) [ X i ( s )] G ( s) 1 G (s) G (s) ess lim sE ( s )
s 0
1 lim[ s X i ( s )] s 0 1 G (s)
ess 1 1 Kv
1 K
( 0) ( 1)
( 2) 0 0型系统误差无穷大;1型有限2型及以上 系统,Kv为无穷,而稳态误差为零。
加速度输入下稳态精度
定义: 静态加速度误差
2 K ( r s 1) ( k s 2 2 k k s 1) r 1
令系统中xi(t)=0 。
X i (s)
(s)
Y (s)
e(t)=μ(p)xi(t) εxo(t) x (t) - y(t) (t) =
i
X oi (s)
E (s )
(s)
Y (s)
N (s )
拉氏变换: E(s)=μ(s)Xi(s) -Xo(s)
G1 ( s )
+
G2 (s)
X o (s)
H (s )
ε(s) =Xi(s) - Y(s)
K1
+
K 2 xo (t ) s
解:(1)由于系统是一阶系统,故只要参数K1K2大于零,则 系统就稳定。
1 1 ]0 (2)输入引起的误差: ess1 lim[s K2 s 0 1 K1 S s
(3)干扰引起的误差:
ess 2 lim sE 2 ( s ) lim[ s
以单位反馈为例,输入引起的误差分析:
X i (s)
E (s )
G (s )
X o (s)
X o ( s) G ( s) 1 E (s) (s) [ X i ( s )] G ( s) 1 G (s) G (s) ess lim sE ( s )
s 0
1 lim[ s X i ( s )] s 0 1 G (s)
ess 1 1 Kv
1 K
( 0) ( 1)
( 2) 0 0型系统误差无穷大;1型有限2型及以上 系统,Kv为无穷,而稳态误差为零。
加速度输入下稳态精度
定义: 静态加速度误差
2 K ( r s 1) ( k s 2 2 k k s 1) r 1
令系统中xi(t)=0 。
X i (s)
(s)
Y (s)
第6章_控制系统的误差分析和计算_6.2输入引起的稳态误差

根据拉普拉斯变换的终值定理,计算稳态误差: 根据拉普拉斯变换的终值定理,计算稳态误差:
ε ( s)
Φε (s) ⋅ X i ( s) ess = lim e(t ) = lim s ⋅ E ( s ) = lim s ⋅ t →∞ s →0 s →0 H (s) 1 1 = lim s ⋅ ⋅ ⋅ X i (s) s →0 H (s) 1 + G (s) H (s)
单位阶跃输入
X i (s) =
1 s
定义: 定义: 稳态位置
s →0
误差系数 1 1 1 1 ess = lim s = = s → 0 1 + G ( s ) H ( s ) s 1 + lim G ( s ) H ( s ) 1 + K p
单位斜坡输入
e ss = lim s
s →0
X i (s) =
1 , 试求当输入信号为 Ts
1 解 : Φ ε (s) = 1+G (S) =
当 r(t) = 1 t 2时 R(s) = S13 2 (1) E(s) = Φ ε (s)R(s) =
t 2 -T
1 2 S (S+1/T)
=
T S2
-
T2 S
+
T2 S+1/T
e(t) = T e + T(t - T) t → ∞时 ess = ∞ (2) 由终值定理 ess = lim sE(s) = lim s(s+11/T) = ∞
(2)稳态误差系数的概念 )
对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。
ε ( s)
Φε (s) ⋅ X i ( s) ess = lim e(t ) = lim s ⋅ E ( s ) = lim s ⋅ t →∞ s →0 s →0 H (s) 1 1 = lim s ⋅ ⋅ ⋅ X i (s) s →0 H (s) 1 + G (s) H (s)
单位阶跃输入
X i (s) =
1 s
定义: 定义: 稳态位置
s →0
误差系数 1 1 1 1 ess = lim s = = s → 0 1 + G ( s ) H ( s ) s 1 + lim G ( s ) H ( s ) 1 + K p
单位斜坡输入
e ss = lim s
s →0
X i (s) =
1 , 试求当输入信号为 Ts
1 解 : Φ ε (s) = 1+G (S) =
当 r(t) = 1 t 2时 R(s) = S13 2 (1) E(s) = Φ ε (s)R(s) =
t 2 -T
1 2 S (S+1/T)
=
T S2
-
T2 S
+
T2 S+1/T
e(t) = T e + T(t - T) t → ∞时 ess = ∞ (2) 由终值定理 ess = lim sE(s) = lim s(s+11/T) = ∞
(2)稳态误差系数的概念 )
对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 对于单位反馈系统,偏差就是误差,误差就是偏差,二者往往不加区分。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。 实际上,单位反馈系统与非单位反馈系统之间可以相互转换,如下所示。
《自动控制原理》第三第讲

误差系数 Kp Kv Ka
单位阶跃 输入
r(t) = u(t)
单位速度 输入
r(t) = t
单位加速 度输入
r(t) = 1 t 2 2
0
K0 0
1 1+K
I
∞ K0
0
II
∞ ∞K
0
∞
∞
1
∞
K
1
0
K
1. 稳态误差与输入信号有关;与开环增益有关;与积分环节的个 数有关。
2. 减小或消除稳态误差的方法: a、增加开环放大系数K; b、提高系统的型号数;
R(s)
E(s) -
G1 ( s)
+ G2 (s) C(s)
H (s) (b)
通常,给定输入作用产生的误差为系统的给定误差
(E=R-HC),扰动作用产生的误差为扰动误差。认为扰动输入时 系统的理想输出为零,故从输出端的误差信号为:
En
= C理想
− C实际
=
−C实际
=
−Cn
= − G2 1+ G1G2 H
=
lim sv+1R(s)
s→0
lim sv + K
s→0
由上式可见, ess 与系统的型号v﹑开环增益K及输入信号
的形式及大小有关,由于工程实际上的输入信号多为阶跃信号
﹑斜坡信号(即等速度信号) ﹑抛物线信号(即等加速度信号) 或者为这三种信号的组合, 所以下面只讨论这三种信号作用 下的稳态误差问题.
Ka
m
G(s)H (s)
=
K sv
∏ (τ is +1)
i =1
n−v
∏ (Tjs +1)
《自动控制原理》第三章 35 稳态误差计算

两种定义的联系: E ' ( s ) E ( s ) H (s)
H ( s ) 1时, E ( s ) E ' ( s )
能源与动力学院 第三章 线性系统的时域分析法
3
1. 误差与稳态误差的定义…
e(t ) L1[ E (s)] L1[e (s) R (s)] L1[ R (s) ] 1 G(s)H (s)
3-6 线性系统的稳态误差计算 (Steady-state error)
稳定性 系统性能 动态性能
稳态性能 稳态误差
稳态性能
原理性误差 结构性误差 (附加稳态误差)
系统结构 输入类型、形式 摩擦,间隙 死区等非线性
能源与动力学院
第三章 线性系统的时域分析法
1
3-6 线性系统稳态误差计算
本节内容:
N(s)
C(s)
G2 (s)
H (s)
输出端误差定义
E'n
(s)
Cn(s)
G2(s)
1G1(s)G2(s)H(s)
N(s)
输入端误差定义
En(s)
Cn(s)H(s)
G2(s)H(S) 1G1(s)G2(s)H(s)
ets (t ) ess (t ) 稳态误差
ess ( )
Lim
s0
sE (s)
Lim
s0
1
sR (s) G(s)H
(s)
ess():终值误差 条件s: E(s)在右半平面及析 虚( 轴原 上点 解除外)
能源与动力学院 第三章 线性系统的时域分析法
4
1. 误差与稳态误差的定义…
例1
R(s) E(S)
误差与稳态误差的定义 系统的类型 输入作用下稳态误差计算 扰动作用下稳态误差 减小或消除稳态误差的措施
自动控制原理_第3章2

令Gc (s)
通信技术研究所
G f ( s) G( s)
, 得C (s) G( s) R( s) C ( s)
13
<例3-15>r(t)=1,n(t)=1 ,求ess
通信技术研究所
14
1 2 <例3-16> r (t ) 1 t t ,求ess 2 注:E=R-C
K (1s 1)( 2 s 1) ( m s 1) 1 K , ess (1) 0, K p lim 0 1 K s 0 s (T 1s 1)(T2 s 1) (T j s 1)
s 0
s
K (1s 1)( 2 s 1) ( m s 1) , ess 0 (2) 1, K p lim 1 s 0 s (T 1s 1)(T2 s 1) (T j s 1) K (1s 1)( 2 s 1) ( m s 1) 2, K p lim 2 , ess 0 ( 3) s 0 s (T 1s 1)(T2 s 1) (T j s 1)
s
K (1s 1)( 2 s 1) ( m s 1) 0, Kv lims 0 0, ess ( 1) s (T1s 1)(T2 s 1) (T j s 1) s 0 K (1s 1)( 2 s 1) ( m s 1) 1 K , ess (2) 1, Kv lims 1 s (T1s 1)(T2 s 1) (Tj s 1) K s 0 K (1s 1)( 2 s 1) ( m s 1) (3) 2, Kv lims 2 , ess 0 s (T1s 1)(T2 s 1) (T j s 1) s 0
3.3 反馈控制系统的稳态误差

R ∞ k R Kp=? k lim s· ν K =? s s→0
e(t ) r (t ) b(t )
稳态误差定义为
ess e() lim e(t ) lim [r (t ) b(t )]
t t
对于单位反馈系统,稳态误差可写为
ess e() lim e(t ) lim [r (t ) c(t )]
t t
对于1型系统:N=1
K (1 T1s)(1 T2 s) K v lim s K s(1 Ta s)(1 Tb s) s 0
开环放大系数
1 ess K
具有单位反馈的1型系统,其输出能跟踪等速度输入,但总有一 定误差;其稳态误差与K成反比。 对于2型系统或2型以上系统:N≥2
3.3.3主扰动输入引起的稳态误差
系统的负载变化往往是系统 的主要扰动,假如主扰动 n(t)的作用点如图所示,现 在分析它对输出或稳态误差 的影响。 1 例 G1 (s) K G2 ( s )
分别计算当r(t)和n(t)为阶跃输入时的系统稳态误差 解: K
Js
H ( s) 1
GK ( s) G1 ( s)G2 ( s) H ( s)
若扰动为阶跃函数n(t)=1(t),则
G2 (0) H (0) essn 1 G1 (0)G2 (0) H (0)
当
G1 (0)G2 (0) H (0) 1 G2 (0) H (0) 1 essn 1 G1 (0)G2 (0) H (0) G1 (0)
扰动作用点以前的系统前向通道传递系数G1(0)越大,由一定 扰动引起的稳态误差就越小。 对于无差系统,即N≥1, G1(0) =∞.即应该是G1(s)中包含积 分环节,才保证扰动不影响稳态响应,由此产生的稳态误差为 零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计地点:光电楼四层
指导教师:
系主任:张保成
下达任务书日期:2009 年12月27日
课 程 设 计 任 务 书
1.设计目的:
控制系统的稳态误差,是系统控制准确度或控制精度的一种度量。作为系统性能指标之一的“准确性”,这项稳态性能指标对控制系统是至关重要的。因此,熟悉控制系统稳态误差的Matlab实现方法,并学会控制系统稳态误差的曲线对签字:
年月日
R(s)
图双环控制系统
3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:
设计工作量适中,完成设计后要求提供以下内容:
1)课程设计说明书,要求明确设计方案,仿真结果正确清晰;
2)源程序清单以及解释;
课 程 设 计 任 务 书
4.主要参考文献:
1.郑君里.信号与系统.北京:高等教育出版社,2000.
2.吴麒.《自动控制原理(上、下)》.北京:清华大学出版社.
5.设计成果形式及要求:
课程设计计算说明书一份
6.工作计划及进度:
09年12月27日~12月31日熟悉控制系统稳态误差的Matlab实现方法;
10年1月1日~1月5日设计程序,实现设计要求;
1月6日~1月8日撰写课程设计说明书;
1月9日~1月10日答辩总结,成绩考核;
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):
对下图所示系统:
1)当kf=0时,确定系统的阻尼比 ,无阻尼自然振荡角频率 与在r(t)=t作用下系统的稳态误差ess;
2)当 时,确定系统参数kf在r(t)=t作用下系统的稳态误差ess;
3)当r(t)=t时,欲保持 与ess=0.2,试确定参数kf与放大器系数Ka。
中北大学
课 程 设 计 说 明 书
学生姓名:学号:
学院:
专业:
题目:
指导教师:职称:
年 月 日
中北大学
课程设计任务书
2009~2010学年第一学期
学院:机械工程与自动化学院
专业:机械电子工程
学生姓名:甄国志学号:30
课程设计题目:控制系统稳态误差的计算
起迄日期:2010年12月20日~2011年1月2日
指导教师:
系主任:张保成
下达任务书日期:2009 年12月27日
课 程 设 计 任 务 书
1.设计目的:
控制系统的稳态误差,是系统控制准确度或控制精度的一种度量。作为系统性能指标之一的“准确性”,这项稳态性能指标对控制系统是至关重要的。因此,熟悉控制系统稳态误差的Matlab实现方法,并学会控制系统稳态误差的曲线对签字:
年月日
R(s)
图双环控制系统
3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:
设计工作量适中,完成设计后要求提供以下内容:
1)课程设计说明书,要求明确设计方案,仿真结果正确清晰;
2)源程序清单以及解释;
课 程 设 计 任 务 书
4.主要参考文献:
1.郑君里.信号与系统.北京:高等教育出版社,2000.
2.吴麒.《自动控制原理(上、下)》.北京:清华大学出版社.
5.设计成果形式及要求:
课程设计计算说明书一份
6.工作计划及进度:
09年12月27日~12月31日熟悉控制系统稳态误差的Matlab实现方法;
10年1月1日~1月5日设计程序,实现设计要求;
1月6日~1月8日撰写课程设计说明书;
1月9日~1月10日答辩总结,成绩考核;
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):
对下图所示系统:
1)当kf=0时,确定系统的阻尼比 ,无阻尼自然振荡角频率 与在r(t)=t作用下系统的稳态误差ess;
2)当 时,确定系统参数kf在r(t)=t作用下系统的稳态误差ess;
3)当r(t)=t时,欲保持 与ess=0.2,试确定参数kf与放大器系数Ka。
中北大学
课 程 设 计 说 明 书
学生姓名:学号:
学院:
专业:
题目:
指导教师:职称:
年 月 日
中北大学
课程设计任务书
2009~2010学年第一学期
学院:机械工程与自动化学院
专业:机械电子工程
学生姓名:甄国志学号:30
课程设计题目:控制系统稳态误差的计算
起迄日期:2010年12月20日~2011年1月2日