2015秋湘教版数学九上2.4《一元二次方程根与系数的关系》word教案

合集下载

【湘教版】九年级数学上册:2.4《一元二次方程根与系数的关系》教案(含答案)

【湘教版】九年级数学上册:2.4《一元二次方程根与系数的关系》教案(含答案)

2.4一元二次方程根与系数的关系教学目标【知识与技能】掌握一元二次方程根与系数的关系,会运用关系定理求已知一元二次方程的两根之和及两根之积,并会解一些简单的问题.【过程与方法】经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,在运用关系解决问题的过程中,培养学生解决问题能力,渗透整体的数学思想,求简思想.【情感态度】通过学生自己探究,发现根与系数的关系,增强学习的信心,培养科学探究精神.【教学重点】根与系数关系及运用.【教学难点】定理的发现及运用.教学过程一、情景导入,初步认知我们知道,一元二次方程ax2+bx+c=0的根的值是由a、b、c来决定的.除此之外,根与系数之间还有什么关系呢?【教学说明】由问题引入新课,提高学生学习兴趣.二、思考探究,获取新知1.探究规律先填空,再找规律:2.若x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,你能猜想x1+x2=______,x1·x2=______.3.你能证明你的猜想吗?当Δ≥0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个根,分别为:12b x a +=-,22b x a=-【归纳结论】当Δ≥0时,一元二次方程的根与系数之间具有以下关系:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:这种关系称为韦达定理.【教学说明】通过学生计算一些特殊的一元二次方程的两根之和与两根之积,启发学生从中发现存在的一般规律,渗透特殊到一般的思考方法.三、运用新知,深化理解 1.教材P47例1、例2.2.利用根与系数的关系,求一元二次方程2x 2+3x-1=0的两个根的. (1)平方和(2)倒数和分析:根据一元二次方程的两根与系数之间的关系可求.3.已知方程5x 2+kx-6=0的一个根为2,求它的另一个根及k 的值.分析:根据一元二次方程的两根与系数之间的关系可求. 解:设方程的另一个根是x 1,那么2x 1=-6/5 ∴x 1=-3/5 又x 1+2=-k/5 ∴k=-74.已知一元二次方程x 2-6x-5=0的两根为a 、b ,则1/a+1/b 的值是多少? 解:∵a ,b 是一元二次方程的两根,∴a+b=6,ab=-5,5.已知方程x2-4x-1=0有两个实数根x1,x2,要求不解方程,求值:(1)(x1+1)(x2+1)(2)x2x1+x1x2解:x1+x2=-b/a=4;x1x2=c/a=-1,(1)(x1+1)(x2+1),=x1x2+x1+x2+1,=-1+4+1=4;6.已知x,y均为实数,且满足关系式x2-2x-6=0,y2-2y-6=0,求x/y+y/x的值.解:当x≠y时,∵x、y满足关系式x2-2x-6=0,y2-2y-6=0,∴x、y是z2-2z-6=0的两根,∴x+y=2,xy=-6,当x,y的值相等时,原式=2.故答案为:-8/3或2.【教学说明】目的是考察学生灵活运用知识解决问题能力,让学生感受到根与系数的关系在解题中的运用,同时也考察学生思维的严密性.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.4”中第1、2、3题.教学反思此节课在研究方程的根与系数关系时,先从具体例子观察、归纳其规律,并且先从二次项系数是1的方程入手,然后提出二次项系数不是1的,由此,猜想一般的一元二次方程的根与系数关系,最后对此猜想的正确性作出证明.这个全过程对培养学生正确的思考方法很有价值.昨天我所在学校期中考试成绩,有个别同学考的不太理想,跟我发微信,自己在期中考试前已经非常努力的做题了,但最后的成绩却很差。

湘教版九年级数学上册第2章一元二次方程2.4一元二次方程根与系数的关系教学设计

湘教版九年级数学上册第2章一元二次方程2.4一元二次方程根与系数的关系教学设计

湘教版九年级数学上册第2章一元二次方程2.4一元二次方程根与系数的关系教学设计一. 教材分析湘教版九年级数学上册第2章一元二次方程2.4节主要讲解了一元二次方程根与系数的关系。

本节内容是在学习了配方法求解一元二次方程的基础上,引导学生利用代数方法探究一元二次方程根与系数之间的关系,培养学生运用数学知识解决实际问题的能力。

教材通过实例引导学生发现并总结根与系数的关系,进而引导学生用关系式表示,最后通过练习巩固所学知识。

二. 学情分析学生在学习本节内容前,已经掌握了求解一元二次方程的基本方法,能熟练运用配方法求解一元二次方程。

但学生对根与系数的关系的认识还不够深入,需要通过实例引导学生探究,发现并总结规律。

三. 教学目标1.让学生掌握一元二次方程根与系数的关系,能运用关系式表示。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生分析问题、解决问题的能力。

四. 教学重难点1.掌握一元二次方程根与系数的关系。

2.能运用关系式表示。

五. 教学方法采用引导发现法、合作交流法、实践操作法等,引导学生通过观察、思考、讨论、实践等方式,发现并总结一元二次方程根与系数的关系。

六. 教学准备1.教学课件或黑板。

2.练习题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾一元二次方程的解法,为新课的学习做好铺垫。

2.呈现(10分钟)展示几个一元二次方程的例子,让学生观察并思考:这些方程的根与系数之间有什么关系?3.操练(10分钟)让学生分组讨论,每组尝试找出一个一元二次方程的根与系数的关系式。

讨论结束后,各组汇报成果,教师点评并总结。

4.巩固(10分钟)出示一些练习题,让学生运用刚才总结的规律解决问题。

教师巡回指导,及时解答学生的疑问。

5.拓展(10分钟)出示一些实际问题,让学生运用一元二次方程根与系数的关系解决。

教师引导学生运用所学知识,培养学生解决实际问题的能力。

6.小结(5分钟)让学生总结本节课所学内容,教师补充并强调重点。

九年级数学上册《一元二次方程的根与系数的关》教案、教学设计

九年级数学上册《一元二次方程的根与系数的关》教案、教学设计
6.课后作业,分层辅导
根据学生的个体差异,布置不同难度的课后作业,使每个学生都能在原有基础上得到提高。同时,针对学生在课堂上的表现,进行有针对性的辅导,解决他们在学习过程中遇到的问题。
7.教学评价,持续改进
通过课堂提问、作业批改、测验等方式,了解学生的学习效果,对教学方法和策略进行调整,以提高教学质量。
二、学情分析
九年级的学生已经具备了一定的数学基础,对一元二次方程的求解方法有初步的了解。在此基础上,他们对一元二次方程的根与系数之间的关系有一定的探究欲望,但可能对根的判别式和韦达定理的理解还不够深入。因此,在教学过程中,教师应充分调动学生的积极性,引导他们通过观察、思考、总结,逐步理解并掌握一元二次方程的根与系数之间的关系。
1.培养学生对待数学问题的认真态度,严谨治学,克服困难,勇于探索。
2.培养学生用数学的眼光观察世界,认识世界,增强学生的数学应用意识。
3.培养学生的创新精神,激发学生的学习兴趣,使学生在学习过程中体验成功,树立自信心。
在教学过程中,要注意关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重培养学生的数学思维和解决问题的能力,为学生的终身发展奠定基础。
四、教学内容与过程
(一)导入新课
在课堂的开始,我将通过一个贴近学生生活的实际问题来导入新课:“同学们,假设我们班要举行一次篮球比赛,已知比赛场地上有两个篮筐,分别距离地面一定高度。现在我们需要计算出篮球从地面抛起,到达篮筐高度时的速度。这个问题可以通过一元二次方程来求解,那么如何找到这个方程的根呢?”这个问题既能够引起学生的兴趣,又能让学生感受到数学与生活的紧密联系。
此外,学生在解决实际问题时可能会遇到一定的困难,需要教师耐心指导,帮助学生建立数学模型,提高学生的数学应用能力。同时,学生的个体差异较大,教师应关注每个学生的学习进度,针对性地进行教学辅导,使他们在原有基础上得到提高。

湘教版数学九年级上册2.4《一元二次方程根与系数的关系》说课稿2

湘教版数学九年级上册2.4《一元二次方程根与系数的关系》说课稿2

湘教版数学九年级上册2.4《一元二次方程根与系数的关系》说课稿2一. 教材分析湘教版数学九年级上册2.4《一元二次方程根与系数的关系》是本节课的主要内容。

这部分内容是在学生已经掌握了方程的解法、一元二次方程的定义和判别式的意义等知识的基础上进行讲解的。

教材通过实例引导学生探究一元二次方程的根与系数之间的关系,让学生通过合作交流、探索发现,培养学生的抽象思维能力、归纳总结能力和解决问题能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对一元二次方程的解法和判别式的概念有一定的了解。

但是,对于一元二次方程根与系数之间的关系,他们可能还没有直观的认识。

因此,在教学过程中,我需要关注学生的学习需求,引导他们通过实例探究,发现并理解一元二次方程根与系数之间的关系。

三. 说教学目标1.知识与技能目标:让学生掌握一元二次方程根与系数之间的关系,能够运用这一关系解决实际问题。

2.过程与方法目标:通过合作交流、探索发现,培养学生的抽象思维能力、归纳总结能力和解决问题能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的良好学习习惯。

四. 说教学重难点1.教学重点:一元二次方程根与系数之间的关系。

2.教学难点:理解并运用一元二次方程根与系数之间的关系解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、探索发现法等。

2.教学手段:利用多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入新课:通过复习一元二次方程的解法和判别式的概念,引导学生进入新课。

2.探究活动:让学生通过合作交流、探索发现,总结出一元二次方程根与系数之间的关系。

3.讲解演示:教师对一元二次方程根与系数之间的关系进行讲解,并通过实例进行演示。

4.练习巩固:让学生通过练习题,巩固所学知识。

5.拓展应用:引导学生运用一元二次方程根与系数之间的关系解决实际问题。

6.课堂小结:教师和学生一起总结本节课的主要内容。

最新整理初三数学2.4一元二次方程根与系数的关系教案新版湘教版.docx

最新整理初三数学2.4一元二次方程根与系数的关系教案新版湘教版.docx

最新整理初三数学教案2.4一元二次方程根与系数的关系教案新版湘教版2.4一元二次方程根与系数的关系课题*2.4一元二次方程根与系数的关系授课人教学目标知识技能掌握一元二次方程的根与系数的关系并会初步应用.数学思考通过根与系数的教学,进一步培养学生分析、观察、归纳的能力和推理论证的能力.问题解决根据根与系数的关系确定两根之和与两根之积,并能根据这一关系解决简单的数学问题.情感态度通过情景教学过程,激发学生的求知欲,培养学生积极学习数学的态度,体验数学活动中充满着探索与创造,体验数学活动中的成功感.教学重点根与系数的关系及其推导过程.教学难点根与系数的关系的推导过程及其应用.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾提出问题:(多媒体展示问题)1.一元二次方程的一般形式是什么?2.一元二次方程有实数根的条件是什么?3.当Δ》0,Δ=0,Δ《0时,一元二次方程的根的情况如何?4.一元二次方程的求根公式是什么?通过对一元二次方程相关知识的复习巩固旧知识,并为后面的学习做铺垫.活动一:创设情境导入新课课堂引入(多媒体展示)问题:解下表中的方程,并完成填空:方程x1x2x1+x2x1·x2x2-2x-3=0x2-3x+2=0x2+5x+6=0师生活动:学生自主选择适当的方法解方程,并完成填空,然后交流答案.问题:观察、思考方程的两根之和与两根之积与系数有何关系?你能从中发现什么规律?学生通过计算、观察、分析,发现方程中根与系数的关系,发展学生的感性认识,体会由特殊到一般的认识过程.活动二:实践探究交流新知1.填写上表后思考:(1)两根之和、两根之积与系数有何关系?(2)你能运用发现的规律解答下列问题吗?已知方程2x2-3x-2=0的两根是x1和x2,则x1+x2=________,x1·x2=________.(3)如何证明以上发现的规律呢?2.教师与学生共同整理证明过程.证明:当Δ》0时,由求根公式得x1=-b+b2-4ac2a,x2=-b-b2-4ac2a,所以x1+x2=-b+b2-4ac2a+-b-b2-4ac2a=-2b2a=-ba;x1x2=-b+b2-4ac2a×-b-b2-4ac2a=4ac4a2=ca.当Δ=0时,x1=x2=-b2a,所以x1+x2=-ba,x1x2=ca.归纳:若方程ax2+bx+c=0(a≠0)的两个根为x1和x2,则x1+x2=-ba,x1x2=ca.1.进一步分析、验证所发现的根与系数的关系,为从感性认识到理性认识打好基础.2.通过设置问题(2)使学生明确利用一元二次方程根与系数的关系进行计算需要满足Δ≥0.3.探究根与系数关系的结论,培养学生严谨的学习态度.活动三:开放训练体现应用应用举例例1(多媒体展示)根据一元二次方程根与系数的关系,求下列方程的两个根x1和x2的和与积.(1)x2-6x-15=0;(2)3x2+7x-9=0;(3)5x-1=4x2.师生活动:学生自主进行解答,教师做好评价和总结.注意:把一元二次方程整理为一般形式,确定a,b,c的值,然后利用根与系数的关系代入求值.变式一[昆明中考]已知x1,x2是一元二次方程x2-4x+1=0的两个实数根,则x1x2等于()A.-4B.-1C.1D.4变式二若x1,x2为方程x2-2x-1=0的两根,求x1+x2-x1x2的值.设置问题,针对本课时的重点所学进行及时巩固,培养学生的计算能力和记忆公式的能力.拓展提升例2解答下列问题:(1)已知方程x2-3x+c=0的一个根为2,求另一个根和c的值.(2)关于x的方程2x2+5x+m-1=0的两根互为倒数,求m的值.例3若一元二次方程x2-x-1=0的两根分别为x1,x2,求1x1+1x2的值.师生活动:教师引导学生进行交流、讨论,确定解决问题的方法,并适时点拨,提示能否用多种方法进行解答.拓展提升是根与系数关系的综合应用,利于提高学生思考的广度和深度,能够给予学生必要的知识补充.活动四:课堂总结反思达标测评1.两根均为负数的一元二次方程是()A.7x2-12x+5=0B.6x2-13x-5=0C.4x2+21x+5=0D.x2+15x-8=02.已知方程x2+ax+b=0的两个根分别为2和3,则a=________,b=________.3.已知方程x2-2x-c=0的一个根是3,求方程的另一根及c的值.4.已知方程2x2-4x-5=0的两个根分别为x1和x2,求下列式子的值.(1)(x1+2)(x2+2);(2)x21x2+x1x22.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.通过设置达标测评,进一步巩固所学新知识,同时检测学习效果,做到“堂堂清”.当堂训练1.(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!2.布置作业:教材P48习题2.4中的T1,T2,T3.指导学生养成系统整理知识的好习惯,加强教学反思,进一步提高教学效果.知识网络提纲挈领,重点突出.教学反思①[授课流程反思]在新知探究环节中,关于两根之和与两根之积的计算看似复杂,教师进行板演后,能够使学生清晰认识到结论的来由,能够顺利地进行应用.课堂训练中,学生运用新知识解答问题不甚灵活,教师的必要引导起了关键作用.②[讲授效果反思]重点应用过程中,注意到:(1)运用根与系数的关系前首先要保证方程有实数根;(2)运用根与系数的关系解答问题能方便运算.③[师生互动反思]从教学过程来看,学生能够在教师的引导下进行探索和交流,并能够运用知识解答问题,应增加其兴趣和思维敏捷性的训练.④[习题反思]好题题号_______________________________________错题题号_______________________________________反思,更进一步提升.。

湘教版数学九年级上册2.4《一元二次方程根与系数的关系》说课稿1

湘教版数学九年级上册2.4《一元二次方程根与系数的关系》说课稿1

湘教版数学九年级上册2.4《一元二次方程根与系数的关系》说课稿1一. 教材分析《一元二次方程根与系数的关系》是湘教版数学九年级上册2.4的内容。

这部分内容是在学生已经掌握了二次方程的解法的基础上进行学习的,旨在让学生通过探究一元二次方程的根与系数之间的关系,进一步理解和掌握二次方程的性质。

教材通过引入“根与系数的关系”的概念,引导学生运用归纳法总结出规律,并通过例题和练习题使学生熟练掌握这一规律。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和探究能力,对于二次方程的概念和解法已经有了一定的了解。

但是,对于根与系数之间的关系,他们可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

此外,学生可能对于归纳法的使用还不够熟练,需要教师在教学中进行引导和培养。

三. 说教学目标1.知识与技能目标:让学生理解和掌握一元二次方程根与系数之间的关系,能够运用这一规律解决实际问题。

2.过程与方法目标:通过探究和归纳,培养学生运用数学规律解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣和探究精神,使学生感受到数学的内在联系和美感。

四. 说教学重难点1.教学重点:一元二次方程根与系数之间的关系。

2.教学难点:对于根与系数之间关系的理解和运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和归纳法进行教学。

2.教学手段:利用多媒体课件和板书进行教学。

六. 说教学过程1.导入:通过一个具体的例子,引导学生思考一元二次方程的根与系数之间的关系。

2.探究:让学生分组讨论,运用归纳法总结出根与系数之间的关系。

3.讲解:教师对根与系数之间的关系进行讲解,并通过例题进行演示。

4.练习:学生进行练习,教师进行解答和指导。

5.总结:教师对课堂内容进行总结,强调重点和难点。

七. 说板书设计板书设计要清晰、简洁,能够突出根与系数之间的关系。

可以设计一个,列出不同形式的二次方程的根与系数的关系,便于学生理解和记忆。

九年级数学上册《一元二次方程的根与系数的关系》教案、教学设计

九年级数学上册《一元二次方程的根与系数的关系》教案、教学设计
(二)过程与方法
1.通过引导学生在自主探究、合作交流的过程中发现一元二次方程的根与系数的关系,培养学生发现问题、分析问题和解决问题的能力。
2.利用具体的实例,让学生在实际操作中掌握一元二次方程的根与系数的关系,提高学生的实际操作能力和应用能力。
3.通过对一元二次方程根与系数关系的探究,培养学生数形结合的思想,让学生学会从多角度分析问题,形成严密的逻辑思维。
5.拓展延伸,提高思维:
-通过拓展延伸性问题的设置,引导学生运用一元二次方程根与系数关系解决更复杂的问题,提高学生的思维能力和创新能力。
6.总结反馈,反思提升:
-在课堂结束前,引导学生总结所学内容,进行自我反馈,发现不足,及时改进。
-教师对课堂教学进行反思,了解学生的学习情况,调整教学策略,提高教学质量。
-根据实际问题,列出一元二次方程,并运用根与系数关系求解。
3.拓展题:
-探究一元二次方程ax^2 + bx + c = 0(a≠0)的根与系数之间的关系,并给出证明。
-通过阅读教材或其他资料,了解一元二次方程根与系数关系在其他数学分支中的应用。
4.实践题:
-调查生活中的一元二次方程问题,例如:物品的定价与折扣、投资收益等,并运用所学知识解决实际问题。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,针对本节课所学的一元二次方程根与系数关系,讨论以下问题:
a.一元二次方程根与系数关系在实际问题中的应用;
b.如何运用根与系数关系解决具体问题;
c.根的判别式和韦达定理在解题过程中的作用。
2.教学方法:
-采用小组合作学习法,促进学生之间的交流与讨论。
四、教学内容与过程
(一)导入新课

湘教版九年级上册教案:2.4 一元二次方程根与系数的关系

湘教版九年级上册教案:2.4 一元二次方程根与系数的关系

*2.4 一元二次方程根与系数的关系1.理解并掌握根与系数关系:x 1+x 2=-b a ,x 1x 2=c a. 2.会用根的判别式及根与系数的关系解题.阅读教材P46~47,完成下列问题:(一)知识探究当Δ≥0时,设ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=________,x 1x 2=________.这个关系通常被称为韦达定理.(二)自学反馈根据一元二次方程根与系数的关系,求下列方程的两根之和与两根之积:(1)x 2-3x -1=0; (2)2x 2+3x -5=0;(3)13x 2-2x =0.活动1 小组讨论例1 不解方程,求下列方程的两根之和与两根之积:(1)x 2-6x -15=0; (2)3x 2+7x -9=0;(3)5x -1=4x 2.解:(1)x 1+x 2=6,x 1x 2=-15.(2)x 1+x 2=-73,x 1x 2=-3. (3)x 1+x 2=54,x 1x 2=14. 先将方程化为一般形式,找对a ,b ,c 的值.例2 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值.解:设另一根为x ,由根与系数的关系得-3·x =-92,解得x =32. 又∵-3+32=-k 2,解得k =3. ∴另一根是32,k 的值是3. 本题有两种解法,一种是根据根的定义,将x =-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.活动2 跟踪训练1.两根均为负数的一元二次方程是( )A .7x 2-12x +5=0B .6x 2-13x -5=0C .4x 2+21x +5=0D .x 2+15x -8=0两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.2.已知x 1、x 2是方程x 2-3x -2=0的两个实根,则(x 1-2)·(x 2-2)=________.3.利用根与系数的关系,求下列方程的两根和与两根积:(1)x 2-3x =15; (2)5x 2-1=4x 2;(3)x 2-3x +2=10; (4)4x 2-144=0;4.已知x 1,x 2是方程x 2-4x +2=0的两根,求代数式1x 1+1x 2的值. 活动3 课堂小结学生试述:今天学到了什么?【预习导学】知识探究-b a c a自学反馈(1)x 1+x 2=3,x 1x 2=-1.(2)x 1+x 2=-32,x 1x 2=-52. (3)x 1+x 2=6,x 1x 2=0.【合作探究】活动2 跟踪训练1.C 2.-4 3.(1)x 1+x 2=3,x 1x 2=-15.(2)x 1+x 2=0,x 1x 2=-1.(3)x 1+x 2=3,x 1x 2=-8.(4)x 1+x 2=0,x 1x 2=-36. 4.由根与系数的关系得,x 1+x 2=4,x 1x 2=2.∴1x 1+1x 2=x 1+x 2x 1x 2=42=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*2.4一元二次方程根与系数的关系
教学目标
【知识与技能】
掌握一元二次方程根与系数的关系,会运用关系定理求已知一元二次方程的两根之和及两根之积,并会解一些简单的问题.
【过程与方法】
经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,在运用关系解决问题的过程中,培养学生解决问题能力,渗透整体的数学思想,求简思想.
【情感态度】
通过学生自己探究,发现根与系数的关系,增强学习的信心,培养科学探究精神.
【教学重点】根与系数关系及运用.
【教学难点】定理的发现及运用.
教学过程
一、情景导入,初步认知
我们知道,一元二次方程ax2+bx+c=0的根的值是由a、b、c来决定的.除此之外,根与系数之间还有什么关系呢?
【教学说明】由问题引入新课,提高学生学习兴趣.
二、思考探究,获取新知
1.探究规律
先填空,再找规律:
2.若x1、x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两个根,你能猜想x 1+x 2=______,x 1·x 2=______.
3.你能证明你的猜想吗?
当Δ≥0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个根,分别为:
1x =2x =
【归纳结论】当Δ≥0时,一元二次方程的根与系数之间具有以下关系:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:
这种关系称为韦达定理.
【教学说明】通过学生计算一些特殊的一元二次方程的两根之和与两根之积,启发学生从中发现存在的一般规律,渗透特殊到一般的思考方法.
三、运用新知,深化理解
1.教材P47例1、例
2.
2.利用根与系数的关系,求一元二次方程2x 2+3x-1=0的两个根的.
(1)平方和(2)倒数和
分析:根据一元二次方程的两根与系数之间的关系可求.
3.已知方程5x 2+kx-6=0的一个根为2,求它的另一个根及k 的值.
分析:根据一元二次方程的两根与系数之间的关系可求.
解:设方程的另一个根是x 1,那么2x 1=-6/5
∴x 1=-3/5
又x1+2=-k/5
∴k=-7
4.已知一元二次方程x2-6x-5=0的两根为a、b,则1/a+1/b的值是多少?
解:∵a,b是一元二次方程的两根,
∴a+b=6,ab=-5,
5.已知方程x2-4x-1=0有两个实数根x1,x2,要求不解方程,求值:
(1)(x1+1)(x2+1)
(2)x2x1+x1x2
解:x1+x2=-b/a=4;x1x2=c/a=-1,
(1)(x1+1)(x2+1),
=x1x2+x1+x2+1,
=-1+4+1
=4;
6.已知x,y均为实数,且满足关系式x2-2x-6=0,y2-2y-6=0,求x/y+y/x的值.
解:当x≠y时,
∵x、y满足关系式x2-2x-6=0,y2-2y-6=0,
∴x、y是z2-2z-6=0的两根,
∴x+y=2,xy=-6,
当x,y的值相等时,原式=2.
故答案为:-8/3或2.
【教学说明】目的是考察学生灵活运用知识解决问题能力,让学生感受到根。

相关文档
最新文档