运筹学分支定界法专题培训课件
合集下载
北京科技大学运筹学课件第3章

x2
D
x1
(39) 的最优表为
5 2 x2 74 x1 3 4
x1 x2 u1
0 0 0 12 1 34
u2
1 2 1 4 1 4
A( 3 , 7 ) 最优解: 4 4
不是整数解
x1
3 7 10 A( , ) Z 4 4 4
C ( 1 ,1 )
S
0 1
最优整数解
x1
3 1 1 u1 u 2 4 4 4 7 3 1 1 0 14 x 2 u1 u 2 4 4 4 (3 在( 2 9) 9)的约束方程中 , x1 , x 2的系数是整数 , 右侧常数项也 是整数, 若 x1 , x 2 取整数 , 则 u1 , u2也一定是整数 .
max z x1 x 2
s .t .
x 2 2或x 2 3
1
2
3
x1
61 14
x1 2 x2 3
9 51 x2 14 14 (3 2) 1 2 x1 x 2 3 x1
max z x1 x 2
s .t .
3 10 29 A( , ) Z 2 3 6 7 23 10 41 C ( 1 , ) B ( 2 , ) Z Z 3 9 3 9 33 D( ,2) 14 61
则((3-2) 2 2)的最优解中, x2应满足 : x2 2或x2 3
( 2 x 2 3不符合整数条件 )
9 51 x1 x2 14 14 (3 4) 1 2 x1 x 2 3
max z x1 x 2
x1 2 0 x2 2
9 51 x2 S5 空集 14 14 (35) 1 2 x1 x 2 3 x1
清华大学运筹学课件(完整课件)

05
图与网络分析
图与网络的基本概念
图与网络的定义
由节点和边构成的数学结构,表示对象及其之间 的关系。
连通性
在无向图中,任意两个节点之间都存在路径,则 称该图是连通的。
有向图与无向图
根据边的方向性分类的图。
强连通与弱连通
在有向图中,任意两个节点之间都存在有向路径 ,则称该图是强连通的;若将有向图的边忽略方 向后得到的无向图是连通的,则称该有向图是弱 连通的。
通过平衡订货成本和存储成本,确定 最佳订货批量,使得总成本最低。
经济生产批量模型
适用于生产型企业,通过平衡生产准 备成本和存储成本,确定最佳生产批
量。
不允许缺货模型
假设需求稳定且不允许缺货,通过计 算最佳订货点和最高库存水平,实现
最小化成本。
随机型存储模型
一次性订货模型
适用于需求不确定的情况,通过 计算安全库存和期望缺货量,确 定最佳订货量。
整数规划问题的分类
根据整数变量的取值范围,可分为纯整数规划、混 合整数规划和0-1整数规划。
整数规划问题的数学模型
整数规划问题的数学模型与线性规划问题类 似,但需要加入整数约束条件。
分枝定界法
分枝定界法的基本思想
将原问题分解为若干个子问题,每个子问题对应原问题的 一个子集,通过求解子问题的最优解来逼近原问题的最优 解。
最短路问题
Dijkstra算法
适用于没有负权边的有向图,通过不断更新距离标签来求解单源最 短路问题。
Floyd算法
适用于任意有向图,通过动态规划的思想求解多源最短路问题。
Bellman-Ford算法
适用于有负权边的有向图,通过不断松弛边来求解单源最短路问题 。
运筹学经典课件-04.整数规划(胡运权)

一、 概念
整数规划: 要求决策变量取整数值的规划问题。
(线性整数规划、非线性整数规划等)
纯整数规划:在整数规划中,如果所有的变量都为非负整 数,则称为纯整数规划问题; 混合整数规划:如果有一部分变量为非负整数,则称之为 混合整数规划问题。 0-1变量:在整数规划中,如果变量的取值只限于0和1,这 样的变量我们称之为0-1变量。 0-1规划:在整数规划问题中,如果所有的变量都为0-1变 量,则称之为0-1规划。
资源 金属板(吨) 小号容器 2 中号容器 4 大号容器 8
劳动力(人月)
机器设备(台月)
2
1
3
2
4
3
2013-10-30
14
解:这显然是一个整数规划的问题。
设x1,x2, x3 分别为小号容器、中号容器和大号容器的生产数量。各 种容器的固定费用只有在生产该种容器时才投入,为了说明固定费用的这 种性质,设 yi = 1(当生产第 i种容器, 即 xi > 0 时) 或0(当不生产第 i种
2 x1 3x2 14
z 3x1 2 x2
2013-10-30
x1
5
§2 应用举例
一、 逻辑变量在数学模型中的应用
1、m个约束条件中只有k个起作用
设有m个约束条件
a
j 1
n
ij
bi ,
i 1,2,..., m
0 定义0-1整型变量: yi 1 M是任意大正数。
x j 0, j 1,... 6
2013-10-30
13
例3.(固定成本问题) 高压容器公司制造小、中、大三种尺寸的金属容器,所用资 源为金属板、劳动力和机器设备,制造一个容器所需的各种 资源的数量如表所示。每种容器售出一只所得的利润分别为 4万元、5万元、6万元,可使用的金属板有500吨,劳动力有 300人/月,机器有100台/月,此外不管每种容器制造的数量 是多少,都要支付一笔固定的费用:小号是l00万元,中号为 150 万元,大号为200万元。现在要制定一个生产计划,使获 得的利润为最大。
整数规划: 要求决策变量取整数值的规划问题。
(线性整数规划、非线性整数规划等)
纯整数规划:在整数规划中,如果所有的变量都为非负整 数,则称为纯整数规划问题; 混合整数规划:如果有一部分变量为非负整数,则称之为 混合整数规划问题。 0-1变量:在整数规划中,如果变量的取值只限于0和1,这 样的变量我们称之为0-1变量。 0-1规划:在整数规划问题中,如果所有的变量都为0-1变 量,则称之为0-1规划。
资源 金属板(吨) 小号容器 2 中号容器 4 大号容器 8
劳动力(人月)
机器设备(台月)
2
1
3
2
4
3
2013-10-30
14
解:这显然是一个整数规划的问题。
设x1,x2, x3 分别为小号容器、中号容器和大号容器的生产数量。各 种容器的固定费用只有在生产该种容器时才投入,为了说明固定费用的这 种性质,设 yi = 1(当生产第 i种容器, 即 xi > 0 时) 或0(当不生产第 i种
2 x1 3x2 14
z 3x1 2 x2
2013-10-30
x1
5
§2 应用举例
一、 逻辑变量在数学模型中的应用
1、m个约束条件中只有k个起作用
设有m个约束条件
a
j 1
n
ij
bi ,
i 1,2,..., m
0 定义0-1整型变量: yi 1 M是任意大正数。
x j 0, j 1,... 6
2013-10-30
13
例3.(固定成本问题) 高压容器公司制造小、中、大三种尺寸的金属容器,所用资 源为金属板、劳动力和机器设备,制造一个容器所需的各种 资源的数量如表所示。每种容器售出一只所得的利润分别为 4万元、5万元、6万元,可使用的金属板有500吨,劳动力有 300人/月,机器有100台/月,此外不管每种容器制造的数量 是多少,都要支付一笔固定的费用:小号是l00万元,中号为 150 万元,大号为200万元。现在要制定一个生产计划,使获 得的利润为最大。
运筹学ppt课件

– 无穷多个最优解。若将例1中的目标函数变为 max z=50x1+50x2,则线段BC上的所有点都代表 了最优解;
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存在 满足约束条件的解,当然也就不存在最优解了。
• 交叉学科 --涉及经济、管理、数学、工程和系统等 多学科
• 开放性 --不断产生新的问题和学科分支
• 多分支 --问题的复杂和多样性
2
运筹学的主要内容
线性规划
数 非线性规划
学
整数规划
规
动态规划
划
多目标规划
学
双层规划
最优计数问题
科
组 合
网络优化
内
优 排序问题 化 统筹图
容
对策论
随 排队论
机 优 化
13
组织 宝洁公司 法国国家铁路
应用
Interface 每年节支 期刊号 (美元)
重新设计北美生产和分销系统以 1-2/1997 2亿 降低成本并加快了市场进入速 度
制定最优铁路时刻表并调整铁路 1-2/1998 1500万更多
日运营量
年收入
Delta航空公司 IBM
进行上千个国内航线的飞机优化 配置来最大化利润
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
30
例:将以下线性规划问题转化为标准形式
则该极小化问题与下面的极大化问题有相同的最优解,
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存在 满足约束条件的解,当然也就不存在最优解了。
• 交叉学科 --涉及经济、管理、数学、工程和系统等 多学科
• 开放性 --不断产生新的问题和学科分支
• 多分支 --问题的复杂和多样性
2
运筹学的主要内容
线性规划
数 非线性规划
学
整数规划
规
动态规划
划
多目标规划
学
双层规划
最优计数问题
科
组 合
网络优化
内
优 排序问题 化 统筹图
容
对策论
随 排队论
机 优 化
13
组织 宝洁公司 法国国家铁路
应用
Interface 每年节支 期刊号 (美元)
重新设计北美生产和分销系统以 1-2/1997 2亿 降低成本并加快了市场进入速 度
制定最优铁路时刻表并调整铁路 1-2/1998 1500万更多
日运营量
年收入
Delta航空公司 IBM
进行上千个国内航线的飞机优化 配置来最大化利润
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
30
例:将以下线性规划问题转化为标准形式
则该极小化问题与下面的极大化问题有相同的最优解,
运筹学课件第三节分支定界法

约束条件组
n aij xj b i My i j1 st. p (i 1 ,2,...,p) yi pq i1
在约束条件中保证了在P个0-1 变量中有p-q个1,q个0;凡取值 =0的yi对应的约束条件为原约束 条件,凡取值=1的yi对应的约束 条件将自然满足,因而为多余.
,先加工某种产品 0 yj ( j 1 ,2 ,3 ,4 ) 1 ,先加工另外产品 机床1:x11+a11≤x21+My1 ; x21+a21≤x11+M(1-y1) 机床2:x22+a22≤x32+My2 ; x32+a32≤x22+M(1-y2) 机床3:x13+a13≤x33 +My3 ; x33+a33≤x13+M(1-y3) 机床4:x14+a14≤x24 +My4 ; x24+a24≤x14+M(1-y4) 当y1=0,表示机床1先加工产品1,后加工产品2;当y1=1,表示机床1先 加工产品2,后加工产品1.
不同的搜索策略会导致不同的搜索树,一般 情况下,同一层的两个子问题,先搜索目标 函数比较大的较有利(如果是极小问题,则 应先搜索目标函数值小的较为有利)。这样 可能得到数值比较大的下界,下界越大被剪 去的分支越多。 分支定界算法对于混合整数规划特别有效, 对没有整数要求的变量就不必分支,这将大 大减少分支的数量。
Max Z = X1 + X2 14X1 + 9X2 ≤ 51 - 6X1 + 3X2 ≤ 1 X1 ≥2 X2 ≤ 2 X1 , X2 ≥ 0 Max Z = X1 + X2 14X1 + 9X2 ≤ 51 - 6X1 + 3X2 ≤ 1 X1 ≥3 X2 ≤ 2 X1 , X2 ≥ 0 Max Z = X1 + X2 14X1 + 9X2 ≤ 51 - 6X1 + 3X2 ≤ 1 2≤ X1 ≤2 X2 ≤ 2 X1 , X2 ≥ 0
运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。
运筹学课件第三节分支定界法

算法改进
针对不同问题的特点,分支定界法在算法实现上 不断进行优化和改进,以提高求解效率。
3
理论分析
分支定界法的理论分析涉及算法的收敛性、复杂 度等方面,为算法的改进提供了理论支持。
分支定界法的发展趋势
混合整数规划问题求解
随着混合整数规划问题的广泛应用,分支定界法在求解这类问题 上的研究逐渐成为热点。
理论深化与完善
进一步深化分支定界法的理论分析,完善算法的理论体系。
应用拓展
拓展分支定界法的应用领域,解决更多实际问题。
THANKS
感谢观看
运筹学课件第三节分支定界法
contents
目录
• 分支定界法的概述 • 分支定界法的算法原理 • 分支定界法的实现过程 • 分支定界法的案例分析 • 分支定界法的优缺点分析 • 分支定界法的前沿研究与展望
01
分支定界法的概述
分支定界法的定义
分支定界法是一种求解整数规划问题 的算法个子问题的解的 界,来逐步逼近最优解。
03
分支定界法的实现过程
问题建模与参数设定
确定决策变量
根据问题的具体情况,确定决策 变量,并为其设定合适的取值范
围。
定义目标函数
明确问题的目标,将其表示为一个 数学表达式,以便进行优化。
约束条件
根据问题的限制条件,建立相应的 约束条件。
建立搜索树与初始化
建立搜索树
根据问题建模的结果,建立一个 搜索树,用于表示问题的解空间 。
的获取概率。
优化分支策略
02
通过改进分支策略,减少算法产生的分支数量,降低算法的复
杂度和计算量。
引入智能搜索策略
03
将智能搜索策略(如遗传算法、模拟退火等)与分支定界法结
针对不同问题的特点,分支定界法在算法实现上 不断进行优化和改进,以提高求解效率。
3
理论分析
分支定界法的理论分析涉及算法的收敛性、复杂 度等方面,为算法的改进提供了理论支持。
分支定界法的发展趋势
混合整数规划问题求解
随着混合整数规划问题的广泛应用,分支定界法在求解这类问题 上的研究逐渐成为热点。
理论深化与完善
进一步深化分支定界法的理论分析,完善算法的理论体系。
应用拓展
拓展分支定界法的应用领域,解决更多实际问题。
THANKS
感谢观看
运筹学课件第三节分支定界法
contents
目录
• 分支定界法的概述 • 分支定界法的算法原理 • 分支定界法的实现过程 • 分支定界法的案例分析 • 分支定界法的优缺点分析 • 分支定界法的前沿研究与展望
01
分支定界法的概述
分支定界法的定义
分支定界法是一种求解整数规划问题 的算法个子问题的解的 界,来逐步逼近最优解。
03
分支定界法的实现过程
问题建模与参数设定
确定决策变量
根据问题的具体情况,确定决策 变量,并为其设定合适的取值范
围。
定义目标函数
明确问题的目标,将其表示为一个 数学表达式,以便进行优化。
约束条件
根据问题的限制条件,建立相应的 约束条件。
建立搜索树与初始化
建立搜索树
根据问题建模的结果,建立一个 搜索树,用于表示问题的解空间 。
的获取概率。
优化分支策略
02
通过改进分支策略,减少算法产生的分支数量,降低算法的复
杂度和计算量。
引入智能搜索策略
03
将智能搜索策略(如遗传算法、模拟退火等)与分支定界法结
运筹学 第三节 分支定界法

的子集,这两个子问题的最优解的目标函数值都不会比原
线性规划问题的最优解的目标函数值更大。如果这两个问
题的最优解仍不是整数解,则继续选择一个非整数的变量,
继续将这个子问题分解为两个更下一级的子问题。这个过
程称为“分支(Branch)”。
精品课件
运筹学教程
每一次分支得到的子问题最优解的目标函数值,都小于 或等于分支前问题的最优解的目标函数值。非整数解的 最大值作为新的上界。
意图),并设最优解位于C。如
果这个最优解中所有的变量都
是整数,则已经得到整数规划
的最优解。如果其中某一个变 量Xr不是整数,则在可行域中 X2
除去一块包含这个最优解但不 E
包含任何整数解的区域
DC
Ir<Xr<Ir+1(其中Ir是变量Xr
的整数部分),线性规划的可
行域被划分成不相交的两部分,
分别以这两部分区域作为可行
Z=4
精品课件
运筹学教程
不同的搜索策略会导致不同的搜索树,一般 情况下,同一层的两个子问题,先搜索目标 函数比较大的较有利(如果是极小问题,则 应先搜索目标函数值小的较为有利)。这样 可能得到数值比较大的下界,下界越大被剪 去的分支越多。
分支定界算法对于混合整数规划特别有效, 对没有整数要求的变量就不必分支,这将大 大减少分支的数量。
X1 ,
运筹学教程
说明: 1、在B121,B122 的可行域中不可能存在比以上所求解 的2个最优解更好的解。 2、目标函数值maxZ=4作为IP规划的最优解的目标函 数的一个界限(MAX,下界;MIN,上界);
求极小问题时,LP问题的解是IP问题的下界。每次分支后的子 问题最优解的目标函数值都大于或等于分支前的最优值。如分 支中得到整数解,则最小的整数解为上界。如分支的目标函数 值大于上界,则停止分支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#
LP211 x1=2, x2=3 Z(211) =17
#
LP212 x1=3, x2=5/2 Z(212) =15.5
#
例一:用分枝定界法求解整数规划问题(用图解法计算)
m ax Z x1 5 x2
x1 x2 2
5
x1
6
x2
30
x1
4
x 1 , x 2 0 且 全 为 整 数
记为(IP)
LP x1=18/11, x2=40/11
Z(0) =19.8
x1≤1
x1≥2
LP1 x1=1, x2=3 Z(1) =16
#
LP2 x1=2, x2=10/3
Z(2) =18.5
x2≤3
x2≥4
x1≤2
LP21 x1=12/5, x2=3 Z(21) =17.4
x1≥3
LP22 无可 行解
5
x1 x1
6
x2
30 4
3
x1
1
x 1 , x 2 0 且 为 整 数
此时B 在点取得最优解。
1
x1=1, x2 =3, Z(1)=16
⑵ 5x16x2 30 ⑴ x1 x2 2
A B
⑶ x1 4
1
3
x1
x1 5x2 Z
LP x1=18/11, x2=40/11
(LP)
n j 1
aij x j
bi
(i 1.2m)
x j 0, ( j 1.2m)
(二)、例题 例一:用分枝定界法求解整数规划问题(用图解法计算)
m ax Z x1 5 x2
x1 x2 2
5
x1
6
x2
30
x1
4
x 1 , x 2 0 且 全 为 整 数
m ax Z x1 5 x2
3
x1 x2 2
5 x 1 6 x 2 3 0
x1
4
x 1 , x 2 0
⑶ x1 4
3
x1
x1 5x2 Z
x1=18/11, x2 =40/11
Z(0) =218/11≈(19.8)
x2
即Z 也是(IP)最大值的上限。
LP x1=18/11, x2=40/11
Z(0) =19.8
x1≤1
x1≥2
LP1 x1=?, x2=?
Z(1) =?
LP2 x1=?, x2=?
Z(2) =?
先求(LP1),如图所示。
m ax Z x1 5 x2
x2
x1 x2 2
( IP 1)
5
x1 x1
运筹学分支定界法
n
maxZ cj xj j 1
考虑纯整数问题:
(IP)
n
aij x j
j 1
bi
(i 1.2m)
xj 0,( j 1.2m)且为整数
整数问题的松弛问题:
判断题:整数问题的最优 函数值总是小于或等于其 松弛问题的最优函数值。
n
max Z c j x j j 1
( IP 1)
5
x1 x1
6
x2
30 4
x1
1
x 1 , x 2 0 且 为 整 数
x1 x2 2
( IP
2
)
5
x1 x1
6
x2
30 4
x1
2
x 1 , x 2 0 且 为 整 数
现在只要求出(LP1)和(LP2)的最优解即可。
⑵ 5x16x2 30 ⑴ x1 x2 2
(18/11,40/11)
⑶ x1 4
3
x1
x1 5x2 Z
先将(LP)划分为(LP1)和(LP2),取x1 ≤1, x1 ≥2,有下式:
m ax Z x1 5 x2
m ax Z x1 5 x2
x1 x2 2
m ax Z x1 5 x2
x1 x2 2
( IP
2)
5
x1 x1
6
x2
30 4
x1
2
x 1 , x 2 0 且 为 整 数
在C 点取得最优解。 即x1=2, x2 =10/3, Z(2) =56/3≈18.7
记为(IP)
解:首先去掉整数约束,变成一般线性规划问题
m ax Z x1 5 x2
x1 x2 2
5
x1 x1
6
x2
30 4
x 1 , x 2 0
记为(LP)
用图解法求(LP)的最 优解,如图所示。
x2
⑵ 5x16x2 30 ⑴ x1 x2 2
Z(0) =19.8
x1=18/11, x2 =40/11
Z(0) =218/11≈(19.8)
x2
即Z 也是(IP)最大值的上限。
对于x1=18/11≈1.64,
3
取值x1 ≤1, x1 ≥2
对于x2 =40/11 ≈3.64, 取值x2 ≤3 ,x2 ≥4
先将(LP)划分为(LP1)和 (LP2),取x1 ≤1, x1 ≥2
m ax Z x1 5 x2
3
x1 x2 2
5
x1 x1
6
x2
30 4
x 1 , x 2 0
⑵ 5x16x2 30 ⑴ x1 x2 2
(18/11,40/11)
⑶ x1 4
3
x1
x1 5x2 Z
LP x1=18/11, x2=40/11
Z(0) =19.8
x1≤1
x1≥2
LP1 x1=?, x2=?
Z(1) =?
LP2 x1=?, x2=?
Z(2) =?
LP x1=18/11, x2=40/11
Z(0) =19.8
x1≤1
x1≥2
LP1 x1=1, x2=3 Z(1) =16
LP2 x1=?, x2=?
Z(2) =?
求(LP2) ,如图所示。
6
x2
30 4
3
x1
1
x 1 , x 2 0 且 为 整 数
1
⑵ 5x16x2 30 ⑴ x1 x2 2
A
⑶ x1 4
1
3
x1
x1 5x2 Z
先求(LP1),如图所示。
m ax Z x1 5 x2
x2
x1 x2 2
( IP 1)
m ax Z x1 5 x2
x1 x2 2
( IP
2)
5
x1 x1
6
x2
30 4
x1
2
x 1 , x 2 0 且 为 整 数
⑵ 5x16x2 30
x2
⑴ x1 x2 2
A
B 3
⑶ x1 4
1
1
3
x1
x1 5x2 Z
求(LP2) ,如图所示。
LP211 x1=2, x2=3 Z(211) =17
#
LP212 x1=3, x2=5/2 Z(212) =15.5
#
例一:用分枝定界法求解整数规划问题(用图解法计算)
m ax Z x1 5 x2
x1 x2 2
5
x1
6
x2
30
x1
4
x 1 , x 2 0 且 全 为 整 数
记为(IP)
LP x1=18/11, x2=40/11
Z(0) =19.8
x1≤1
x1≥2
LP1 x1=1, x2=3 Z(1) =16
#
LP2 x1=2, x2=10/3
Z(2) =18.5
x2≤3
x2≥4
x1≤2
LP21 x1=12/5, x2=3 Z(21) =17.4
x1≥3
LP22 无可 行解
5
x1 x1
6
x2
30 4
3
x1
1
x 1 , x 2 0 且 为 整 数
此时B 在点取得最优解。
1
x1=1, x2 =3, Z(1)=16
⑵ 5x16x2 30 ⑴ x1 x2 2
A B
⑶ x1 4
1
3
x1
x1 5x2 Z
LP x1=18/11, x2=40/11
(LP)
n j 1
aij x j
bi
(i 1.2m)
x j 0, ( j 1.2m)
(二)、例题 例一:用分枝定界法求解整数规划问题(用图解法计算)
m ax Z x1 5 x2
x1 x2 2
5
x1
6
x2
30
x1
4
x 1 , x 2 0 且 全 为 整 数
m ax Z x1 5 x2
3
x1 x2 2
5 x 1 6 x 2 3 0
x1
4
x 1 , x 2 0
⑶ x1 4
3
x1
x1 5x2 Z
x1=18/11, x2 =40/11
Z(0) =218/11≈(19.8)
x2
即Z 也是(IP)最大值的上限。
LP x1=18/11, x2=40/11
Z(0) =19.8
x1≤1
x1≥2
LP1 x1=?, x2=?
Z(1) =?
LP2 x1=?, x2=?
Z(2) =?
先求(LP1),如图所示。
m ax Z x1 5 x2
x2
x1 x2 2
( IP 1)
5
x1 x1
运筹学分支定界法
n
maxZ cj xj j 1
考虑纯整数问题:
(IP)
n
aij x j
j 1
bi
(i 1.2m)
xj 0,( j 1.2m)且为整数
整数问题的松弛问题:
判断题:整数问题的最优 函数值总是小于或等于其 松弛问题的最优函数值。
n
max Z c j x j j 1
( IP 1)
5
x1 x1
6
x2
30 4
x1
1
x 1 , x 2 0 且 为 整 数
x1 x2 2
( IP
2
)
5
x1 x1
6
x2
30 4
x1
2
x 1 , x 2 0 且 为 整 数
现在只要求出(LP1)和(LP2)的最优解即可。
⑵ 5x16x2 30 ⑴ x1 x2 2
(18/11,40/11)
⑶ x1 4
3
x1
x1 5x2 Z
先将(LP)划分为(LP1)和(LP2),取x1 ≤1, x1 ≥2,有下式:
m ax Z x1 5 x2
m ax Z x1 5 x2
x1 x2 2
m ax Z x1 5 x2
x1 x2 2
( IP
2)
5
x1 x1
6
x2
30 4
x1
2
x 1 , x 2 0 且 为 整 数
在C 点取得最优解。 即x1=2, x2 =10/3, Z(2) =56/3≈18.7
记为(IP)
解:首先去掉整数约束,变成一般线性规划问题
m ax Z x1 5 x2
x1 x2 2
5
x1 x1
6
x2
30 4
x 1 , x 2 0
记为(LP)
用图解法求(LP)的最 优解,如图所示。
x2
⑵ 5x16x2 30 ⑴ x1 x2 2
Z(0) =19.8
x1=18/11, x2 =40/11
Z(0) =218/11≈(19.8)
x2
即Z 也是(IP)最大值的上限。
对于x1=18/11≈1.64,
3
取值x1 ≤1, x1 ≥2
对于x2 =40/11 ≈3.64, 取值x2 ≤3 ,x2 ≥4
先将(LP)划分为(LP1)和 (LP2),取x1 ≤1, x1 ≥2
m ax Z x1 5 x2
3
x1 x2 2
5
x1 x1
6
x2
30 4
x 1 , x 2 0
⑵ 5x16x2 30 ⑴ x1 x2 2
(18/11,40/11)
⑶ x1 4
3
x1
x1 5x2 Z
LP x1=18/11, x2=40/11
Z(0) =19.8
x1≤1
x1≥2
LP1 x1=?, x2=?
Z(1) =?
LP2 x1=?, x2=?
Z(2) =?
LP x1=18/11, x2=40/11
Z(0) =19.8
x1≤1
x1≥2
LP1 x1=1, x2=3 Z(1) =16
LP2 x1=?, x2=?
Z(2) =?
求(LP2) ,如图所示。
6
x2
30 4
3
x1
1
x 1 , x 2 0 且 为 整 数
1
⑵ 5x16x2 30 ⑴ x1 x2 2
A
⑶ x1 4
1
3
x1
x1 5x2 Z
先求(LP1),如图所示。
m ax Z x1 5 x2
x2
x1 x2 2
( IP 1)
m ax Z x1 5 x2
x1 x2 2
( IP
2)
5
x1 x1
6
x2
30 4
x1
2
x 1 , x 2 0 且 为 整 数
⑵ 5x16x2 30
x2
⑴ x1 x2 2
A
B 3
⑶ x1 4
1
1
3
x1
x1 5x2 Z
求(LP2) ,如图所示。