人教版高中数学总复习题总结(有答案)高考必备及参考答案
【2020】人教版最新高考复习题数学(附答案)Word版及解析

15.在平面直角坐标系中,设点,其中O为坐标原点,对于以下结论:
①符合[OP]=1的点P的轨迹围成的图形的面积为2;
②设P为直线上任意一点,则[OP]的最小值为1;
③设P为直线上的任意一点,则“使[OP]最小的点P有无数个”
的必要不充分条件是“”. x_k_b_1
其中正确的结论有 (填上你认为正确的所有结论的序号).
的轨迹方程;
(2)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=,求cos
的值及PF1F2的面积.
21.(本小题满分14分)已知函数(常数.
(1)当时,求曲线在处的切线方程;
(2)讨论函数在区间上零点的个数(为自然对数的底数).
答案
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
(3)证明:由(2)知,
所以… 10分
所以
w w w .x k b 1.c o m
………
20.(本小题满分13分)已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2X K B 1.C O M
重合,F1是椭圆的左焦点.
(1)在ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求ABC重心G
C.(x+2)2+(y+1)2=5 D.(x+4)2+(y+2)2=20
9.已知二次函数的导函数为,且>0,的图象与x
轴恰有一个交点,则的最小值为 ( )
A.3 B. C.2 D.
10.设,分别为双曲线:的左、右焦点,为双曲线
的左顶点,以为直径的圆交双曲线某条渐近线于、两点,且满足:
,则该双曲线的离心率为( )
「精选」人教版最新高考数学总复习(各种专题训练)附参考答案-精选文档

第1讲集合第2讲(附参考答案)一.课标要求:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
二.命题走向有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。
考试形式多以一道选择题为主,分值5分。
预测2013年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。
具体题型估计为:(1)题型是1个选择题或1个填空题;(2)热点是集合的基本概念、运算和工具作用。
三.要点精讲1.集合:某些指定的对象集在一起成为集合。
a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作Ab∉;记作A(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
教育最新2019年人教版高中数学总复习题总结(有答案)高考必备Word版

数学总复习题总结(附参考答案)第一章 集合与函数概念一、选择题1.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-|),(x y y x , P ={(x ,y )| y ≠x +1},那么C U (M ∪P )等于( ).A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1} 2.若A ={a ,b },B ⊆A ,则集合B 中元素的个数是( ).A .0B .1C .2D .0或1或2 3.函数y =f (x )的图象与直线x =1的公共点数目是( ).A .1B .0C .0或1D .1或2 4.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ). A .2x +1 B .2x -1 C .2x -3 D .2x +7 5. 已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( ).A .b ∈(-∞,0)B .b ∈(0,1)C .b ∈(1,2)D .b ∈(2,+∞) 6.设函数f (x )=⎩⎨⎧0++2 x c x c bx x ,,≤, 若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( ).A .1B .2C .3D .47.设集合A ={x | 0≤x ≤6},B ={y | 0≤y ≤2},下列从A 到B 的对应法则f 不是映射的是( ).A .f :x →y =21x B .f :x →y =31xC .f :x →y =41xD .f :x →y=61x8.有下面四个命题:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ).A .1B .2C .3D .4 9.函数y =x 2-6x +10在区间(2,4)上是( ). A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减10.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1)(第5题)>二、填空题11.集合{3,x ,x 2-2x }中,x 应满足的条件是 .12.若集合A ={x | x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =___,b =___.13.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为 元.14.已知f (x +1)=x 2-2x ,则f (x )= ;f (x -2)= . 15.y =(2a -1)x +5是减函数,求a 的取值范围 .16.设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+x 3),那么当x ∈(-∞,0]时,f (x )= .三、解答题17.已知集合A ={x ∈R | ax 2-3x +2=0},其中a 为常数,且a ∈R . ①若A 是空集,求a 的范围;②若A 中只有一个元素,求a 的值;③若A 中至多只有一个元素,求a 的范围.18.已知M ={2,a ,b },N ={2a ,2,b 2},且M =N ,求a ,b 的值.19.证明f (x )=x 3在R 上是增函数.20.判断下列函数的奇偶性:(1)f (x )=3x 4+21x ;(2)f (x )=(x -1)xx-+11; (3)f (x )=1-x +x -1;(4)f (x )=12-x +21x -.第一章 集合与函数概念参考答案一、选择题1.B 解析:集合M 是由直线y =x +1上除去点(2,3)之后,其余点组成的集合.集合P 是坐标平面上不在直线y =x +1上的点组成的集合,那么M P 就是坐标平面上不含点(2,3)的所有点组成的集合.因此C U (M P )就是点(2,3)的集合.C U(M P )={(2,3)}.故选B .2.D解析:∵A 的子集有∅,{a },{b },{a ,b }.∴集合B 可能是∅,{a },{b },{a ,b }中的某一个,∴选D .3.C解析:由函数的定义知,函数y =f (x )的图象与直线x =1是有可能没有交点的,如果有交点,那么对于x =1仅有一个函数值.4.B解析:∵g (x +2)=2x +3=2(x +2)-1,∴g (x )=2x -1. 5.A 解析:要善于从函数的图象中分析出函数的特点.解法1:设f (x )=ax (x -1)(x -2)=ax 3-3ax 2+2ax ,比较系数得b =-3a ,c =2a ,d =0.由f (x )的图象可以知道f (3)>0,所以f (3)=3a (3-1)(3-2)=6a >0,即a >0,所以b <0.所以正确答案为A .解法2:分别将x =0,x =1,x =2代入f (x )=ax 3+bx 2+cx +d 中,求得d =0,a =-31b ,c =-32b . ∴f (x )=b (-31x 3+x 2-32x )=-3bx [(x -23)2-41]. 由函数图象可知,当x ∈(-∞,0)时,f (x )<0,又[(x -23)2-41]>0,∴b <0.x ∈(0,1)时,f (x )>0,又[(x -23)2-41]>0,∴b <0.x ∈(1,2)时,f (x )<0,又[(x -23)2-41]<0,∴b <0.x ∈(2,+∞)时,f (x )>0,又[(x -23)2-41]>0,∴b <0.故b ∈(-∞,0).6.C解:由f (-4)=f (0),f (-2)=-2,得22422b bc ⎧-=-⎪⎨⎪-+=-⎩,∴42b c =⎧⎨=⎩ . ∴f (x )=⎩⎨⎧)0 ( 2)0 (2+4+2x ,x ,x x 由⎩⎨⎧ 得x =-1或x=-2;由得x =2. 综上,方程f (x )=x 的解的个数是3个. 7.A解:在集合A 中取元素6,在f :x →y =21x 作用下应得象3,但3不在集合B ={y |0≤y ≤2}中,所以答案选A .8.A提示:①不对;②不对,因为偶函数或奇函数的定义域可能不包含0;③正确;④不对,既是奇函数又是偶函数的函数还可以为f (x )=0,x ∈(-a ,a ).所以答案选A .9.C解析:本题可以作出函数y =x 2-6x +10的图象,根据图象可知函数在(2,x >0 x =2≤>x ≤0 x 2+4x +2=x (第5题)4)上是先递减再递增.答案选C .10.B解析:∵对称轴 x =2,∴f (1)=f (3). ∵y 在〔2,+∞〕上单调递增, ∴f (4)>f (3)>f (2),于是 f (2)<f (1)<f (4). ∴答案选B . 二、填空题11.x ≠3且x ≠0且x ≠-1.解析:根据构成集合的元素的互异性,x 满足⎪⎩⎪⎨⎧ 解得x ≠3且x ≠0且x ≠-1. 12.a =31,b =91.解析:由题意知,方程x 2+(a -1)x +b =0的两根相等且x =a ,则△=(a-1)2-4b =0①,将x =a 代入原方程得a 2+(a -1)a +b =0 ②,由①②解得a =31,b =91.13.1 760元.解析:设水池底面的长为x m ,水池的总造价为y 元,由已知得水池底面面积为4 m 2.,水池底面的宽为x4m . 池底的造价 y 1=120×4=480.池壁的造价 y 2=(2×2x +2×2×x4)×80=(4x +x16)×80. 水池的总造价为 y =y 1+y 2=480+(4x +x16)×80, 即 y =480+320(x +x4)=480+320⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛4+22x -x . 当 x =x2, 即x =2时,y 有最小值为 480+320×4=1 760元.14.f (x )=x 2-4x +3,f (x -2)=x 2-8x +15.解析:令x +1=t ,则x =t -1,因此f (t )=(t -1)2-2(t -1)=t 2-4t +3,即f (x )=x 2-4x +3.∴f (x -2)=(x -2)2-4(x -2)+3=x 2-8x +15.15.(-∞,21).解析:由y =(2a -1)x +5是减函数,知2a -1<0,a <21.16.x (1-x 3).解析:任取x ∈(-∞,0], 有-x ∈[0,+∞),∴f (-x )=-x [1+(-x )3]=-x (1-x 3),∵f (x )是奇函数,∴ f (-x )=-f (x ). ∴ f (x )=-f (-x )=x (1-x 3), 即当x ∈(-∞,0]时,f (x )的表达式为x (1-x 3).三、解答题17.解:①∵A 是空集,∴方程ax 2-3x +2=0无实数根.x ≠3,x 2-2x ≠3, x 2-2x ≠x .∴⎩⎨⎧∆,a a 08-9=,0 解得a >89.②∵A 中只有一个元素,∴方程ax 2-3x +2=0只有一个实数根.当a =0时,方程化为-3x +2=0,只有一个实数根x =32;当a ≠0时,令Δ=9-8a =0,得a =89,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.由以上可知a =0,或a =89时,A 中只有一个元素.③若A 中至多只有一个元素,则包括两种情形:A 中有且仅有一个元素;A 是空集.由①②的结果可得a =0,或a ≥89.18.解:根据集合中元素的互异性,有 ⎩⎨⎧==⎩⎨⎧==a b b a b b a a 2222或解得 或 或再根据集合中元素的互异性,得 或 19.证明:设x 1,x 2∈R 且x 1<x 2,则 f (x 1)-f (x 2)=31x -32x =(x 1-x 2)(21x +x 1x 2+22x ).又21x +x 1x 2+22x =(x 1+21x 2)2+4322x .由x 1<x 2得x 1-x 2<0,且x 1+21x 2与x 2不会同时为0,否则x 1=x 2=0与x 1<x 2矛盾,所以 21x +x 1x 2+22x >0.因此f (x 1)- f (x 2)<0,即f (x 1)<f (x 2), f (x )=x 3 在 R 上是增函数.20.解:(1)∵ 函数定义域为{x | x ∈R ,且x ≠0}, f (-x )=3(-x )4+21)(-x =3x 4+21x =f (x ),∴f (x )=3x 4+21x 是偶函数.(2)由x x -+11≥0⇔⎩⎨⎧≠01--1+1x x x ))(( 解得-1≤x <1.∴ 函数定义域为x ∈[-1,1),不关于原点对称,∴f (x )=(x -1)xx-11+为非奇非偶函数.(3)f (x )=1-x +x -1定义域为x =1, ∴ 函数为f (x )=0(x =1),定义域不关于原点对称,∴f (x )=1-x +x -1为非奇非偶函数. a =0 b =1a =0b =0a =41b =21 a =0 b =1a =41 b =21≥0≠<(4)f (x )=1-2x +2-1x 定义域为≥ -10≥1-22x x ⇒ x ∈{±1},∴函数变形为f (x )=0 (x =±1),∴f (x )=1-2x +2-1x 既是奇函数又是偶函数.高一数学必修1一、选择题:(每小题5分,共30分)。
2020最新人教版最新高考数学复习专题一集合附参考答案

注意:(1)空集中没有任何元素,要区分φ和{0},集合{0}中有1个元素0,而φ中没有任何元素,两者有着本质的不同.(2)空集在实际问题中是实实在在存在的,如在实数范围内方程x2+1=0的解集和不等式x2+1<0的解集都是空集.6、常用数集的符号为了书写方便对于常用数集用特定的字母表示:(1)全体非负整数组成的集合通常简称非负整数集(或自然数集),记作N;(2)非负整数集内排除0的集合,称为正整数集,表示成N*(或N+);(3)全体整数组成的集合通常简称为整数集,记作Z;(4)全体有理数组成的集合通常简称为有理数集,记作Q;(5)全体实数组成的集合通常简称为实数集,记作R;二、集合间的关系1、包含关系如果任意x∈A,=>x ∈B,则集合A是集合B的子集,记作A B或BA.显然,任何集合是他自身的子集,即A A,空集是任何集合的子集,即φA.⊆⊇⊆⊆2、相等关系对于两个集合A、B,如果A B同时B A,那么成集合A和集合B相等,记作A=B.显然,两个相等的集合的元素完全相同.⊆⊆3、真包含关系对于两个集合A和B,如果A B,并且A≠b,称集合A是集合B的真子集,记作AB,显然,空集是任何非空集合的真子集,若AB,则B中至少存在一个元素不属于A.⊆三、集合与集合间的运算1、交集;一般的对于两个给定的集合A、B,由属于集合A且属于集合B的所有元素构成的集合,叫做A和B的交集,记作A∩B.2、并集;一般的对于两个给定的集合A、B,由属于集合A或属于集合B的所有元素组成的集合,叫做A与B的并集,记作A∪B.3、全集与补集;含有所要研究的各集合的全部元素的集合称为全集,一般可记作U,全集是相对的.若A是全集U的子集,则由全集中不属于A的元素组成的集合称为A的补集,记作CUA.专题二:命题一、四种命题及其关系1、命题的定义可以判断真假的语句叫做命题。
如:12>5,3是12的约数都是命题.。
【2020】人教版最新高中数学高考总复习等差数列习题及详解及参考答案

即an2-2an+1=an-12, 也即(an-1)2=an-12,
因此an-1=an-1或an-1=-an-1.
若an-1=-an-1,则an+an-1=1,而a1=3,所以a2=-2这与数列{an}的各项均为正数相矛盾,所以an-1=an-1,即an-an-1=1,因此{an}为等差数列.
∴T1=b1=1.
当n≥2时,Tn-1=2-bn-1,Tn=2-bn,
∴bn=Tn-Tn-1=bn-1-bn,∴bn=bn-1,
∴bn=21-n.
(2)解法1:由cn=an2·bn=n2·25-n,
得=2.
当且仅当n≥3时,1+≤<,即cn+1<cn.
解法2:由cn=an2·bn=n2·25-n得,
A.20xx×20xxB.20xx×20xx
C.20xx×20xxD.20xx×20xx
[答案] C
[解析] 解法1:a1=0,a2=2,a3=6,a4=12,考虑到所给结论都是相邻两整数乘积的形式,可变形为:
a1=0×1 a2=1×2 a3=2×3 a4=3×4
猜想a20xx=20xx×20xx,故选D.
A.S3B.S4或S5
C.S5D.S6
[答案] B
[解析] 由an=20-4n≥0得n≤5,故当n>5时,an<0,所以S4或S5最大,选B.
(理)(20xx·山师大附中)已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n项和,则使得Sn达到最大值的n是( )
∵q≠0,∴2q6=1+q3,∴q3=1或-,q3=1时,S3、S9、S6不成等差数列,应舍去,∴q3=-,∴S6=(a1+a2+a3)+(a1+a2+a3)q3=S3(1+q3)=S3.
「精选」人教版最新高中数学复习试题(完整版)及参考答案-精选文档

}x-x=0,B={x ax-2x+4=0,且π________Q,1精选文档可编辑修改§1.1集合(附参考答案)重难点:(1)集合的含义及表示.(2)集合的基本关系(3)集合的基本运算经典例题:1.若x∈R,则{3,x,x2-2x}中的元素x应满足什么条件?2.已知A={x|x=8m+14n,m、n∈Z},B={x|x=2k,k∈Z},问:(1)数2与集合A的关系如何?(2)集合A与集合B的关系如何?3.已知集合A={x22}A⋂B=B,求实数a的取值范围.基础训练:1.下面给出的四类对象中,构成集合的是()A.某班个子较高的同学B.长寿的人C.2的近似值D.倒数等于它本身的数2.对于集合A={2,4,6},若a∈A,则6-a∈A,那么a的值是__________.3.平面直角坐标系内所有第二象限的点组成的集合是()A.{x,y且x<0,y>0}B.{(x,y)x<0,y>0}C.{(x,y)x<0,y>0}D.{x,y且x<0,y>0}4.用适当的符合填空:0__________{0},a__________{a},2________Z,-1________R,0________N,0Φ.{a}_______{a,b,c}.{a}_________{{a},{b},{c}},Φ_______{a,b}5.由所有偶数组成的集合可表示为{x x=}.6.用列举法表示集合D={(x,y)y=-x2+8,x∈N,y∈N}为.7.已知集合A={x ax2+2x+1=0,a∈R,x∈R}.(1)若A中只有一个元素,求a的值;(2)若A中至多有一个元素,求a的取值范围.8.设U为全集,集合M、N U,且M⊆N,则下列各式成立的是()A.C M⊇C N B.C M⊆MU U UC.C M⊆C N D.C M⊆NU U U9.已知全集U={x|-2≤x≤1},A={x|-2<x<1=,B={x|x2+x-2=0},C={x|-2≤x<1=,则()A.C⊆A B.C⊆C uA1精选文档可编辑修改2 +}x+px+2=0,N={x x-x-q=0,且M⋂N={2},则p,q的值为()..g(x)=0的解集是(U精选文档可编辑修改C.C uB=C D.CuA=B10.已知全集U={0,1,2,3}且C UA={2},则集合A的真子集共有()A.3个B.5个C.8个D.7个11.如果M={x|x=a2+1,a∈N*},P={y|y=b2-2b+2,b∈N+},则M和P的关系为M_________P.12.集合A={x|x2+x-6=0},B={x|mx+1=0},若B A,则实数m的值是.13.判断下列集合之间的关系:(1)A={三角形},B={等腰三角形},C={等边三角形};(2)A={x|x2-x-2=0},B={x|-1≤x≤2},C={x|x2+4=4x};(3)A={x|1≤x≤1010},B={x|x=t2+1,t∈R},C={x|2x+1≥3};(4)A={x|x=k14,k∈Z},B={x|x=k4+12,k∈Z}.1.已知集合M={x22}A.p=-3,q=-2B.p=-3,q=2C.p=3,q=-2D.p=3,q=22.设集合A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则满足C⊆A∩B的集合C的个数是(A.0B.1C.2D.33.已知集合A={x|-3≤x≤5},B={x|a+1≤x≤4a+1},且A⋂B=B,B≠φ,则实数a的取值范围是().A.a≤1B.0≤a≤1C.a≤0D.-4≤a≤1)4.设全集U=R,集合M={x f(x)=0},N={x g(x)=0},则方程f(x)).A.M B.M∩(CuN)C.M∪(CUN)D.M⋃N5.有关集合的性质:(1)Cu(A⋂B)=(Cu A)∪(Cu B);(2)Cu(A⋃B)=(Cu A)⋂(Cu B)(3)A⋃(Cu A)=U(4)A⋂(Cu A)=Φ其中正确的个数有()个.A.1B.2C.3D.46.已知集合M={x|-1≤x<2=,N={x|x—a≤0},若M∩N≠Φ,则a的取值范围是.7.已知集合A={x|y=x2-2x-2,x∈R},B={y|y=x2-2x+2,x∈R},则A∩B=8.表示图形中的阴影部分.A BC9.集合U,M,N,P如图所示,则图中阴影部分所表示的集合是()(A)M∩(N∪P)(B)M∩C(N∪P)U精选文档可编辑修改P M N2UU{, 且M ⋂ N = {2 } ,求实数 + 2( a + 1) x + ax + 1 ,则函数 f [ f ( x)] 的定义域是( 6.规定记号“ ∆ ”表示一种运算,即 a ∆ b = ab + a + b ,a 、b ∈ R +. 若 1 ∆ k = 3 ,则函数 f ( x ) = k ∆ x 的值域是 精选文档 可编辑修改(C )M ∪C (N ∩P )(D )M ∪C (N ∪P )10.在直角坐标系中,已知点集 A=( x, y) y - 2}= 2 ,B= {( x , y) y = 2 x } ,则x - 1(CuA) ⋂ B=.11.已知集合 M= {2, a + 2, a 2- 4}, N = {a + 3, a2 + 2, a 2- 4 a + 6 }a 的的值12.已知集合 A= {x ∈ R x 2+ 4 x = 0},B= {x ∈ R x 22- 1 = 0},且 A ∪B=A ,试求 a 的取值范围.§1.2 函数与基本初等函数重难点:(1)函数(定义域、值域、单调性、奇偶性、最大值、最小值)(2)基本初等函数(指数函数、对数函数、幂函数)(函数基本性质)典型例题:1.设函数 f (x )的定义域为[0,1],求下列函数的定义域(1)H (x )=f (x 2+1);(2)G (x )=f (x +m )+f (x -m )(m >0).2.已知函数 f (x )=2x 2-mx +3,当 x ∈ (-2, +∞ ) 时是增函数,当 x ∈ (-∞, -2 ) 时是减函数,则 f (1)等于( ) A .-3 B .13 C .7 D .含有 m 的变量基础训练:1. 下列四组函数中,表示同一函数的是( )A . f ( x ) = x , g ( x ) =x 2 B . f ( x ) = x , g ( x ) = ( x )2x 2 - 1 C . f ( x ) =, g ( x ) = x + 1D . f ( x ) = x + 1 ⋅ x - 1, g ( x ) = x 2 - 1x - 12.函数 y = f ( x ) 的图象与直线 x = a 交点的个数为( )A .必有一个B .1 个或 2 个C .至多一个D .可能 2 个以上3.已知函数 f ( x ) =1)A . {x x ≠ 1}B . {x x ≠ -2}C . {x x ≠ -1, -2}D . {x x ≠ 1, -2}4.函数 f ( x ) =11 - x(1- x)的值域是( )5 5 4 4A . [ , +∞)B . (-∞, ]C . [ , +∞)D . (-∞, ]4 4 3 35.函数 f ( x ) 对任何 x ∈ R +恒有 f ( x ⋅ x ) = f ( x ) + f ( x ) ,已知 f (8) = 3 ,则 f ( 2) = .1 2 1 2___________.7.求函数 y = x - 3x - 2 的值域.3 精选文档 可编辑修改13. 已知函数 f(x)在区间 (0, +∞) 上是减函数,则 f ( x 2 + x + 1) 与 f ( ) 的大小关系是.1 1 1 精选文档 可编辑修改8. 求下列函数的定义域 : f ( x ) =2 -x 1x - 19.已知 f(x)=x 2+4x+3,求 f(x)在区间[t,t+1]上的最小值 g(t)和最大值 h(t).10.函数 f ( x ) =1 + x2 + x - 1是( ) 1 + x 2 + x + 1A . 非奇非偶函数B .既不是奇函数,又不是偶函数奇函数C . 偶函数D . 奇函数11.奇函数 y =f (x )(x ≠0),当 x ∈(0,+∞)时, f (x )=x -1,则函数 f (x -1)的图象为( )12.函数 f ( x ) = -2 x 2 + 4tx + t 在区间[0, 1]上的最大值 g(t)是.3 414.如果函数 y =f (x +1)是偶函数,那么函数 y =f (x )的图象关于_________对称x 2 + 2 x +115. 已知函数 f ( x ) =2 ,其中 x ∈ [1,+∞) ,(1)试判断它的单调性;(2)试求它的最小值.x16.已知映射 f:A → B,其中集合 A={-3,-2,-1,1,2,3,4},集合 B 中的元素都是 A 中元素在映射 f 下的象,基础训练:(指数函数)经典例题:求函数 y =3 - x 2+2 x +3 的单调区间和值域1 1 11.数 a = ( )- 4 , b = ( )- 6 , c = ( )- 8 的大小关系是()2 3 5A . a < b < cB . b < a < cC . c < a < bD . c < b < a2.下列函数中,图象与函数 y =4x 的图象关于 y 轴对称的是( )A .y =-4xB .y =4-xC .y =-4-xD .y =4x +4-x3.把函数 y=f(x)的图象向左、向下分别平移 2 个单位长度,得到函数 y = 2 x 的图象,则( )A . f ( x) = 2x -2+ 2 B . f ( x) = 2 x -2 - 2 C . f ( x) = 2 x +2 + 2 D . f ( x) = 2 x +2 - 24.设函数 f ( x ) = a - x ( a > 0, a ≠ 1) ,f(2)=4,则()A .f(-2)>f(-1)B .f(-1)>f(-2)C .f(1)>f(2)D .f(-2)>f(2)m - n5.设 x +x 2 - 1 = a 2 mn,求x - x 2 - 1 = .6.函数 f ( x ) = a x -1 - 1(a > 0, a ≠ 1) 的图象恒过定点.精选文档 可编辑修改42x + 1 的最小值与最大值.(1) f ( x ) = ( ) x( x +1); (2) y = 1 - 2x +(对数函数)经典例题:已知 f (log a x )= a( x 2 - 1) ⎩lg(x + 1), x > 04.已知函数 f (x )= ⎨ ⎧log x( x > 0) 1(1)1.5 3 1323 ,(-103 ,1.1 2- 的定义域是()精选文档 可编辑修改7.(1)已知 x ∈ [-3,2],求 f(x)=14x-1(2)已知函数 f ( x ) = a x 2-3 x +3 在[0,2]上有最大值 8,求正数 a 的值.8.求下列函数的单调区间及值域:2 34x基础训练:; (3)求函数 f ( x ) = 2- x 2 3x+2 的递增区间.x(a 2 - 1),其中 a >0,且 a ≠1.(1)求 f (x ); (2)求证:f (x )是奇函数; (3)求证:f (x )在 R 上为增函数. 1.若 lg 2 = a, lg 3 = b ,则 lg 0.18 = ( ) A . 2a + b - 2B . a + 2b - 2C . 3a - b - 2D . a + 3b - 12.函数 y = lg(-3x 2 + 6 x + 7) 的值域是( )A . [1 - 3,1 + 3]B .[0,1]C .[0, +∞)D .{0}⎧ x 2 , x ≤ 03.设函数 f ( x ) = ⎨ , 若f ( x ) > 1,则x 的取值范围为()0 0A .(-1,1)B .(-1,+∞)C . (-∞,9)D . (-∞, -1) (9, +∞)2 ,则 f [f ( )]的值是()⎩3x ( x ≤ 0)4A .9B . 19C .-9D .- 195.计算 log2008[log (log 8)] = . 3 26.函数 f(x)的定义域为[0,1],则函数 f [log (3 - x)] 的定义域为.3基础训练:(幂函数)经典例题:比较下列各组数的大小:1,1.7 ,1; (2)(-) -2 ) 2- 43 ;2 711.函数 y =(x -2x ) 2A .{x |x ≠0 或 x ≠2}B .(-∞,0) (2,+∞)C .(-∞,0) [2,+∞ )D .(0,2)22.函数 y = x 5 的单调递减区间为()A .(-∞,1)B .(-∞,0)C .[0,+∞ ]D .(-∞,+∞)3.如图,曲线 c 1, c 2 分别是函数 y =x m 和 y =x n 在第一象限的图象, y c1那么一定有()A .n<m<0B .m<n<0C .m>n>0D .n>m>05精选文档 可编辑修改c2x4.幂函数的图象过点(2,14),则它的单调递增区间是.5.设x∈(0,1),幂函数y=x a的图象在y=x的上方,则a的取值范围是.§1.3函数的应用重难点:(1)函数与方程(零点与一元二次方程根存在性的关系,了解二分法)(2)函数模型及其应用(指数函数、对数函数、幂函数、分段函数的增长特点)(函数与方程)经典例题:研究方程|x2-2x-3|=a(a≥0)的不同实根的个数.1.如果抛物线f(x)=x2+bx+c的图象与x轴交于两点(-1,0)和(3,0),则f(x)>0的解集是()A.(-1,3)B.[-1,3]C.(-∞,-1)⋃(3,+∞)D.(-∞,-1]⋃[3,+∞)2.某厂生产中所需一些配件可以外购,也可以自己生产,如外购,每个价格是1.10元;如果自己生产,则每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,则决定此配件外购或自产的转折点是()件(即生产多少件以上自产合算)A.1000B.1200C.1400D.16003.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20x-0.1x2(0<x<240,x∈N),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台精选文档可编辑修改6(§2.1空间几何体重难点:1)空间几何体的结构(2)空间几何体的三视图和直观图(3)空间几何体的表面积和体积典型例题:半径为R的半圆卷成一个圆锥,则它的体积为()A.3355πR3B.πR3C.πR3D.πR3248248基础训练:一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个()A.棱台B.棱锥C.棱柱D.都不对主视图左视图俯视图2.下图是由哪个平面图形旋转得到的()A B C D3.棱长都是1的三棱锥的表面积为()A.3B.23C.33D.434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是()A.25πB.50πC.125πD.都不对5.正方体的内切球和外接球的半径之比为()A.3:1B.3:2C.2:3D.3:3△6.在ABC中,AB=2,BC=1.5,∠ABC=1200,若使绕直线BC旋转一周,7精选文档可编辑修改A.9,精选文档可编辑修改则所形成的几何体的体积是()753π B.π C.π D.π22227.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是()A.130B.140C.150D.160二、填空题1.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱。
人教A版数学课本优质习题总结训练-必修二题目+参考答案-2025届高三数学一轮复习

人教A 版数学课本优质习题总结训练——必修二P241.已知ABC 的外接圆圆心为O ,且2AO AB AC =+ ,AO AB = ,则向量BA在向量BC 上的投影向量为()A .14BC BC .14BC - D. 2.如图,O 是平行四边形ABCD 外一点,用,,OA OB OC 表示OD.P373.如图,设,Ox Oy 是平面内相交成60°角的两条数轴,12,e e分别是与x 轴、y 轴正方向同向的单位向量,若向量12OP xe ye =+ ,则把有序数对(x ,y )叫做向量OP在坐标系xOy 中的坐标,设1232OP e e =+.(1)计算||OP的大小;(2)根据平面向量基本定理判断,本题中对向量坐标的规定是否合理.P394.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N .设AB mAM AC nAN =,=,求m n +的值4题图5题图P515.如图,在山脚A 测得出山顶P 的仰角为a ,沿倾斜角为β的斜坡向上走a 米到B ,在B 处测得山顶P 的仰角为γ,求证:山高()()sin sin sin -a a h a γβγ-=.P526.已知非零向量AB、AC 满足0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC 的形状是()A .三边均不相等的三角形B .直角三角形C .等腰(非等边)三角形D .等边三角形7.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的()(注:三角形的三条高线交于一点,此点为三角型的垂心)A .重心外心垂心B .重心外心内心C .外心重心垂心D .外心重心内心P538.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .9.如下左图,在ABC 中,已知2,5,60AB AC BAC ︒==∠=,BC ,AC 边上的两条中线AM ,BM 相交于点P ,求MPN ∠的余弦值.P5410.如上右图,在ABC ∆中,求证:22(cos cos )c a B b A a b -=-.11.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,设1()2p a b c =++,求证:(1)三角形的面积S =;(2)若r 为三角形的内切圈半径,则r =;(3)把边BC ,AC ,AB 上的高分别记为,,a b c h h h ,则a h =,b h =c h =12.已知a 、b 、c 分别为ABC 三个内角A 、B 、C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若a =2,ΔABC 的面积为3,求b 、c .P6013.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD+++等于A .OMB .2OMC .3OMD .4OMP6114.已知OA a = ,OB b = ,OC c = ,OD d =,且四边形ABCD 为平行四边形,则()A .0a b c d +++= B .0a b c d -+-= C .0a b c d +--= D .0a b c d --+= 15.若1e ,2e 是夹角为60︒的两个单位向量,且122a e e =+ 与1232b e e =-+的夹角为()A .60︒B .120︒C .30︒D .150︒16.若平面向量a ,b ,c两两的夹角相等,且1==a b r r ,3c = ,则a b c ++= ()A .2B .5C .2或5D或5P6217.如图,直线l 与ABC 的边AB ,AC 分别相交于点D ,E .设AB c =,BC a =,=CA b ,ADE θ∠=,请用向量方法探究θ与ΔABC 的边和角之间的等量关系.P8018.在复数范围内解下列方程:(1)29160x +=(2)210x x ++=P8119.利用公式a 2+b 2=(a +bi )(a -bi ),把下列各式分解成一次因式的积:(1)x 2+4;(2)a 4-b 4.P9520.已知复数z 1=m +(4-m 2)i (m ∈R)和z 2=2cos θ+(λ+3sin θ)i (λ∈R),若z 1=z 2,试求λ的取值范围.P11921.已知圆锥的表面积为2am ,且它的侧面展开图是一个半圆,求这个圆锥的底面直径.P12022.如图,一个三棱柱形容器中盛有水,且侧棱AA 1=8,若侧面AA 1B 1B 水平放置时,液面恰好过AC ,BC ,A 1C 1,B 1C 1的中点,当底面ABC 水平放置时,液面高为多少?23.分别以一个直角三角形的斜边、两条直角边所在直线为轴,其余各边旋转一周形成的曲面围成3个几何体,这3个几何体的体积之间有什么关系?P13224.正方体各面所在平面将空间分成几部分?25.已知△ABC 在平面α外,其三边所在的直线满足AB ∩α=P ,BC ∩α=Q ,AC ∩α=R ,如图所示,求证:P ,Q ,R 三点共线.P14426.一木块如图所示,点P 在平面VAC 内,过点P 将木块锯开,使截面平行于直线VB 和AC ,应该怎样画线?4题图5题图6题图P14527.如图,透明塑料制成的长方体容器ABCD-A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜.随着倾斜度的不同,有下面五个命题:(1)有水的部分始终呈棱柱形;(2)没有水的部分始终呈棱柱形;(3)水面EFGH 所在四边形的面积为定值;(4)棱A 1D 1始终与水面所在平面平行;(5)当容器倾斜如图(3)所示时,BE·BF 是定值.其中所有正确命题的序号是______,为什么?P15228.过ABC 所在平面α外一点P ,作PO α⊥,垂足为O ,连接PA PB PC ,,.(1)若PA PB PC ==,则点O 是ABC 的心.(2)若PA PB PC ==,90︒∠=C ,则点O 是AB 边的.(3)若PA PB ⊥,PB PC ⊥,PC PA ⊥,垂足都为P ,则点O 是ABC 的心.P16229.若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是()A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定30.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1)过平面外一点,有且只有一条直线与这个平面垂直.()(2)过平面外一点,有且只有一条直线与这个平面平行.()(3)过直线外一点,有且只有一个平面与这条直线垂直.()(4)过直线外一点,有且只有一个平面与这条直线平行.()(5)过直线外一点,有且只有一条直线与这条直线平行.()P16431.如图,在正方形123SG G G 中,E ,F 分别是1223G G G G ,的中点,D 是EF 的中点,若沿SE ,SF 及EF 把这个正方形折成一个四面体,使123,,G G G 三点重合,重合后的点记为G ,则在四面体S -EFG 中,哪些棱与面互相垂直?32.如图,AB 是O 的直径,点C 是O 上的动点,过动点C 的直线VC 垂直于O 所在平面,D ,E 分别是VA ,VC 的中点,判断直线DE 与平面VBC 的位置关系,并说明理由.P16933.如图,一块边长为10cm 的正方形铁片上有四块阴影部分,将这些阴影部分裁下来,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,把容器的容积V (单位:3cm )表示为x (单位:cm )的函数.11题图12题图34.三个平面可将空间分成几部分?请分情况说明.P17035.如图,一块正方体形木料的上底面有一点E .若经过点E 在上底面上画一条直线与CE 垂直,则应该怎样画?35题图36题图36.如图所示,边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将,AED DCF △△分别沿,DE DF 折起,使,A C 两点重合于点A '.(1)求证:A D EF '⊥;(2)求三棱锥A EFD '-的体积.P17137.如图,在正方体1111ABCD A B C D -中,求证:(1)B 1D ⊥平面A 1BC 1;(2)B 1D 与平面A 1BC 1的交点H 是ΔA 1C 1B 的重心.38.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,,l α⊄,l β⊄则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于lP18439.高二年级有男生490人,女生510人,张华按男生、女生进行分层,通过分层随机抽样的方法,得到男生、女生的平均身高分别为170.2cm和160.8cm.(1)如果张华在各层中按比例分配样本,总样本量为100,那么在男生、女生中分别抽取了多少名?在这种情况下,请估计高二年级全体学生的平均身高.(2)如果张华从男生、女生中抽取的样本量分别为30和70,那么在这种情况下,如何估计高二年级全体学生的平均身高更合理?P21440.某学校有高中学生500人,其中男生320人,女生180人.有人为了获得该校全体高中学生的身高信息,采用分层抽样的方法抽取样本,并观测样本的指标值(单位:cm),计算得男生样本的均值为173.5,方差为17,女生样本的均值为163.83,方差为30.03.(1)根据以上信息,能够计算出总样本的均值和方差吗?为什么?(2)如果已知男、女样本量按比例分配,你能计算出总样本的均值和方差各为多少吗?(3)如果已知男、女的样本量都是25,你能计算出总样本的均值和方差各为多少吗?它们分别作为总体均值和方差的估计合适吗?为什么?P22241.四名同学各掷骰子5次,并各自记录每次骰子出现的点数,分别统计四名同学的记录结果,可以判断出一定没有出现点数6的是()A.平均数为3,中位数为2B.中位数为3,众数为2C.中位数为3,方差为2.8D.平均数为2,方差为2.4P22342.为了解某市家庭用电量的情况,该市统计局调查了200户居民去年一年的月均用电量(单位:kWh),数据从小到大排序如下:8182231424849505156575760616161626263636566676970707172727476777778788080828282 8384848888899091939394959696969798989899100100100101101101105106106106107107107107 108108109109110110110111112113113114115116118120120120121123124127127127130130130131 131132132132133133134134134135135135135136137137138139139140141142144146146147148149 151152154156159160162163163164165167169170170172174174177178178180182182187189191191 192194194200201201202203203206208212213214216223224237247250250251253254258260265274 274283288289304319320324339462498530542626为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯电价,使75%的居民缴费在第一档,20%的居民缴费在第二档,其余5%的居民缴费在第三档,请确定各档的范围.P22443.某人有4把钥匙,其中2把能打开门,如果随机地取一把钥匙试着开门,把不能开门的钥匙扔掉,那么第二次才能打开门的概率有多大?如果试过的钥匙又混进去,第二次能打开门的概率又有多大?P24944.分别抛掷两枚质地均匀的硬币,设事件A =“第1枚正面朝上”,事件B =“第2枚正面朝上”,事件C =“2枚硬币朝上的面相同”,A B C ,,中哪两个相互独立?45.设样本空间{},,,a b c d Ω=含有等可能的样本点,且{}{}{},,,,,A a b B a c C a d ===,请验证A ,B ,C 三个事件两两独立,但()()()()P ABC P A P B P C ≠.P25046.假设()0.7P A =,()0.8P B =,且A ,B 相互独立,则()P AB =;()P A B =.47.若()0P A >,()0P B >,证明:事件A ,B 相互独立与A ,B 互斥不能同时成立.P26448.一个袋子中有4个红球,6个绿球,采用不放回方式从中依次随机地取出2个球.(1)求第二次取到红球的概率;(2)求两次取到的球颜色相同的概率;(3)如果是4个红球,n 个绿球,已知取出的2个球都是红球的概率为16,那么n 是多少?-必修二结束-人教A 版数学课本优质习题总结训练——必修二参考答案:1.A【分析】设AB 中点为D ,确定AO AD =,ABO 为正三角形,再计算向量的投影得到答案.【详解】设AB 中点为D ,则22AO AB AC AD =+= ,即AO AD =,故BC 边为圆O 的直径,则AO OB =,又AO AB = ,则ABO 为正三角形,则有12BA BC = ,向量BA在向量BC 上的投影向量1cos604BC BA BC BC ︒⨯=,故选:A2.OD OA OB OC=-+ 【解析】由OD OA AD =+ ,AD BC = ,BC OC OB =-,即可得到结论.【详解】OD OA AD OA BC OA OC OB OA OB OC =+=+=+-=-+.【点睛】本题考查向量加法,向量减法,属于基础题.3.(1(2)合理【分析】(1)结合图形作辅助线在直角三角形中求解;(2)根据平面向量基本定理,12,e e 作为一组基底,则平面内任意向量都有唯一有序数对(),x y 使得12OP xe ye =+ .【详解】解:(1)建立如图所示的直角坐标系,将OP分解到Ox '轴和Oy '轴可求得|||4PM OM ==,所以||OP ==.(2)12,e e 作为一组基底,对于任意向量12,,OP xe ye x y =+都是唯一确定的,所以本题中对向量坐标的规定合理.【点睛】此题考查平面向量基本运算,涉及数形结合处理模长问题,对平面向量基本定理辨析4.2【分析】利用平面向量基本定理表示出AO,列方程组即可求解.【详解】因为点O 是BC 的中点,所以1111=2222AO AB AC mAM nAN =++ .而M 、N 、O 三点共线,所以()1AO t AM t AN =+-,则有122112m t m n n t ⎧=⎪⎪⇒+=⎨⎪=-⎪⎩5.()()sin sin -sin -h ααγβγα=解:在ABP 中,180+ABP γβ∠=- ,()()()180- 180-180+ =-BPA ABP αβαβγβγα∠=--∠=--- .在ABP 中,根据正弦定理,()()()()sin sin sin -sin 180+αsin -sin -AP ABABP APBAP AP αγαγβγβγα=∠∠=-⨯=所以山高为()()sin sin -sin sin -h AP ααγβαγα==.6.D【分析】由0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭ 可得AB AC =,再由12AB AC AB AC ⋅=可求出A ∠,即得三角形形状.【详解】因为||AB AB和AC AC uuu r uuu r 分别表示向量AB 和向量AC 方向上的单位向量,由0AB AC BC AB AC⎛⎫ ⎪+⋅= ⎪⎝⎭,可得A ∠的角平分线与BC 垂直,所以ABC 为等腰三角形,且AB AC =,22||||cos AB AC AB AC A ⋅=⋅⋅且12AB AC ABAC ⋅= ,所以1cos 2A Ð=,又()0,πA ∠∈,所以π3A ∠=,所以π3B C A ∠=∠=∠=,所以三角形为等边三角形.故选:D .7.C【详解】试题分析:因为OA OB OC ==,所以O 到定点,,A B C 的距离相等,所以O 为ABC ∆的外心,由0NA NB NC ++= ,则NA NB NC +=-,取AB 的中点E ,则2N A N B N E C N +=-= ,所以2NE CN = ,所以N 是ABC ∆的重心;由•••PA PB PB PC PC PA ==,得()0PA PC PB -⋅= ,即0AC PB ⋅= ,所以AC PB ⊥,同理AB PC ⊥,所以点P 为ABC ∆的垂心,故选C.考点:向量在几何中的应用.8.tan sin sin()s θβαβ⋅+【详解】在△BCD 中,CBD παβ∠=--.由正弦定理得,sin sin BC CD BDC CBD=∠∠所以sin sin CD BDCBC CBD∠=∠sin .sin()s βαβ⋅=+在Rt △ABC 中,tan AB BC ACB=∠tan sin .sin()s θβαβ⋅=+塔高AB 为tan sin sin()s θβαβ⋅+.9【解析】MPN ∠即为AM 与AN 的夹角,先用,AB AC 将AM 与AN 表示出来,求出AM BN ⋅ 以及AM ,AN ,代入公式cos ||||AM BN MPN AM BN ⋅∠= 即可.【详解】解:∵M ,N 分别是BC ,AC 的中点,11(),22AM AB AC BN AN AB AC AB ∴=+=-=- .AM 与BN 的夹角等于,cos ||||AM BN MPN MPN AM BN ⋅∠∴∠= .11()22AM BN AB AC AC AB ⎛⎫⋅=+⋅- ⎪⎝⎭211114242AB AC AB AC AB AC =⋅-+-⋅ 2211125cos 60253424︒=-⨯⨯⨯-⨯+⨯=,||2AM ===,||2BN =,cos 91MPN ∴∠=.【点睛】本题考查平面向量基本定理以及向量的夹角公式,考查计算能力,是中档题.10.证明见解析【分析】利用余弦定理的推理将左边的余弦式进行角化边,化简整理即可得到右边.【详解】根据余弦定理的推论222222cos ,cos 22b c a c a b A B bc ca+-+-==,得左边222222222222(cos cos )()(2222a c b b c a a c b b c a c a B b A c a b c ac bc c c+-+-+-+-=-=⋅-⋅=-22221(22)2a b a b =-=-=右边,故等式成立.【点睛】本题考查了余弦定理的推理的应用,考查了证明等式的方法及推理论证能力,属于基础题.11.(1)见解析(2)见解析(3)见解析【解析】(1)设三角形的三边a ,b ,c 的对角分别为A ,B ,C ,则由余弦定理可得222cos 2a b c C ab+-=,求出sin C 并代入三角形面积公式in 12s S ab C =,设1()2p a b c =++,则111(),(),()222b c a p a c a b p b a b c p c +-=-+-=-+-=-,即可化简得证;(2)由(1)可得S =.而又因为2l a b c p =++=,12S lr =,结合上述两式即可得证;(3)由三角形面积公式可得111222a b c S ah bh ch ====,即可得解.【详解】证明:(1)根据余弦定理的推论得222cos 2a b c C ab+-=,则sin C ==in 12s S ab C =,得12S ===又1()2p a b c =++,所以111(),(,()222b c a p a c a b p b a b c p c +-=-+-=-+-=-,代入可得S =;(2)因为1()2p a b c =++,所以三角形的周长2l a b c p =++=,又三角形的面积11222S lr p r pr ==⋅⋅=,其中r 为内切圆半径,所以S r p ==(3)根据三角形的面积公式111222a b c S ah bh ch ===,得2a S h a ==同理可证b h =c h =【点睛】本题主要考查了余弦定理、三角形面积公式,平方差公式的应用,计算量较大,属于中档题.12.(1)π3A =(2)2b c ==【分析】(1)在ABC 中,由cos sin 0a C C b c --=及正弦定理得到π1sin 62A ⎛⎫-= ⎪⎝⎭,得出角A ;(2)由三角形面积公式结合余弦定理可得2b c ==.【详解】(1)根据正弦定理,cos sin 0a C Cbc +--=变为sin cos sin sin sin 0A C A C B C --=,即sin cos sin sin sin A C A C B C =+,也即()sin cos sin sin sin A C A C A C C =++,所以sin cos sin sin cos cos sin sin A C A C A C A C C =++.cos 1A A -=,即11cos 222A A -=,所以()π1sin ,0,π62A A ⎛⎫-=∈ ⎪⎝⎭,所以ππ66A -=,则π3A =.(2)由π3A =,1sin 2ABC S bc A == ,得4bc =.由余弦定理,得()22222cos 22cos a b c bc A b c bc bc A =+-=+--,则()223=4+12=16b c a bc +=+,所以4b c +=.则2b c ==.13.D【详解】试题分析:由已知得,而,,CA AC DB BD =-=- 所以4OA OB OC OD OM +++= ,选D.考点:平面向量的线性运算,相反向量.14.B【分析】利用向量减法和向量相等的定义即可求得,,,a b c d 之间的关系,进而得到正确选项.【详解】OB OA AB OC OD DC -=-= ,,而在平行四边形ABCD 中,AB DC = ,所以OB OA OC OD -=- ,又OA a = ,OB b = ,OC c = ,OD d = ,则b a c d -=- ,也即0a b c d -+-= .故选:B .15.B【分析】先求得12e e ⋅ 的值,根据数量积的运算法则求得a b ⋅ 以及,a b 的模,再根据向量的夹角公式,即可求得答案.【详解】因为1e ,2e 是夹角为60︒的两个单位向量,所以12111cos602e e ⋅=⨯⨯︒= ,故2212121122(2)(32)62a b e e e e e e e e ⋅=+⋅-+=-+⋅+ 176222=-++=-,||a ==,||b = 故712cos ,2||||a b a b a b -⋅〈〉==-⋅ ,由于0,180a b ︒≤〈〉≤︒ ,故,120a b 〈〉=︒ .故选:B.16.C【分析】根据给定条件,利用向量运算律计算即得.【详解】由向量a ,b ,c 两两的夹角相等,得,,,0a b b c a c 〈〉=〈〉=〈〉= 或2π,,,3a b b c a c 〈〉=〈〉=〈〉= ,当,,,0a b b c a c 〈〉=〈〉=〈〉= 时,||5a b c ++= ,当2π,,,3a b b c a c 〈〉=〈〉=〈〉=时,||a b c ++=2==.故选:C17.cos()cos()cos a B b A c θθθ⋅-+⋅+=⋅【分析】由BA BC CA =+ ,结合数量积可得DE BA DE BC DE CA ⋅=⋅+⋅ ,再运用数量积定义可分别求出DE BA ⋅ 、DE BC ⋅ 、DE CA ⋅ ,代入整理即可.【详解】如图所示,因为BA BC CA =+ ,所以()DE BA DE BC CA ⋅=⋅+ ,即DE BA DE BC DE CA ⋅=⋅+⋅ ,又因为||||cos ||cos DE BA DE BA EDA c DE θ⋅=∠= ,||||cos()||cos()DE BC DE BC B a DE B θθ⋅=-=- ,||||cos()||cos()DE CA DE CA A b DE A θθ⋅=+=+ ,所以||cos ||cos()||cos()c DE a DE B b DE A θθθ=-++ ,即cos cos()cos()c a B b A θθθ=-++.18.(1)4i 3x =±(2)1i 22x =-±【分析】根据题意,由一元二次方程的解法结合复数的运算,即可得到结果.【详解】(1)将方程29160x +=的二次项系数化为1,得2160.9x +=得2169x =-,即4i.3x =±所以原方程的根为4i 3x =±(2)方程210x x ++=的二次项系数为1,配方,得21324x ⎫-⎛+= ⎪⎝⎭,由Δ0<,知()30.4-->可得1i.22x +=所以原方程的根为122x =-±.19.(1)24(2)(2)x x i x i +=+-;(2)44()()()()a b a b a b a bi a bi -=+-+-.【解析】(1)运用平方差公式进行因式分解即可;(2)运用平方差公式进行因式分解即可.【详解】(1)22224(4)(2)(2)(2)x x x i x i x i +=--=-=+-;(2)442222()()()()()()a b a b a b a b a b a bi a bi -=-+=+-+-.【点睛】本题考查了在复数范围内因式分解,考查了平方差公式的应用,属于基础题.20.9716λ-≤≤.【详解】试题分析:当12z z =时,复数的实部和虚部分别相等,求得24sin 3sin =-λθθ,根据[]sin 1,1θ∈-,求函数的值域.试题解析:∵12z z =,∴()()242cos 3sin m m i i θλθ+-=++,∴22{43m cos m sin θλθ=-=+,消去m 得:24cos 3sin θλθ-=+,∴22394sin 3sin 4sin 816λθθθ⎛⎫=-=-- ⎪⎝⎭,∵1sin 1θ-≤≤,∴当3sin 8θ=时,min 916λ=-.当sin 1θ=-时,max 7λ=.所以λ的取值范围为:9716λ-≤≤.21【解析】设圆锥的底面半径为r ,母线长为l ,根据圆锥的表面积公式和半圆的面积公式列方程组,解出即可.【详解】解:设圆锥的底面半径为r ,母线长为l ,则由题意得2a r rl ππ=+.又圆锥的侧面展开图为半圆,2r l ππ∴=,即2l r =.将②式代入①式得23a r π=,23a r π∴=,即r =.【点睛】本题考查圆锥的表面积公式,是基础题.22.6【分析】按侧面11ABB A 放置时,液面以上部分为三棱柱,其体积为原来棱柱的14,故可得水的体积为棱柱的34,由此可得按底面ABC 放置时液面的高.【详解】设三棱锥的体积为V ,按侧面11ABB A 水平放置时液面以上部分的体积为14V ,故水的体积为34V ,设按底面ABC 放置时液面的高为h ,则33484V h V ==,故6h =.【点睛】一定形状的几何体容器,按不同位置放置时容器内的液体的体积计算方法不一致,可根据同一体积的不同计算方法得到关键几何量之间的相互关系.23.222123111V V V +=【解析】直角三角形ABC 的两条直角边分别为a ,b ,斜边为c ,依照题意,得到三个几何体的体积.【详解】解:设直角三角形ABC 的两条直角边分别为a ,b ,斜边为c ,以a 为轴,进行旋转,形成底面半径为b ,高为a 的圆锥,其体积221133V b a ab ππ=⨯⨯⨯=;以b 为轴,进行旋转,形成底面半径为a ,高为b 的圆锥,其体积222133V a b a b ππ=⨯⨯⨯=,以c 为轴,进行旋转,形成底面半径为ab c,高的和为c 的两个圆锥的组合体,其体积22231(33ab a b V c c c ππ=⨯⨯⨯=.()222222242422442442291199933b a c a b a b a b a b ab a b ππππππ++=+=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 所以222123111V V V +=.【点睛】本题考查几何体的体积公式.较易.解题时要认真审题,仔细解答.24.27个部分【分析】根据题意画出图形即可得出答案.【详解】如图,图中画出了正方体最上层把空间分成9个部分,个部分,因此共将空间分成27个部分.【点睛】本题主要考查的是平面基本性质,正确理解确定平面的几个公理及由题意画出图形且有较强的空间想象能力是解题的关键,是中档题.25.证明见解析【分析】推导出P ,Q ,R 都在平面ABC 与平面α的交线上,即可证明.【详解】证明:法一:∵AB ∩α=P ,∴P ∈AB ,P ∈平面α.又AB ⊂平面ABC ,∴P ∈平面ABC .∴由基本事实3可知:点P 在平面ABC 与平面α的交线上,同理可证Q ,R 也在平面ABC 与平面α的交线上.∴P ,Q ,R 三点共线.法二:∵AP ∩AR =A ,∴直线AP 与直线AR 确定平面APR .又∵AB ∩α=P ,AC ∩α=R ,∴平面APR ∩平面α=PR .∵B ∈平面APR ,C ∈平面APR ,∴BC ⊂平面APR .∵Q ∈BC ,∴Q ∈平面APR ,又Q ∈α,∴Q ∈PR ,∴P ,Q ,R 三点共线.26.画线见解析.【详解】试题分析:利用线面平行的判定定理去确定.试题解析:过平面内一点作直线,交于,交于;过平面内一点作直线,交于,则,所确定的截面为所求.考点:棱锥的结构特征,线面平行的判定和实际应用.27.(1)(2)(4)(5)【分析】根据题意,结合棱柱的特征进行判断,观察即可得到答案.【详解】根据棱柱的定义知,有两个面是互相平行且是全等的多边形,其余每相邻两个面的交线也互相平行,而这些面都是平行四边形,所以(1)和(2)正确;因为水面EFGH 所在四边形,从图2,图3可以看出,有两条对边边长不变而另外两条对边边长随倾斜度变化而变化,所以水面四边形EFGH 的面积是变化的,(3)错误;因为棱11A D 始终与BC 平行,BC 与水面始终平行,所以(4)正确;因为水的体积是不变的,高始终是BC 也不变,所以底面积也不会变,即BE BF ⋅是定值,所以(5)正确;综上知(1)(2)(4)(5)正确,故答案为:(1)(2)(4)(5).28.外中点垂【分析】(1)由PO α⊥可得PO AO ⊥,PO BO ⊥,根据题意可得POA POB ∆≅∆,可得OA OB =,从而可得OA OB OC ==,从而得到结果;(2)由(1)得到OA OB OC ==,根据在直角三角形中,斜边的中线是斜边的一半可得,点O 为斜边AB 的中点;(3)由PA PB ⊥,PB PC ⊥可得PB ⊥平面PAC ,进而可得PB AC ⊥,又PO AC ⊥,可得AC ⊥平面PBO ,进而可得BO AC ⊥,同理可得CO AB ⊥,AO BC ⊥,从而得出答案。
高考数学压轴专题人教版备战高考《不等式》知识点总复习含答案

高中数学《不等式》知识点归纳一、选择题1.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C【解析】【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值. 【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示:当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C.【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.2.若33log (2)1loga b ab +=+42a b +的最小值为( ) A .6B .83C .163D .173 【答案】C【解析】【分析】 由33log (2)1log a b ab +=+213b a+=,且0,0a b >>,又由12142(42)3a b a b b a ⎛⎫+=++ ⎪⎝⎭,展开之后利用基本不等式,即可得到本题答案. 【详解】因为33log (2)1log a b ab +=+,即()()3333log 2log 3log log 3a b ab ab +=+=, 所以,23a b ab +=,等式两边同时除以ab 得213b a +=,且0,0a b >>, 所以12118211642(42)()(8)(8216)3333a b a b a b b a b a +=++=++≥+=, 当且仅当82a b b a=,即2b a =时取等号,所以42a b +的最小值为163. 故选:C.【点睛】 本题主要考查利用基本不等式求最值,其中涉及对数的运算,考查计算能力,属于中等题.3.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .42B .4C .22D .2【答案】B【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.4.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n +的最小值为( ) A .3 B .1 C .2 D .32 【答案】D【解析】【分析】 画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n+的最小值. 【详解】 画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.5.已知函数())22log 1f x x x =+,若对任意的正数,a b ,满足()()310f a f b +-=,则31a b+的最小值为( ) A .6B .8C .12D .24【答案】C【解析】【分析】先确定函数奇偶性与单调性,再根据奇偶性与单调性化简方程得31a b +=,最后根据基本不等式求最值.【详解】0,x x x x ≥-=所以定义域为R , 因为()2log f x =,所以()f x 为减函数因为()2log f x =,())2log f x x -=,所以()()()f x f x f x =--,为奇函数,因为()()310f a f b +-=,所以()()1313f a f b a b =-=-,,即31a b +=, 所以()3131936b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,因为96b a a b +≥=, 所以3112a b +≥(当且仅当12a =,16b =时,等号成立),选C. 【点睛】 本题考查函数奇偶性与单调性以及基本不等式求最值,考查基本分析求解能力,属中档题.6.已知0a b >>,则下列不等式正确的是( )A .ln ln a b b a ->-B .|||b a <C .ln ln a b b a -<-D .|||b a ->【答案】C【解析】【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案.【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1b a e ==-,可排除A 、D 项;取11,49a b ==711812b a ==,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的.故选:C .【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.7.在ABC V 中,,,a b c 分别为A ∠,B Ð,C ∠所对的边,函数2232()13a c f x x bx x +-=+++的导函数为()f x ',当函数[]()ln ()g x f x '=的定义域为R 时,B Ð的取值范围为( ) A .,63ππ⎡⎤⎢⎥⎣⎦ B .,6ππ⎡⎫⎪⎢⎣⎭ C .2,63ππ⎡⎤⎢⎥⎣⎦ D .0,6π⎛⎫ ⎪⎝⎭【答案】D【解析】【分析】首先求出函数的导数,依题意即222()3203a c f x x bx +-'=++>恒成立,所以()222(2)40b a c ∆=-+-<,再结合余弦定理即可求出B 的取值范围;【详解】解:因为2232()13a c f x x bx x +-=+++,所以222()323a c f x x bx +-'=++,若()g x 的定义域为R,则有()222(2)40b a c ∆=-+-<,即222a c b +->,结合余弦定理,222cos 22a cb B ac +-=>,故0,6B π⎛⎫∈ ⎪⎝⎭,故选:D. 【点睛】本题考查导数的计算,对数函数的定义域以及不等式恒成立问题,属于中档题.8.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5B.5 CD【答案】C【解析】【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示: 联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩, 由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离,所以AB ()()2242325-+-=故选:C .【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.9.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( )A .[1,)-+∞B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A【解析】【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2B .4C .6D .7【答案】B【解析】【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值.【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径,设AB x =,AC y =,AD z =,球半径为R ,因为三棱锥外接球的表面积为8π,则284R π=π, 解得2R =,所以体对角线为2, 所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y z S x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4,故选:B.【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.11.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( ) AB .5C .3D .52【答案】D【解析】【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可.【详解】 解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩………平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方,解得,2252d ⎛⎫==; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.12.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元B .360千元C .400千元D .440千元 【答案】B【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件: 2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值.绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知:目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.13.已知实数x ,y 满足20x y >>,且11122x y x y+=-+,则x y +的最小值为( ). A .335+ B .4235+ C .2435+ D 343+ 【答案】B【解析】【分析】 令22x y m x y n-=⎧⎨+=⎩,用,m n 表示出x y +,根据题意知111m n +=,利用1的代换后根据基本不等式即可得x y +的最小值.【详解】20,20,20x y x y x y >>∴->+>Q ,令22x y m x y n -=⎧⎨+=⎩,解得2525m n x n my +⎧=⎪⎪⎨-⎪=⎪⎩,则0,0m n >>,111m n +=, 223111555m n n m n m x y m n +-+⎛⎫⎛⎫∴+=+⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭131313(42)55n m nm m n m n⎛⎫=⨯+++≥⨯+⋅ ⎪⎝⎭ 423+= 当且仅当3n m m n =,即3m n =,即23(2)x y x y -=+ 即97333,1515x y +-==时取等号. 故选:B .【点睛】本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.14.已知x ,y 满足约束条件02340x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A .2B .12C .-2D .12- 【答案】A【解析】【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A ,代入可构造方程求得结果.【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z =-+经AOB V 区域时,当l 过点()2,0A 时,在y 轴上的截距最大, 即()2,0A 为最优解,42a ∴=,解得:2a =.故选:A .【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.15.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】【分析】通过列举,和推理证明可以推出充要性.【详解】 若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->;故“()0ab a b ->”是“0a b >>”的必要不充分条件,故选:B.【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.16.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C ++的最小值为( )A .3BC .3D .【答案】A【解析】【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求.【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =,∴tan 2tan C B =.又A B C π++=,∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B B B C B B +=-=-=---, ∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B -++=++27tan 36tan B B =+.又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan 3B B +≥=,当且仅当tan 2B =时取等号,∴min111tan tan tan A B C ⎛⎫++= ⎪⎝⎭ A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.17.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( )A .log 3log 3a b >B .336a b +>C .133ab a b ++>D .b a a b > 【答案】B【解析】【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立.【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以336a b +>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.18.若实数x ,y 满足不等式组11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最小值是( )A .3B .32C .0D .3- 【答案】D【解析】【分析】根据已知的约束条件画出满足约束条件的可行域,再由目标函数2z x y =+可得2y x z =-+,此时Z 为直线在y 轴上的截距,根据条件可求Z 的最小值.【详解】解:作出不等式组所表示的平面区域,如图所示得阴影部分的ABC ∆,由2z x y =+可得2y x z =-+,则z 为直线在y 轴上的截距把直线:2l y x =-向上平移到A 时,z 最小,此时由1y x y =⎧⎨=-⎩可得(1,1)A -- 此时3z =-,故选:D .【点睛】本题考查用图解法解决线性规划问题,分析题目的已知条件,找出目标函数中的z 的意义是关键,属于中档题.19.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( )A .1(1,)2- B .1(,1)(,)2-∞-+∞UC .1(,1)2- D .1(,)(1,)2-∞-⋃+∞ 【答案】B【解析】【分析】 判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2x x f x e e x -=-+,定义域为R ,且满足()()sin 2x x f x e e x --=-+- ()()sin2x x e e x f x -=--+=-,∴()f x 为R 上的奇函数;又()'2cos222cos20x x f x e e x x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>, 得()()()221f x f x f x ->-=-,∴221x x ->-,即2210x x +->,解得1x <-或12x >,所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞⎪⎝⎭. 故选B .【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.20.若,x y 满足4,20,24,x y x y x y +≤⎧⎪-≥⎨⎪+≥⎩则4y x -的最大值为( ) A .72- B .52- C .32- D .1-【答案】D【解析】【分析】画出平面区域,结合目标函数的几何意义,求解即可.【详解】该不等式组表示的平面区域,如下图所示4y x-表示该平面区域中的点(),x y 与(0,4)A 确定直线的斜率 由斜率的性质得出,当区域内的点为线段AB 上任意一点时,取得最大值.不妨取84(,)33B 时,4y x -取最大值443183-=- 故选:D【点睛】本题主要考查了求分式型目标函数的最值,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学总复习题总结(有答案)高考必备及参考答案(附参考答案)第一章 集合与函数概念一、选择题1.设全集U ={(x ,y)| x ∈R ,y ∈R},集合M =,⎭⎬⎫⎩⎨⎧1=2-3-|),(x y y x P ={(x ,y)| y ≠x +1},那么CU(M ∪P)等于( ).A .B .{(2,3)}∅C .(2,3)D .{(x ,y)| y =x +1} 2.若A ={a ,b},BA ,则集合B 中元素的个数是( ).⊆ A .0 B .1 C .2 D .0或1或2 3.函数y =f(x)的图象与直线x =1的公共点数目是( ). A .1 B .0 C .0或1 D .1或24.设函数f(x)=2x +3,g(x +2)=f(x),则g(x)的表达式是( ). A .2x +1 B .2x -1 C .2x -3 D .2x +7 5. 已知函数f(x)=ax3+bx2+cx +d 的图象如图所示,则( ).A .b ∈(-∞,0)B .b ∈(0,1)C .b ∈(1,2)D .b ∈(2,+∞) 6.设函数f(x)=, 若f(-4)=f(0),f(-2)=-2,则关于x 的方程f(x)=x 的解的个数为( ).⎩⎨⎧00++2 x c x c bx x ,,≤A .1B .2C .3D .47.设集合A ={x | 0≤x ≤6},B ={y | 0≤y ≤2},下列从A 到B 的对应法则f 不是映射的是( ).A .f:x →y =xB .f:x →y =xC .f:x →y =xD .f:x →y =x213141618.有下面四个命题:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数,又是偶函数的函数一定是f(x)=0(x ∈R). 其中正确命题的个数是( ).A .1B .2C .3D .4 9.函数y =x2-6x +10在区间(2,4)上是( ). A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减10.二次函数y =x2+bx +c 的图象的对称轴是x =2,则有( ). A .f(1)<f(2)<f(4) B .f(2)<f(1)<f(4) C .f(2)<f(4)<f(1) D .f(4)<f(2)<f(1)(第5题)>二、填空题11.集合{3,x ,x2-2x}中,x 应满足的条件是.12.若集合A ={x | x2+(a -1)x +b =0}中,仅有一个元素a ,则a =___,b =___.13.建造一个容积为8 m3,深为2 m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为元.14.已知f(x +1)=x2-2x ,则f(x)=;f(x -2)=. 15.y =(2a -1)x +5是减函数,求a 的取值范围.16.设f(x)是R 上的奇函数,且当x ∈[0,+∞)时,f(x)=x(1+x3),那么当x ∈(-∞,0]时,f(x)=.三、解答题17.已知集合A ={x ∈R| ax2-3x +2=0},其中a 为常数,且a ∈R . ①若A 是空集,求a 的范围;②若A 中只有一个元素,求a 的值;③若A 中至多只有一个元素,求a 的范围.18.已知M ={2,a ,b},N ={2a ,2,b2},且M =N ,求a ,b 的值. 19.证明f(x)=x3在R 上是增函数. 20.判断下列函数的奇偶性: (1)f(x)=3x4+;(2)f(x)=(x -1);21x x x -+11(3)f(x)=+;(4)f(x)=+.1-x x-112-x 21x -第一章 集合与函数概念参考答案一、选择题 1.B解析:集合M 是由直线y =x +1上除去点(2,3)之后,其余点组成的集合.集合P 是坐标平面上不在直线y =x +1上的点组成的集合,那么MP 就是坐标平面上不含点(2,3)的所有点组成的集合.因此CU(MP)就是点(2,3)的集合.CU(MP)={(2,3)}.故选B . 2.D解析:∵A 的子集有,{a},{b},{a ,b}.∴集合B 可能是,{a},{b},{a ,b}中的某一个,∴选D .∅∅3.C 解析:由函数的定义知,函数y =f(x)的图象与直线x =1是有可能没有交点的,如果有交点,那么对于x =1仅有一个函数值.4.B解析:∵g(x +2)=2x +3=2(x +2)-1,∴g(x)=2x -1.5.A解析:要善于从函数的图象中分析出函数的特点. 解法1:设f(x)=ax(x -1)(x -2)=ax3-3ax2+2ax ,比较系数得b =-3a ,c =2a ,d =0.由f(x)的图象可以知道f(3)>0,所以f(3)=3a(3-1)(3-2)=6a >0,即a >0,所以b<0.所以正确答案为A .解法2:分别将x =0,x =1,x =2代入f(x)=ax3+bx2+cx +d 中,求得d =0,a =-b ,c =-b. ∴f(x)=b(-x3+x2-x)=-[(x -)2-].313231323bx 2341由函数图象可知,当x ∈(-∞,0)时,f(x)<0,又[(x -)2-]>0,∴b <0.2341x ∈(0,1)时,f(x)>0,又[(x -)2-]>0,∴b <0.2341x ∈(1,2)时,f(x)<0,又[(x -)2-]<0,∴b <0.2341x ∈(2,+∞)时,f(x)>0,又[(x -)2-]>0,∴b <0.2341故b ∈(-∞,0). 6.C解:由f(-4)=f(0),f(-2)=-2,得,∴ .22422b b c ⎧-=-⎪⎨⎪-+=-⎩42b c =⎧⎨=⎩ ∴f(x)=⎩⎨⎧)0 ( 2)0 (2+4+2x ,x ,x x 由 得x =-1或x=-2;由 得x =2.⎩⎨⎧ 综上,方程f(x)=x 的解的个数是3个. 7.A解:在集合A 中取元素6,在f :x →y =x 作用下应得象3,但3不在集合B =21{y |0≤y ≤2}中,所以答案选A .8.A提示:①不对;②不对,因为偶函数或奇函数的定义域可能不包含0;③正确;④不对,既是奇函数又是偶函数的函数还可以为f(x)=0,x ∈(-a ,a).所以答案选A .9.C解析:本题可以作出函数y =x2-6x +10的图象,根据图象可知函数在(2,4)上是先递减再递增.答案选C .10.B解析:∵对称轴 x =2,∴f(1)=f(3). ∵y 在〔2,+∞〕上单调递增, ∴f(4)>f(3)>f(2),于是 f(2)<f(1)<f(4). ∴答案选B .x >0 x =2≤ >x ≤0x 2+4x +2=x (第5题)二、填空题11.x ≠3且x ≠0且x ≠-1.解析:根据构成集合的元素的互异性,x 满足⎪⎩⎪⎨⎧解得x ≠3且x ≠0且x ≠-1. 12.a =,b =.3191解析:由题意知,方程x2+(a -1)x +b =0的两根相等且x =a ,则△=(a -1)2-4b =0①,将x =a 代入原方程得a2+(a -1)a +b =0 ②,由①②解得a =,b =.319113.1 760元.解析:设水池底面的长为x m ,水池的总造价为y 元,由已知得水池底面面积为4 m2.,水池底面的宽为m .x4池底的造价 y1=120×4=480.池壁的造价 y2=(2×2x +2×2×)×80=(4x +)×80.x 4x16水池的总造价为 y =y1+y2=480+(4x +)×80,x16 即 y =480+320(x +)x4=480+320.⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛4+22x -x 当 =, 即x =2时,y 有最小值为 480+320×4=1 760元.xx214.f(x)=x2-4x +3,f(x -2)=x2-8x +15.解析:令x +1=t ,则x =t -1,因此f(t)=(t -1)2-2(t -1)=t2-4t +3,即f(x)=x2-4x +3.∴f(x -2)=(x -2)2-4(x -2)+3=x2-8x +15.15.(-∞,).21解析:由y =(2a -1)x +5是减函数,知2a -1<0,a <.2116.x(1-x3).解析:任取x ∈(-∞,0], 有-x ∈[0,+∞), ∴f(-x)=-x [1+(-x)3]=-x(1-x3),∵f(x)是奇函数,∴f(-x)=-f(x). ∴f(x)=-f(-x)=x(1-x3), 即当x ∈(-∞,0]时,f(x)的表达式为x(1-x3).三、解答题17.解:①∵A 是空集,∴方程ax2-3x +2=0无实数根.∴解得a >.⎩⎨⎧∆,a a 08-9=,089②∵A 中只有一个元素,x ≠3, x 2-2x ≠3, x 2-2x ≠x . ≠ <∴方程ax2-3x +2=0只有一个实数根.当a =0时,方程化为-3x +2=0,只有一个实数根x =;32当a ≠0时,令Δ=9-8a =0,得a =,这时一元二次方程ax2-3x +2=0有两个相等的实数根,即A 中只有一个元素.89由以上可知a =0,或a =时,A 中只有一个元素.89③若A 中至多只有一个元素,则包括两种情形:A 中有且仅有一个元素;A 是空集.由①②的结果可得a =0,或a ≥.8918.解:根据集合中元素的互异性,有 解得 或 或再根据集合中元素的互异性,得 或19.证明:设x1,x2∈R 且x1<x2,则f(x1)-f(x2)=-=(x1-x2)(+x1x2+).31x 32x 21x 22x又+x1x2+=(x1+x2)2+.21x 22x 214322x 由x1<x2得x1-x2<0,且x1+x2与x2不会同时为0,21 否则x1=x2=0与x1<x2矛盾, 所以 +x1x2+>0.21x 22x因此f(x1)- f(x2)<0,即f(x1)<f(x2),f(x)=x3 在 R 上是增函数.20.解:(1)∵ 函数定义域为{x | x ∈R ,且x ≠0},f(-x)=3(-x)4+=3x4+=f(x),∴f(x)=3x4+是偶函数.21)(-x 21x 21x(2)由≥0 解得-1≤x <1.x x -+11⇔⎩⎨⎧≠01--1+1x x x ))(( ∴ 函数定义域为x ∈[-1,1),不关于原点对称,∴f(x)=(x -1)为非奇非偶函数.xx-11+(3)f(x)=+定义域为x =1,1-x x -1∴ 函数为f(x)=0(x =1),定义域不关于原点对称, ∴f(x)=+为非奇非偶函数.1-x x -1 (4)f(x)=+定义域为 Þx ∈{±1},1-2x 2-1x 0≥ -10≥1-22x x∴函数变形为f(x)=0 (x =±1),∴f(x)=+既是奇函数又是偶函数.1-2x 2-1x高一数学必修1一、选择题:(每小题5分,共30分)。