第3章讲义雷达接收机

合集下载

雷达原理雷达接收机PPT课件

雷达原理雷达接收机PPT课件
16
雷达接收机的组成
低噪声放大器的主要指标
1、噪声系数(Noise Figure):输入信号与输出信号的信 噪比(SNR)之比。 NF=(SNR)in/(SNR)out 通常情况下,它是以分贝为单位的。 2、增益(Gain):负载吸收功率与信源资用功率之比。 3、带内平坦度(Gain Flatness):通带内最大增益与最 小增益的差值。 4、驻波比(Standing Wave Ratio):最大电压与最小电 压之比。 5、输出功率(Power Out)
14
雷达接收机的组成 (一)关于低噪声放大器
低噪声放大器(Low Noise Amplifier,简称LNA)是射频接 收机前端的主要部分。 它主要有以下几个特点: 1、处于接收机的前端就要求它的噪声系数越小越好。 为了抑制后面几级噪声对系统的影响,还要求有一定的 增益,为了不使后级器件过载,产生非线性失真它的增 益又不能太大。在此放大器在工作频段内应该是绝对稳 定的。
17
雷达接收机的组成
具体指标在实际中的应用:
在实际应用中,为了有足够的增益,放大器通常是 若干级放大管(或模块)级联而成,即由单个的放大管 组成一个低噪声放大器。那么,在设计之初这个低噪声 的放大器的一些指标就得通过一定公式来计算得到。
下面以噪声系数为例,给出级联后的噪声系数的计算
公式:
F

F1

上次课作业
2、在什么情况下选用主振放大式发射机?在什么情 况下选用单级振荡式发射机? 解: 对发射信号的频率、相位和谱纯度任一参数有较高要 求的情况下选用主振放大式发射机,3 参数均无较高 要求的情况下选用单级振荡式发射机。
上次课作业
3、用带宽为 10Hz 的测试设备测得某发射机在距主 频 1KHz 处的分布型寄生输出功率为 10μ W,信号 功率为 100mW,求该发射机在距主频 1KHz 处的频 谱纯度。

经典雷达资料-第3章接收机

经典雷达资料-第3章接收机

第3章接收機John W. Taylor, Jr.3.1 雷達接收機的組成雷達接收機的作用是放大雷達所接收到的回波,並以在有用回波和無用干擾之間獲得最大鑒別率的方式對回波進行濾波。

干擾不僅包含雷達接收機產生的雜訊,還包含從銀河系、鄰近雷達、通信設備以及可能的干擾機所接收到的能量。

雷達本身輻射的能量被無用目標(諸如雨、雪、鳥群、昆蟲、大氣擾動和金屬箔條等)散射,並被該雷達接收的那部分也可以叫做干擾。

對機載測高或地形測繪雷達而言,其他飛機是無用的目標,而地面是需要的目標。

更一般地說,雷達用於探測飛機、船隻、地面車輛或人員,而從海面或地面產生的反射均為雜波干擾。

雷達接收機包括的範圍必須適當地確定。

本章將討論圖 3.1所示的接收機的各組成部分。

輸入信號來自天線的收發開關,這個收發開關可使收、發共用一個天線。

一些雷達天線還包括形成接收波束之前的前置低噪放大器。

雖然通常把它們當做天線而不是接收機的元件,但本章仍將討論它們。

接收機對信號進行濾波,以多種方式從干擾雜波中分出有用回波。

為了進行深入討論,這種處理的某些內容分述於其他章節。

第14章討論CW雷達和調頻-連續波(FM-CW)雷達;而這裡討論的只限于脈衝雷達接收機這種主要形式。

低PRF的脈衝雷達發射一串能量脈衝,並在相鄰發射脈衝之間接收回波。

其主要優點是,在接收遠距目標微弱回波時,既沒有發射機漏泄的能量,又沒有附近地物干擾產生的很強回波出現在同一瞬間。

脈衝回波的延遲還提供距離的暫態測量。

從第15章~17章討論的是,根據速度或從一個脈衝到下一個脈衝相位的變化,從干擾中鑒別出需要的目標;這裡討論的接收機,只用於為這種多普勒濾波提供適當形式的各個脈衝信號。

3.12節將討論影響這些多普勒濾波器的同步檢波器或者A/D轉換器中的資料失真。

第10章討論脈衝壓縮,這裡只扼要地介紹它在鑒別處理過程中的協助工具。

實際上,對這種回波的解碼可以作為中頻濾波部分,通常用聲表面波器件或數位相關器,它們可以放在多普勒濾波器之前或之後。

雷 达 接 收 机

雷 达 接 收 机

第3章雷达接收机
本章重点
雷达接收机的组成、各组成单元的功能 接收机动态范围的概念 接收机噪声、噪声系数、噪声温度、噪声比的概 念和相关计算 稳定本振的常见措施、匹配滤波器的概念
4/141
第3章雷达接收机
3.1 雷达接收机的组成和主要质量指标
超外差接收电路
在前人的基础上,费森登研制出高频无线电发射机,发射机采 用调制无线电波振幅的方法,使调幅波能携带语言、音乐等音 频信号。他成功地让大西洋航船上的报务员听到了从马萨诸塞 州播出的音乐,首次实现用无线电来传播声音,开创了无线电 广播的先河。 1919年,英国建成了世界上第一个无线电广播电台,每天定时 为公众播发语言和音乐节目。第二年,美国的匹兹堡也建成了 一座无线电广播电台。在无线电广播初创的20年代初期,这种 传播方式没能得到推广。1919年,美国无线电专家阿姆斯特朗 公布了自己早年发明的超外差接收电路。此后,无线电广播才 得到蓬勃的发展。 5/141
第3章雷达接收机
第3章雷达接收机
3.1 雷达接收机的组成和主要质量指标
3.2 接收机的噪声系数和灵敏度
3.3 雷达接收机的高频部分
3.4 本机振荡器和自动频率控制 3.5 接收机的动态范围和增益控制 3.6 滤波和接收机带宽
1/141
第3章雷达接收机
本章主要内容
雷达接收机的组成、质量指标 接收机噪声系数、噪声带宽 接收机前端、本机振荡器 动态范围、增益控制、匹配滤波器的概念
2/141
第3章雷达接收机
本章知识点
雷达接收机的组成、各组成单元的作用 接收机噪声的来源、噪声带宽、噪声系数、噪声温度 接收机灵敏度的概念、


收发转换开关的工作原理、接收机保护器的作用

雷达技术第三章雷达接收机8-11

雷达技术第三章雷达接收机8-11

为中频, 再由多级中频放大器对中频脉冲信号进行放大和匹配滤
波, 以获得最大的输出信噪比, 最后经过检波器和视频放大后送 至终端处理设备。
更为通用的超外差式雷达接收机的组成方框图如图 3.1所示。
3.1 超 外 差 式 雷 达 接 收 机 原 理 方 框 图
STC
AGC
AFC
3.1 雷达接收机的基本原理和组成
输出功率谱密度 怎么描述噪声的功率谱宽度? 回忆:天线方向图的宽度,用什么进行描述的? 3dB
23
3.4 接收机的噪声系数和灵敏度
4. 噪声带宽
Pno ( f ) Pno (f0 )
方法1,用3dB带宽进行描述 0.5?0.707?
方法2,用等效带宽功率来描述
o
Bn
பைடு நூலகம்
f

Bn

积分面积相等
0

pno ( f )df pno ( f 0 ) Bn
灵敏度和噪声系数 工作频带宽度和滤波特性 动态范围和增益 频率源的频率稳定性和频谱纯度 幅度和相位的稳定性 正交鉴相器的正交度 A/D变换器的技术参数 抗干扰能力 频率源及发射激励性能 微电子话、模块化、系列化
12
3.2 雷达接收机的主要质量指标
1. 灵敏度
最小可检测信号功率Si min
Si min
例题:已知接收机内噪声在输出端的额定功率为0.1W, 额定功率增益为1012,测试带宽为5MHz,求等效输入
噪声温度和接收机噪声系数。
解:等效噪声温度为 ΔN=kTeBnGa 已知Bn=5×106Hz,Ga=1012,ΔN=0.1W, k=1.38×10-23J/K 则Te=1449.3K 噪声系数为 F 1

雷达原理3-雷达接收机新ppt课件.ppt

雷达原理3-雷达接收机新ppt课件.ppt

S i
m in
k T0 Bn F0
So No
m in
(3.2.36)
通常,我们把(So/No)min称为“识别系数”, 并用M表示, 所以灵敏 度又可以写成
S i
m in
kT0Bn F0M
(3.2.37)
第3章雷达接收机
为了提高接收机的灵敏度, 即减少最小可检测信号功率Si min, 应做到:
F 1 N
k T0 BnGa
ΔN2=(F2-1)kT0BnG2
于是式(3.2.24)可进一步写成
(3.2.25)
No=kT0BnG1G2F0=kT0BnG1G2F1+(F2-1)kT0BnG2
化简后可得两级级联电路的总噪声系数
F0
F1
F2 1 G1
(3.2.26)
第3章雷达接收机 三级级联推导
之比, 叫做动态范围。
第3章雷达接收机 4. 中频的选择和滤波特性
接收机中频的选择和滤波特性是接收机的重要质量指标之 一。
在中频的选择可以从30 MHz到4GHz之间。 如何选择接收机的中频? 短波接收机为什么选在465KHz?
在白噪声(即接收机热噪声)背景下应该选择何种滤波方式?
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
雷达接收机的任务是通过适当的滤波将天线上收到的微弱高频信号从伴随的 噪声和干扰中选择出来,同时处理后送到终端设备。 主要组成部分是:

雷达原理第三章

雷达原理第三章
准匹配滤波 用物理可实现的实际滤波器逼近匹配滤 波器,成为准匹配滤波。 失配损失:
n
S ρ = N ≈
S N max
滤波和接收机带宽
n
具体结果:P72 表3.4
滤波和接收机带宽
n
接收机带宽选择
n
警戒雷达
n n
中频带宽: B RI = Bopt + ∆f x 视频带宽: Bv ≥ Bopt 2
i =1
n n ∆ + ∆ + + ∆ L N G N G N 2∏ i n 1∏ i i=2 i =3 ∆N n ∆N1 ∆N 2 = 1+ + +L+ G1 N i G1G2 N i G1G2 L Gn N i
n
n
n
i =2
i =3
1 F = 1+ GN i
整理
Fk − 1 = ∆N N i Fn − 1 F2 − 1 F3 − 1 = F1 + + +L+ Gk G1 G1G2 G1G2 LGn −1
n
自动增益控制(AGC)
n
n
作用:在大信号输入时,使接收机处于线性放大状态,保 持信号较快的包络起伏调制(典型带宽20Hz以上) 特点:控制范围大,响应时间长(秒级) 作用:在遇到长时间的强干扰信号后,能够快速调整接收 机增益,不使接收机饱和,在强干扰结束,使接收机迅速 回到原有的线性放大状态,以便能够接收处理后续信号, 但对正常目标回波不起控 特点:响应时间快(5~20 τ )
S i min
So = M , N i = kT0 Bn ,∴S i min = kT0 Bn FM No

《雷达接收机》课件

《雷达接收机》课件

VS
详细描述
雷达接收机的高性能化主要体现在接收灵 敏度、动态范围、抗干扰能力等方面的提 升。这需要采用先进的信号处理技术和高 性能的器件来实现。
小型化与集成化
总结词
随着便携式和无人机等应用领域的快速发展 ,雷达接收机的小型化与集成化成为了一个 迫切的需求。
详细描述
通过采用先进的微电子技术和封装技术,将 雷达接收机的各个组件集成在一个小型化的 封装中,从而实现雷达接收机的小型化和集 成化。这有助于提高设备的可靠性和降低成 本。
雷达接收机通过接收和分 析气象目标的回波信号, 能够准确监测降雨、风速 、风向等气象参数。
灾害预警
雷达接收机能够及时发现 强降雨、冰雹等灾害性天 气,为灾害预警和应急响 应提供依据。
气候研究
雷达接收机提供的高时空 分辨率数据可用于气候变 化研究,帮助科学家了解 和预测气候变化趋势。
航空交通管制
空中交通监控
总结词
雷达接收机的抗干扰能力是指其抵御外部干扰信号影响的能力。
详细描述
抗干扰能力强的雷达接收机能够降低噪声、杂波和干扰信号的影响,提高目标识别的准确性和可靠性 。
稳定性
总结词
雷达接收机的稳定性是指其性能参数随时间和环境变化的能力。
详细描述
稳定性好的雷达接收机能够在不同环境和条件下保持稳定的性能参数,确保长时间工作 的可靠性和稳定性。
选择性好的雷达接收机能够有效抑制无用信号和干扰,只接收特定频率的信号, 从而提高信号的纯净度和准确度。
动态范围
总结词
雷达接收机的动态范围是指其接收强信号和弱信号的能力范围。
详细描述
动态范围大的雷达接收机能够在强信号和弱信号之间进行平滑切换,确保不同强度的目标回波都能够被有效接收 和处理。

第三章雷达接收机

第三章雷达接收机
使接收机开始出现过载时的输入功率与最小 可检测功率之比
4.中频的选择和滤波特性
中频选择与发射波形特性、接收机的工 作带宽、所能提供的高频部件和中频部 件的性能有关。一般在30M-500MHz
滤波特性---是减小接收机噪声的关键 输出信噪比最大化---匹配滤波
5. 接收机的噪声系数
接收机的噪声来源
若用对数表示,则称为增益
G=20lgK 雷达接收机的电压放大倍数一般为 106~109 倍 相应的增益为120-180dB
3. 动态范围
定义:接收机能够正常工作所容许的输入信号 强度变化范围。
在接收机内部噪声电平一定的条件下,信 号太弱便不能检测;信号太强,接收机会发生 饱和过载,使目标回波显著减小,甚至丢失。
kT0 BnGa
N F 1 kT0BnGa
关于接收机噪声系数的几点说明
1. 噪声系数只适用于接收机的线性电路和准 线性电路。(非线性电路,需要考虑输出信号 与噪声的交叉项)
2. 为使噪声系数具有单值确定性,规定输入 噪声以天线等效电阻在室温290K时产生的 热噪声为标准。噪声系数只由接收机本身 参数确定。
能检测的信号越微弱, 则接收机的灵敏度越高, 因而雷达的作用距离就越远。
1/ 4
Rmax


PtGA
(4π)2 Simin

1. 灵敏度

信号

目标距离

信号

目标距离
如果不存在噪声,则不管目 标回波有多小,理论上都能 够检测到。
噪声 但实际系统都不可避免地存 在噪声,因此接收机的输入 信号功率如果低于噪声水平, 目标就会完全淹没在噪声中, 从而不可能被可靠地检测出 来。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章雷达接收机
4.
接收机中频的选择和滤波特性是接收机的重要质量指标之 一。 中频的选择与发射波形的特性、 接收机的工作带宽以及所 能提供的高频部件和中频部件的性能有关。在现代雷达接收机 中, 中频的选择可以从30 MHz到4GHz之间。当需要在中频增加 某些信号处理部件, 如脉冲压缩滤波器, 对数放大器和限幅器等 时, 从技术实现来说, 中频选择在30MHz至500MHz更为合适。 对于宽频带工作的接收机, 应选择较高的中频, 以便使虚假的寄 生响应减至最小。
第3章雷达接收机
精品jing
第3章雷达接收机
3.1 雷达接收机的组成和主要质量指标
3.1.1 超外差式雷达接收机的组成
超外差式雷达接收机的简化方框图如图3.1所示。 它的主要 组成部分是:
(1) 高频部分, 又称为接收机“前端”, 包括接收机保护器、 低噪声高频放大器、混频器和本机振荡器;
(2) 中频放大器, 包括匹配滤波器; (3)
第3章雷达接收机 对于相干处理, 中频放大和中频滤波之后有二种处理方法,
见图3.2。第一种方法是经过线性放大器后进行同步检波, 同步 检波器输出的同相(I)和正交(Q)的基带多卜勒信号提供了回波的 振幅信息和相位信息。第二种方法是经过硬限幅放大(幅度恒定) 后进行相位检波, 此时正交相位检波器只能保留回波信号的相位 信息。
在图3.2中, 灵敏度时间增益控制(STC)使接收机的增益在发 射机发射之后, 按R-4规律随时间而增加, 以避免近距离的强回波 使接收机过载饱和。灵敏度时间控制又称为近程增益控制, 可以 加到高频放大器和前置中频放大器中。自动增益控制(AGC)是 一种反馈技术, 用来自动调整接收机的增益, 以便在雷达系统跟 踪环路中保持适当的增益范围。
第3章雷达接收机
3. 动态范围
动态范围表示接收机能够正常工作所容许的输入信号强度 变化的范围。最小输入信号强度通常取为最小可检测信号功率 Si min, 允许最大的输入信号强度则根据正常工作的要求而定。 当输入信号太强时, 接收机将发生饱和而失去放大作用, 这种现 象称为过载。使接收机开始出现过载时的输入功率与最小可检 测功率之比, 叫做动态范围。为了保证对强弱信号均能正常接收, 要求动态范围大, 就需要采取一定措施, 例如采用对数放大器、 各种增益控制电路等抗干扰措施。
发射 机 稳定 本振
对数 放大 器
线性 放大 器
相干 本振
包络 检波 器 视
90°
同频 检波 器
u I(t)


u Q (t)


限幅 放大 器
相位 检波 器
cos
s i n
图3.2 超外差式雷达接收机的一般方框图
第3章雷达接收机
对于非相参雷达接收机, 通常需要采用自动频率微调(AFC)电 路, 把本机振荡器调谐到比发射频率高或低一个中频的频率。 而 在相干接收机中, 稳定本机振荡器(STALO)的输出是由用来产生 发射信号的相干源(频率合成器)提供的。
减小接收机噪声的关键参数是中频的滤波特性, 如果中频滤 波特性的带宽大于回波信号带宽, 则过多的噪声进入接收机。 反之, 如果所选择的带宽比信号带宽窄, 信号能量将会损失。这 两种情况都会使接收机输出的信噪比减小。 在白噪声(即接收机 热噪声)背景下, 接收机的频率特性为“匹配滤波器”时, 输出的 信号噪声比最大。
2. 接收机的工作频带宽度
接收机的工作频带宽度表示接收机的瞬时工作频率范围。 在复杂的电子对抗和干扰环境中, 要求雷达发射机和接收机具有 较宽的工作带宽, 例如频率捷变雷达要求接收机的工作频带宽度 为(10~20)%。接收机的工作频带宽度主要决定于高频部件(馈线 系统、高频放大器和本机振荡器)的性能。 需要指出, 接收机的 工作频带较宽时, 必须选择较高的中频, 以减少混频器输出的寄 生响应对接收机性能的影响。
第3章雷达接收机 3.1.2
1.
灵敏度表示接收机接收微弱信号的能力。能接收的信号越 微弱, 则接收机的灵敏度越高, 因而雷达的作用距离就越远。
雷达接收机的灵敏度通常用最小可检测信号功率Si min来表 示。 当接收机的输入信号功率达到Si min时, 接收机就能正常接收 而在输出端检测出这一信号。如果信号功率低于此值, 信号将被 淹没在噪声干扰之中, 不能被可靠地检测出来, 如图3.3所示。由 于雷达接收机的灵敏度受噪声电平的限制, 因此要想提高它的灵 敏度, 就必须尽力减小噪声电平, 同时还应使接收机有足够的增 益。
第3章雷达接收机
发 射脉 冲 噪声
被 噪声 淹 没 的信 号
图3.3 显示器上所见到的信号与噪声
第3章雷达接收机
目前, 超外差式雷达接收机的灵敏度一般约为(10-12~10-14)W, 保证这个灵敏度所需增益约为106~108(120 dB~160 dB), 这一增 益主要由中频放大器来完成。
第3章雷达接收机
第3章雷达接收机
高 频 输 入 接 收 机 保 护 器
低 噪 声 高 频 放 大 器
混 频 器
中 频 放 大 器 (匹 配 滤 波 器 )
检 波 器
视频至 终 端 设 备 放 大 器
高 பைடு நூலகம் 部 分
本 振
图3.1 超外差式雷达接收机简化方框图
第3章雷达接收机
从天线接收的高频回波通过收发开关加至接收机保护器, 一 般是经过低噪声高频放大器后再送到混频器。在混频器中, 高频 回波脉冲信号与本机振荡器的等幅高频电压混频, 将信号频率降 为中频(IF), 再由多级中频放大器对中频脉冲信号进行放大和匹 配滤波, 以获得最大的输出信噪比, 最后经过检波器和视频放大 后送至终端处理设备。
更为通用的超外差式雷达接收机的组成方框图如图3.2所示。
它适用于收、发公用天线的各种脉冲雷达系统。实际的雷达接
收机可以不(而且通常也不)

第3章雷达接收机
天线
近程 增益 控 制 (STC )
A GC
收发 开关 接收 机保 护器 低噪 声高 频放大 器
混 频器 中频 放大 器 中频 增益 衰减 中频 滤波 器
输入的高频信号与稳定本机振荡信号或本机振荡器输出相混 频, 将信号频率降为中频。 信号经过多级中频放大和匹配滤波后, 可以对其采用几种处理方法。 对于非相干检测, 通常采用线性放 大器和包络检波器来为检测电路和显示设备提供信息。 当要求 宽的瞬时动态范围时, 可以采用对数放大器—检波器, 对数放大器 能提供大于80 dB的有效动态范围。
相关文档
最新文档